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Abstract. We apply Diophantine analysis to classify edge-to-edge tilings
of the sphere by congruent almost equilateral quadrilaterals (i.e., edge
combination a®b). Parallel to a complete classification by Cheung, Luk,
and Yan, the method implemented here is more systematic and applicable
to other related tiling problems. We also provide detailed geometric data
for the tilings.
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1. Introduction

We study edge-to-edge tilings of the sphere by congruent polygons, such that
each vertex has degree > 3. It is well known that the polygons in these tilings