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Abstract
The Cape Fold Ecoregion (CFE) is one of southern Africa’s unique aquatic ecoregions and its freshwater fish fauna is char-
acterized by high levels of endemism. As with many other Mediterranean-type ecosystems, the region is also a hotspot for 
threatened and range-restricted freshwater fish. Many of the CFE’s endemic species are at risk for extinction, with declines 
in population sizes and distribution ranges. The Clanwilliam sandfish Labeo seeberi is an example of such a species and is 
considered one of South Africa’s most endangered large migratory cyprinids. This species is endemic to the Olifants/Dor-
ing river system in the CFE and has been subject to a major population decline, mainly as a result of invasive alien fish and 
adverse climate events. Little is known of the genetics of the Clanwilliam sandfish, thus this study aimed to provide basic 
population genetic parameters to inform future conservation interventions. Both microsatellite and mitochondrial DNA 
(mtDNA) markers were used to assess populations from three sites within the Olifants/Doring river system. Genetic diversity 
was moderate to low and did not reflect the drastic decline expected on the basis of previous relative abundance data. This is 
likely due to a lag effect between ecological/life history demographics (due to juvenile recruitment failures) and population 
genetic composition. Furthermore, there was limited genetic differentiation between the sampling locations, suggesting a 
single breeding population, but mtDNA haplotype distribution and slight divergence of the smaller populations does sug-
gest that the population might have become recently fragmented. The results show that the effective population size of the 
current breeding population might still be sufficient to maintain evolutionary potential in the short term, which could act as 
a buffer until conservation strategies focusing on protecting breeding animals and maximizing juvenile survival can restore 
population numbers.

Keywords Cape Fold Ecoregion (CFE) · Freshwater fish · Genetic lag · Microsatellite · mtDNA · Olifant/Doring River

Introduction

Freshwater fishes are some of the most threatened animals 
globally. This is largely due to fragmentation, degradation, 
and loss of habitat; water flow modification and pollution; 
introduction of invasive alien species (as predators and 
competitors); the increasing threat of climate change; and 
overfishing (Reid et al. 2013; Dudgeon 2019; Jordaan et al. 

2020). The Cape Floristic Region, located primarily within 
the Western Cape Province of South Africa, is one of the 
six floral kingdoms of the world and recognized as a global 
biodiversity hotspot (Myers et al. 2000). The geographical 
extent of the Cape Floristic Region corresponds to the Cape 
Fold Ecoregion (CFE), one of the eight aquatic ecoregions 
of southern Africa (Abell et al. 2008; Chakona et al. 2022). 
The CFE is moderately diverse in terms of freshwater fish 
taxa (n = 40), but a hotspot for freshwater fish endemism 
with 92% of these taxa being endemic to the region (Cha-
kona et al. 2022). The number of endemic and threatened 
taxa continue to increase as a result of ongoing morphologi-
cal and genetic studies (e.g., Swartz et al. 2007, 2009; Cha-
kona et al. 2013a; Bronaugh et al. 2020) and confirms the 
suggestion by Linder et al. (2010) that the current taxonomy 
vastly underestimates the diversity of freshwater fishes of the 
region. In terms of the International Union for Conservation 
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of Nature (IUCN) Red List status, 70% of freshwater fish 
taxa of the CFE are threatened, with five taxa listed as criti-
cally endangered, fourteen as endangered and nine as vulner-
able (Chakona et al. 2022).

Alien invasive fish and habitat degradation has been high-
lighted as the major drivers for the declines in the freshwater 
fishes in the CFE (Tweddle et al. 2009; De Moor and Day 
2013; Weyl et al. 2013, 2014; Chakona et al. 2022). Many 
populations have become fragmented and are now largely 
confined to the headwater reaches of streams (Swartz et al. 
2004; Tweddle et al. 2009; Chakona et al. 2013b). Conser-
vation management for the persistence and protection of 
the unique freshwater biodiversity in this region has thus 
become of increasing importance (Paxton et al. 2012). This 
is especially important in the case of freshwater fish, as the 
current protected area network was shown to be largely inef-
fective for protecting the majority of indigenous freshwater 
fish species of the region (Jordaan et al. 2020).

The Clanwilliam sandfish Labeo seeberi is a large cypri-
nid species endemic to the Olifants/Doring river system in 
the CFE. It favors pools or deep runs of larger rivers and 
migrates upstream into tributary habitat during spawning, 
which occurs during the austral spring (Paxton et al. 2002, 
2012). Hontela and Stacey (1990) reported that the changes 
in water chemistry, brought on by heavy rain and subsequent 
flooding of terrestrial vegetation, are the ultimate spawning 
cue for cyprinids. Potts et al. (2005) reported that flooding 
has been recognized as the primary factor regulating spawn-
ing in the closely related Labeo umbratus. Poor rainfall can 
thus negatively affect spawning cues, causing female fish 
to retain their eggs until conditions are optimal or reabsorb 
eggs altogether if conditions do not improve, as was illus-
trated in L. umbratus (Gaigher 1984; Potts et al. 2005).

Labeo seeberi was historically widespread within the 
Olifants/Doring river system, but currently persists as a 
fragmented population confined to the middle and north-
ern reaches of the Doring River and its isolated tributaries, 
namely the Oorlogskloof/Koebee, Gif, Kransgat, Biedouw, 
Tra-Tra, and Matjies rivers (Paxton et al. 2012; Lubbe et al. 
2015). It has been estimated that the species has experi-
enced a more than 90% decline in relative abundance since 
2013. This is partly attributed to an estimated 99% decline 
in annual juvenile recruitment in one of the main spawn-
ing areas (Oorlogskloof River) as a consequence of aber-
rant weather patterns, highlighting the threat of climate 
change (Cerrilla et al. 2022). The species is currently listed 
as endangered (Jordaan et al. 2017) and while there is a rela-
tively good understanding of threats to the species, there has 
not been any study of the current genetic status of the sand-
fish. This paucity of knowledge may preclude the effective 
identification and implementation of conservation strategies.

An understanding of the genetic composition of the 
population will assist in determining conservation units, 

the extent of genetic diversity and evolutionary potential 
of the species, and inform captive breeding and release 
strategies for population recovery and augmentation (Kar-
dos 2021). Riverine environments are often characterized 
by significant population genetic structuring of aquatic 
animals due to the system’s unique in-stream features 
(natural and anthropogenic) and hydrodynamics that might 
act as barriers, restricting animal movement and subse-
quent gene flow (e.g., Abbas et al. 2010; Peacock et al. 
2016; Coleman et al. 2018; Rougemont et al. 2021; Shelley 
et al. 2022). Using the COI mitochondrial DNA (mtDNA) 
region, Modeel et al. (2023) argued that there was little 
population genetic structure among Labeo rohita (Rohu) 
populations from south and southeast Asia. However, this 
mtDNA marker, commonly used as a species identifying 
barcoding gene due to its low mutation rate, is expected 
to show high homogeneity within a species (Bhattacharya 
et al. 2016). Other studies for L. rohita, (based on nuclear 
microsatellite markers and the mtDNA marker, cyt b) have 
presented mixed results, with evidence for limited genetic 
differentiation and significant genetic divergence between 
populations depending on the river systems (Luhariya 
et al. 2012; Sahoo et al. 2014; Behera et al. 2018). Other 
Indian Labeo species, including Labeo dero (Chaturvedi 
et al. 2011) and Labeo fimbriatus (Swain et al. 2022) also 
demonstrated evidence for population genetic stratifica-
tion. Across the various Asian Labeo species, population 
genetic diversity seems to be wide-ranging depending on 
the conservation and/or commercial exploitation status of 
the species.

African Labeo species form a distinct clade from the 
Asian species (Ramoejane 2016; Kebede and Harris 2019), 
and there are limited studies on population genetic diversity 
and structure for these species. However, an extensive study 
using mtDNA and nuclear gene sequences on L. umbratus, 
a closely related species to L. seeberi, does suggest that sig-
nificant population genetic structure could persist within 
African Labeo species on a broad spatial scale (Ramoejane 
et al. 2021). However, unlike L. umbratus,, which has a 
fairly large distribution range across various river systems 
(Ramoejane 2016), L. seeberi has a restricted distribution 
within the Olifants/Doring river system. Other cyprinid spe-
cies within the Olifants/Doring river system seem to exhibit 
varying degrees of genetic differentiation (Swartz et al. 
2004). Hence, the genetic constitution of species, even if 
restricted to a single river system, might be highly depend-
ent on species-specific life history characteristics and adap-
tations, breeding behavior, and dispersal ability. The aim 
of the study was therefore to investigate population genetic 
parameters, using microsatellite and mtDNA markers, to 
gain insight into the population dynamics, genetic health, 
and status of the remaining L. seeberi population to inform 
optimal conservation strategies.
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Materials and methods

Sample collection and DNA extraction

The bulk of the sample collection was done by staff from 
relevant provincial conservation agencies (CapeNature and 
the Northern Cape Department Nature and Environment 
Conservation) while conducting routine freshwater fish 
surveys. Additional samples were collected and donated 
by staff from the Endangered Wildlife Trust (permit num-
ber AAA008-00022). In total, samples were collected 
from 128 adult fish (> 200 mm) that were sampled from 
three different localities, two of which were located on the 
Oorlogskloof River. The upstream site is located within 
the Oorlogskloof Nature Reserve (n = 82, OKNR), while 
the downstream site is located on Rietkuil Farm at the 
confluence of the Oorlogskloof and Klein/Kobee rivers 
(n = 36, Riet). These two sites are geographically close, 
but functionally separated by a waterfall that is a com-
plete barrier to any upstream fish movement. Additional 
samples were collected from the Bos River (n = 10, Bos), 
a tributary of the Doring River. All samples were taken 
during a 2013 survey of the greater Doring River system; 
these sampling locations presented the only sites along the 
river system where the fish was found during the survey 
(Fig. 1; Table S1).

Fish were captured using a combination of sein nets and 
large fyke nets. Fin clips measuring a maximum size of 
0.5 cm × 0.5 cm were collected from one of the paired anal 
fins of each individual and stored in a 2.5 ml tube filled 
with 100% ethanol. All fish were released back at their site 
of capture post sample collection. Samples were stored 
at 4 °C until DNA extractions could be performed using 
an adjusted cetyl trimethylammonium bromide (CTAB) 
protocol as described by Justesen et al. 2002.

Microsatellite loci and mitochondrial control region 
amplification

Six microsatellite markers were sourced from literature 
based on two sister species, Labeo rohita (Patel et  al. 
2011) and Labeo fimbriatus (Swain et al. 2012, 2013) 
(Table S2) and used to genotype the fish from three sam-
pling locations. The polymerase chain reaction (PCR) 
conditions were as follow: final reaction volume of 10 μl 
consisted of 1× KAPA Taq Ready Mix (Roche, Basel, 
Switzerland), 100 ng of DNA and 0.4 μM of each primer. 
Cycling conditions included an initial denaturation phase 
at 95 °C for 5 min, followed by 30 cycles of 95 °C for 45 s, 
1 min at the annealing temperature  (TA; Table S1), 72 °C 
for 2 min, with a final extension step at 72 °C for 7 min. 

Amplified samples were submitted to the Central Analyti-
cal Facility (CAF), Stellenbosch University for capillary 
electrophoresis on a 3730XL Genetic Analyzer (Life Tech-
nologies, Carlsbad, California, USA). GeneMapper v4.0 
(Life Technologies) was used for binning, allele scoring, 
and manually curated where needed.

A total of 36 individuals were randomly subsampled to 
represent the three sampling locations (OKNR—13; Riet—
13; Bos—10) for the amplification of the mitochondrial 
control region (mtCR). A 736 bp fragment of the mtCR was 
PCR amplified using the primer pair by Lin et al. (2010): 
Fish G (F): 5′-GCA TGG GTC TTG TAA TCC GA-3′ and Fish 
F (R): 5′-TAG TAA GGT CGG GAC CAT GC-3′, with a total 
reaction volume of 20 µl Kappa Taq Ready Mix (Roche), 
using the same reaction composition as for the microsatel-
lite markers. The thermal cycling conditions of these reac-
tions are as follows: an initial denaturation step at 95 °C for 
3 min, followed by 35 cycles at 95 °C for 30 s, an annealing 
temperature of 57 °C for 30 s, 72 °C for 1 min, and a final 
extension step at 72 °C for 7 min. PCR products were run 
on a 1.5% agarose gel at 100 V for 30 min to confirm suc-
cessful amplification, after which the products were sent to 
CAF, Stellenbosch University for sample purification using 
the QIAGEN gel clean-up system and then sequenced using 
Sanger sequencing chemistry (BigDye® termninator v3.1 
cycle sequencing kit, Life Technologies). Sequencing prod-
ucts were purified using Sephadex spin columns (Prince-
ton Separation, Adelphia, NJ) and analyzed via capillary 
electrophoresis on a 3730XL Genetic Analyzer (Life Tech-
nologies). Sequences were aligned using the ClustalW algo-
rithm in MEGA v7 (Kumar et al. 2018), manually edited and 
trimmed to equal lengths.

Genetic diversity, relatedness, and population 
demographic analyses

Microsatellite genotypes were evaluated for stuttering, 
allelic dropout, and the presence of null alleles, with the 
frequency of null alleles per locus per sampling location 
calculated with Microchecker v2.2.3 (Van Oosterhout et al. 
2004). Genepop on the web v4.2 (Rousset 2008) was used 
to test for between-loci linkage disequilibrium (LD), within 
and across sampling locations, as well as for loci deviat-
ing from Hardy–Weinberg equilibrium (HWE) expectations 
(10,000 dememorizations, 100 batches, and 10,000 iterations 
per batch). Genetic diversity indices were calculated for each 
sampling location, which included: the average number of 
alleles per locus (AN), observed and unbiased expected het-
erozygosities (HO and uHE), Shannon’s information index 
(I), and fixation indices (FIS), as well as standard error (SE) 
for each mean, in GenAlEx v6.501 (Peakall and Smouse 
2012). Polymorphism information content (PIC) was cal-
culated using MSTools v3.0 (Park 2001). The rarefied 
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allelic richness per locus (AR) was estimated using HP-Rare 
(Kalinowski 2005). The non-parametric Kruskal–Wallis test 
was performed in XL Statistics v2016.5 (https:// softw are. 
deakin. edu. au/ 2017/ 03/ 24/ xlsta tisti cs) to evaluate the signif-
icance (P < 0.05) of differences in genetic diversity estimates 
between sampling locations. Mean relatedness per popula-
tion (i.e., sampling location) was calculated in GenAlEx, 
using the relatedness estimator, r (Queller and Goodnight 
1989). Significance testing by 999 bootstrap replicates for 
differences between populations was done.

Effective population sizes (Ne) were estimated for each 
sampling location, using the linkage disequilibrium method 
as implemented in NeEstimator v2.0.1 (minimum allele 
frequency of 0.02, assuming a random mating model) (Do 
et al. 2014), with significance tests set at upper and lower 
95% confidence intervals based on bootstrapping. To test 
for recent bottlenecks, a Wilcoxon signed rank test (Luikart 
et al. 1998) was performed in Bottleneck v1.2.02 (Piry et al. 
1999). Three mutational models were implemented, spe-
cifically the infinite allele model (IAM), stepwise mutation 
model (SMM), and the two-phase model (TPM). Analyses 
were done using 10,000 replications at the 5% nominal level.

Mitochondrial DNA diversity was determined in DnaSP 
v5.0 (Librado and Rozas 2009), including the total number 
of haplotypes (H), hapotype diversity (h), and nucleotide 
diversity (π) for all sampling locations. The evolutionary 
relationships among haplotypes was inferred by constructing 
a median-joining inference network (Bandelt et al. 1999) as 
implemented in Network v5.0.0.3 (https:// www. flexus- engin 
eering. com). 

Genetic structuring analyses

The following microsatellite analyses were performed to 
assess genetic differentiation between the sampling loca-
tions, pairwise FST estimates, analysis of molecular vari-
ance (AMOVA), and multivariate discriminant analysis 
of principal components (DAPC). Pairwise FST and an 
AMOVA were performed (at significance level P < 0.05) 
in Arlequin v3.5 (Excoffier and Lischer 2010). Finally, a 
DAPC plot was constructed using the R packages ade4 
and adegenet (Jombart 2008). Prior to running the DAPC, 
cross-validation was done to determine the optimal number 
of principal components (PCs) to retain that allowed for the 

most accurate assignment of individuals (> 80%) to specific 
genetic clusters. For the mtCR, genetic differentiation among 
sampling locations was determined in Arlequin, by means 
of pairwise ɸST estimates and AMOVA (P < 0.05). Addi-
tionally, the nucleotide substitution model for the alignment 
was determined in jModelTest v2.0 (Darriba et al. 2012), 
with the HKY + G model being the best fit for the dataset. 
A maximum likelihood (ML) phylogenetic tree was then 
constructed in MEGA v7 and was bootstrapped with 1000 
runs, assuming this substitution model.

Results

Genetic diversity

Microsatellite diversity

A total of 128 individuals were successfully genotyped 
across six loci, with the average number of alleles ranging 
from 2 to 23 per maker (Table S3 for detail on per marker 
diversity across sampling locations). Across all sampling 
locations, two markers deviated from HWE (Table S3), and 
no significant linkage disequilibrium was observed. How-
ever, locus Lr_41 displayed evidence for null alleles and 
deviated from HWE in all populations. Since no significant 
differences were observed when the locus was excluded 
from analyses and given the limited number of loci avail-
able for analyses, the locus was ultimately retained for all 
downstream analyses.

Overall, the number of alleles per sampling location was 
moderate to low (Table 1), ranging from 6.50 (Bos) to 11.17 
(OKNR). However, allelic richness was more comparable 
between the sampling locations (Table 1). Of the three 
localities, the Bos sample displayed the lowest number of 
alleles, observed, and unbiased expected heterozygosities 
(AN—6.50; HO—0.583; uHE—0.043; Table 1). Addition-
ally, the inbreeding coefficients of all three groups were not 
statistically significantly different from one another, and the 
low values point to less inbred populations of L. seeberi, and 
none of the populations deviated significantly from HWE on 
the whole. Low levels of inbreeding were further supported 
by the mean relatedness (r) estimates that did not deviate 
significantly from zero for all populations (Fig. 2).

Mitochondrial diversity

A 736 bp fragment of the mtCR was amplified in 37 individ-
uals. Analysis resulted in eleven polymorphic sites, which 
consisted of ten transitions and one transversion. A total of 
ten haplotypes were identified, comprised of three high fre-
quency haplotypes (H1, 16.20%; H3, 27.03%; H4, 32.43%; 
Fig. 3). Notably, haplotype 1 was absent from the Riet 

Fig. 1  Map of the Olifants/Doring river system in the Northern and 
Western Cape of South Africa. The Clanwilliam sandfish is restricted 
to the northern reaches of the Doring River with recruitment 
restricted to the Oorlogskloof/Koebee River tributary. Dots indicate 
sampling locations. The upstream site (above the waterfall barrier) is 
located within the Oorlogskloof Nature Reserve (n = 82, OKNR), the 
downstream Rietkuil site is located at the confluence of the Oorlogsk-
loof and Klein/Kobee rivers (n = 36, Riet), and the Bos River (n = 10, 
Bos) is a tributary of the Doring River

◂

https://software.deakin.edu.au/2017/03/24/xlstatistics
https://software.deakin.edu.au/2017/03/24/xlstatistics
https://www.flexus-engineering.com
https://www.flexus-engineering.com
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population, while the lower frequency haplotypes appeared 
to be unique to specific populations. Overall, mitochondrial 
diversity was relatively high, with haplotype diversity (h) 
and nucleotide diversity (π) ranging from 0.782 to 0.821 and 
from 0.00233 to 0.00300, respectively (Table 1).

Population differentiation

Nuclear structure

Pairwise FST estimates were low, ranging from 0.002 to 
0.007, with no pairwise comparisons reaching statistical 
significance at the 1% nominal level (Table 2), indicating 
little to no genetic differentiation between the sampling 
locations. Furthermore, the AMOVA (Table 3) supported 
the lack of genetic differentiation with less than 1% of vari-
ation explained by among populations differences (global 
FST = 0.005, P > 0.05). While the DAPC plot reveals some 
separation of the Bos population from the OKNR and 

Table 1  Genetic diversity estimates for the Olifants/Doring sampling locations of Labeo seeberi based on microsatellite loci and the mitochon-
drial control region

n sample size, AN average number of alleles, AR allelic richness, HO observed heterozygosity, uHE unbiased expected heterozygosity, FIS fixation 
index, H number of haplotypes, h haplotype diversity, π nucleotide diversity

Sampling location Nuclear microsatellite loci mtCR

n AN AR HO uHE FIS n H h π

OKNR 82 11.17 3.35 0.643 0.698 0.052 13 5 0.782 (± 0.079) 0.00300 (± 0.00036)
Rietkuil 36 9.67 3.40 0.625 0.700 0.062 13 6 0.821 (± 0.082) 0.00268 (± 0.00045)
Bos 10 6.50 3.40 0.583 0.043 0.043 10 5 0.818 (± 0.083) 0.00233 (± 0.00049)
Total 128 9.11 3.38 0.617 0.691 0.055 37 10 0.808 (± 0.040) 0.00279 (± 0.00023)

Fig. 2  Estimates of mean relat-
edness for each of the sampling 
locations of Labeo seeberi. 
Error bars represent standard 
error of the mean. Upper (U) 
and lower (L) 95% confidence 
intervals for differences among 
the populations [Oorlogsk-
loof Nature Reserve (n = 82, 
OKNR); Rietkuil (n = 36, Riet); 
and the Bos River (n = 10, Bos)]

H4

H6

H9

H2

H5

H7

H1

H10

H3
H8

Bos

OKNR

Riet

Fig. 3  Median-joining haplotype network of L. seeberi mitochondrial 
control region haplotypes. Haplotypes are separated by black lines, 
with black dots indicating mutated positions between haplotypes. The 
size of the haplotype circles is proportional to the number of individ-
uals possessing said haplotype. A total of ten haplotypes were identi-
fied, composed of three high frequency haplotypes (H1, 16.20%; H3, 
27.03%; H4, 32.43%). The Bos River (Bos; blue, n = 10); Oorlogsk-
loof Nature Reserve (OKNR; orange, n = 82); Rietkuil (Riet; green, 
n = 36) (color figure online)

Table 2  Pairwise FST (below 
diagonal) and pairwise ɸST 
(above diagonal) values 
between the three sampling 
locations within the Olifants/
Doring river system

None of the estimates of differ-
entiation were statistically sig-
nificant

OKNR Riet Bos

OKNR 0.022 0.026
Riet 0.007 0.094
Bos 0.002 0.005
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Rietkuil populations, this is most likely a result of few sam-
ples from the Bos area (Fig. 4).

Mitochondrial structure

Pairwise ɸST analyses revealed no significant differentiation 
between the populations, (Table 2), with additional support 

from the AMOVA results (ɸST = 0.045, P > 0.05; Table 3). 
The majority of the variance was the diversity of haplotypes 
within each population contributing 94.45% of the total vari-
ance (Table 3). Furthermore, the maximum likelihood tree 
supports this lack of structure, with no discernible formation 
of groups within the entirety of the dataset (Fig. 5).

Population demography

The infinite allele model (IAM) showed statistically signifi-
cant (P < 0.05; Table 4) evidence of recent population bot-
tlenecks, although this was not supported by the two-phase 
model (TPM) or the stepwise mutational model (SMM).

Estimations of effective population size (Ne) using the 
linkage disequilibrium method indicated very low esti-
mates for the lower 95% confidence interval for the Riet and 
Bos populations, while the OKNR population was higher 
(Table 4). However, all point estimates using the linkage 
disequilibrium method were infinite, which is likely a result 
of using few markers.

Table 3  Analysis of molecular variance (AMOVA) of Labao seeberi 
based on different molecular markers (microsatellite markers and 
mitochondrial control region, mtCR)

*Statistically significant at the 5% nominal level

Marker Source of variation Variation % Fixation index

Microsatellite Among populations 0.548 FST = 0.005
Among individuals 

within populations
9.197 FIT = 0.097*

Within individuals 90.255 FIS = 0.092*
mtCR Among populations 4.55 ɸST = 0.045

Within populations 95.45

OKNR
Riet
Bos

DA eigenvalues

Fig. 4  Multivariate discriminant analysis of principal components 
(DAPC) plot for Labeo seeberi using six microsatellite markers, with 
sampling locations represented by different symbols and colors [Oor-

logskloof Nature Reserve (OKNR; blue triangle, n = 82); Rietkuil 
(Riet; yellow diamond, n = 36); and the Bos River (Bos; red circle, 
n = 10)] (color figure online)
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Discussion

The cumulative threats present in the CFE have resulted 
in a decline in both numbers and distribution in almost 
all of the endemic fish species of the region, including 

the Olifants/Doring river system (Paxton et al. 2002; Van 
der Walt et al. 2016; Chakona et al. 2022). These threats 
include loss of habitat as a result of water overabstrac-
tion, water infrastructure such as dams disrupting migra-
tion pathways, predatory invasive fish species, and the 
destruction of riparian zones. This causes fish populations 
to become fragmented, thereby reducing the population 
sizes and potentially serving as barriers to gene flow (Pax-
ton et al. 2012; Lubbe et al. 2015; Chakona et al. 2020). 
Small, isolated populations are intrinsically vulnerable to 
the loss of genetic diversity through genetic drift and fur-
ther homogenization of the population through inbreeding 
(Palstra and Ruzzante 2008; Hare et al. 2011; Chakona 
et al. 2020). If unchecked, this could impair the evolution-
ary potential and adaptive capacity of a species, decreasing 
fitness and leading to eventual extinction (Frankham 2005; 
Charlesworth and Willis 2009; Hare et al. 2011). This 
study provides some insight into the population genetics 
of the disjunct populations of the Clanwilliam sandfish.

Genetic diversity at the microsatellite loci was moderate 
to low (Table 1) as has previously been reported by Sahoo 

Fig. 5  Maximum likelihood tree 
of the Labeo seeberi popula-
tions based on a fragment of the 
mitochondrial control region. 
Numbers at nodes indicate 
bootstrap support for the place-
ment of individuals (only nodes 
that reached a bootstrap value 
higher than 50% are indicated), 
with the tree rooted using a 
representative control region 
sequence from a sister species, 
Labeo fimbriatus 
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Table 4  Bottleneck (Wilcoxon) test under the infinite allele model 
(IAM), two-phase model (TPM), and stepwise mutation model 
(SMM), as well as estimates of effective population size (Ne) calcu-
lated using the linkage disequilibrium method

n.s. not significant

Parameter OKNR Riet Bos

Sample size (n) 82 36 10
Wilcoxon test
 IAM < 0.05 < 0.05 n.s.
 TPM n.s. n.s. n.s.
 SMM n.s. n.s. n.s.

Ne ∞
(464.9—∞)

∞
(118.4—∞)

∞
(14.6—∞)
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et al. (2014) and Singh et al. (2012) for Labeo rohita and 
Labeo calbasu, respectively. The number of optimized mark-
ers and marker utility evaluation was also similar to Moh-
indra et al. (2005) who tested microsatellite marker transfer 
to Labeo dyocheilus. This suggested the utility of the cross-
species markers that are often criticized for creating ascer-
tainment bias leading to underestimation of genetic param-
eters in relation to the source species (Barbara et al. 2007). 
The Bos population did show marginally reduced estimates 
of diversity, most likely a consequence of the limited sam-
ple size, in comparison with the OKNR and Riet popula-
tions. However, AR correcting for unbalanced sampling does 
suggest that nuclear genetic diversity was similar across 
sampling locations (Kalinowski 2005). There was a slight 
homozygous excess for all three sampling locations, with 
evidence for limited inbreeding (significant FIS and FIT from 
the AMOVA) but was negligible, as the general population 
relatedness was practically zero (Fig. 2). This homozygous 
excess could also be explained by possible null alleles. Alam 
et al. (2009) and Sahoo et al. (2014) reported very simi-
lar diversity estimates for Labeo rohita using microsatel-
lite markers. Nonetheless, the genetic data is indicating a 
population at the initial phases of decline with some loss of 
genetic diversity (Leberg 2002; Foulley and Ollivier 2006), 
further supported by evidence for a recent genetic bottle-
neck under the infinite alleles model (Table 4). This could be 
attributed to the impacts of invasive black bass (Micropterus 
spp.) that have become established in more than 80% of the 
river system, with deleterious consequences for native fish 
biota, resulting in the extirpation of most indigenous fishes 
from invaded river reaches (Van der Walt et al. 2016). Larger 
bodied species such as the sandfish persist in these habitats, 
but at low numbers and in the form of relatively isolated 
populations. Unusual and erratic climate events, associated 
with climate change, altering waterscapes, and impacting on 
fish breeding behavior and juvenile recruitment can also not 
be excluded (Cerrilla et al. 2022).

Interestingly, estimates of effective population size (Ne) 
remained high across all three sampling locations. However, 
the point estimates, based the confidence intervals are impre-
cise, likely due to the small number of microsatellite markers 
and limited sample sizes; some caution in the interpretation 
of the values are thus needed (Waples et al. 2016). This is a 
common problem for species of conservation concern due to 
the scarcity and high value of animals (that limits sampling 
opportunities) and limited genomic resources for an under-
studied organism that further compounds the estimation of 
a parameter well known to be difficult to determine and is 
dependent on various organismal life-history characteristics 
and demographics (Serbezov et al. 2012). Nonetheless, it has 
been argued that despite large confidence intervals for esti-
mates of Ne, the LD method remains robust, and that lower 
confidence bound could still provide a fair assessment for 

making conservation management judgements (Waples and 
Do 2010). In their revised recommendations, Frankham et al. 
(2014) suggested to increase the lower limit for Ne from 50 
to 100 in aim of mitigating the immediate effects of inbreed-
ing, and to 500 to ensure at least short-term protection for 
loss of fitness over the next five generations. Looking at the 
lower bound Ne estimate for the OKNR population (Table 4), 
which is considered one of the last major reproducing popu-
lations of sandfish, it is already at that 500 cusp. The other 
two populations seem to have significantly reduced Ne with 
the Riet population at about the 100 point and the Bos popu-
lation in critical danger of local extinction with an Ne less 
than 50. While there is no geographical barrier separating 
the Riet and the Bos localities, it is likely that the established 
black bass population in the system has reduced survival of 
juvenile sandfish to negligible levels, which has effectively 
fragmented these two populations. Wang et al. (2019) argued 
that minimum viable population size (MVP) in freshwater 
fish can be highly variable and that long lived fish with late 
sexual maturity, long generation intervals, and high fecun-
dity typically require larger MVPs. The authors estimated an 
upper bound for such species at an MVP of 320 individuals. 
It has been suggested that MVP should be at least five to ten 
times greater than the Ne (Frankham 1995; Rosenfeld 2014) 
and this fits sandfish relative abundance data (Cerrilla et al. 
2022). These estimates are also congruent with the patterns 
of genetic diversity (Baek et al. 2018; Coleman et al. 2018; 
Martinez et al. 2018).

Cerrilla et al. (2022) documented a significant and dras-
tic decline of more than 92% in the relative abundance of 
Clanwilliam sandfish in the Oorlogskloof River between 
2013 and 2018. This decline was largely driven by a more 
than 99% decline in young of year individuals, which in 
turn was attributed to severe weather events including pro-
longed drought spells. The trend of this severe decline is 
not reflected in the genetic data, especially for the OKNR 
population. This is primary because the authors attribute 
the decline to recruitment failure among the young-of-year, 
as catch per unit effort for adult fish has remained fairly 
consistent over the study period. The generation interval is 
not known for Clanwilliam sandfish, but the closely related 
L. umbratus was reported to reach sexual maturity at 3 and 
4 years, respectively, for males and females (Mulder 1973). 
Estimates based on simulations for other Labeo species, L. 
niloticus, L. roita, and L. coubie, also suggest that they have 
fairly long generational times, between 3 and 5 years (www. 
fishb ase. se). Therefore, as genetic analyses are particularly 
sensitive to changes in the genetic composition of popula-
tions over generations (Serbezov et al. 2012), the genetic 
consequences of the population contraction remain “hid-
den” if new members are not recruited into the breeding 
population to form the next generation. This creates a known 
lag time between ecological and life history demographics 

http://www.fishbase.se
http://www.fishbase.se
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of populations and its corresponding genetic composition 
and structure (Epps and Keyghobadi 2015). This may also 
explain the relatively high observed mitochondrial diver-
sity (Table 1) that tend to reflect more historical population 
dynamics versus the microsatellite data that gives a contem-
porary analysis (relative to the lag time) (Wan et al. 2004).

Given the critical interplay between Ne, genetic diver-
sity, evolutionary potential, and fitness (Reed and Frankham 
2003; Ellegren and Galtier 2016), it is worth noting that 
there could be considerable differences between short- and 
long-term Ne, especially for animals with mass spawning 
and r-selected reproductive strategies (Martinez et al. 2018; 
Barry et al. 2022). Their reproductive life history charac-
teristics are defined by large variances in breeding success 
among individuals and mass larval/juvenile mortality rates 
that leads to reduced Ne in the short-term (Rhode et al. 2017; 
Martinez et al. 2018; Monteiro et al. 2022). These animals 
might therefore have some natural resilience to short term 
larval recruitment failures, as long as the breeding popula-
tion remains genetically stable and long-lived. Also, high 
fecundity leads to high mutation rates, that could replenish 
lost diversity and bolster evolutionary potential relatively 
quickly, in comparison with animals with k-selected strate-
gies, with effective conservation management (e.g., restor-
ing gene flow, and ensuring equal reproductive success of 
all breeding animals) and restoration of the natural habitat 
(Frankham 2015; Ellegren and Galtier 2016; Pavlova et al. 
2017; Martinez et al. 2018; Prunier et al. 2023). Given the 
sampling strategy of this study (only adult fish were sam-
pled) and the stable abundance data for adult fish (from Cer-
rilla et al. 2022), the current genetic analyses suggest that 
there is a genetically stable, mature population of Clanwil-
liam sandfish, with an Ne (approximately 500) that could 
provide short- to mid-term evolutionary potential and act 
as a buffer until the natural replenishment of genetic diver-
sity (Martinez et al. 2018). However, it may be concerning 
that this population is potentially aging, due to the lack of 
juvenile recruits (Cerrilla et al. 2022). Conservation strate-
gies should thus focus on protecting breeding animals and 
natural spawning sites and maximizing juvenile survival and 
broodstock contributions, perhaps through a captive breed-
ing and restocking program or through head-starting ini-
tiatives aimed at increasing juvenile survival. Care should, 
however, be taken to reduce the unintentional impact of 
hatchery effects leading to genetic erosion (Klütsch et al. 
2019; Monteiro et al. 2022).

Neither microsatellite nor mitochondrial data could sup-
port sufficient evidence for genetic differentiation within or 
between the three sampling locations (Tables 2, 3, Fig. 5). 
However, there was some minor separation of the Riet and 
Bos population from OKNR and each other, observable on 
the DAPC plot (Fig. 4). This is likely a sampling artifact 
of the small populations. But, considering several private 

mitochondrial haplotypes, and the absence of a high fre-
quency haplotype from the Riet population (H1, Fig. 3), it 
might suggest that these populations were recently sepa-
rated. A large waterfall on the Oorlogskloof River serves 
as a barrier to upstream fish movement, but prior to the 
establishment of black bass throughout the system juvenile 
fish from above the waterfall would have migrated down-
stream toward the mainstream Doring River. At present 
sandfish do persist downstream of the waterfall but the 
population is composed almost exclusively of large and old 
fish. It is thus recommended that all isolated populations 
of sandfish be managed as a single unit for conservation to 
maximize population viability and simplify conservation 
strategies and planning (Funk et al. 2012; Frankham 2015; 
Pavlova et al. 2017; Coates et al. 2018).

Conclusion

Labeo seeberi is one of the most threatened large cyprinids 
in southern Africa and is endemic to the Olifants/Doring 
river system in the CFE. It has been extirpated from much 
of its historical distribution range and is presently listed 
as endangered. Contemporary estimates of census popula-
tion size suggest a more than 90% decline in population 
numbers in one of the main breeding tributaries, the Oor-
logskloof River. Population declines for the greater Dor-
ing River system is difficult to quantify given the paucity 
of monitoring data, but is believed to be severe (Jordaan 
et al. 2017; Paxton et al. unpublished data). However, the 
genetic data does not reflect this drastic decline, most 
likely due to a time-lag between ecological/life history 
demographics and genetic structure. Nonetheless, the 
current breeding population, which consists of a single 
population across three sampling locations, does seem to 
harbor sufficient genetic diversity to serve as a reservoir 
for evolutionary potential in the short term (five genera-
tions). Conservation strategies must therefore focus on 
protecting breeding animals and maximizing juvenile 
survival. Given the high fecundity of the species, there 
is scope for the “self-restoration” of lost genetic diversity 
if conservation strategies are successful in securing juve-
nile recruitment. Conservation interventions that should 
be implemented with urgency include habitat restoration 
through management of water abstraction in sensitive 
catchments and the targeted removal of alien invasive 
piscivorous fish in priority tributaries where sandfish are 
known to breed. Removal of undesirable predatory fishes 
generally require the construction of instream barriers to 
prevent reinvasion, but this should be implemented within 
the context of the migratory nature of sandfish, which may 
prove challenging.
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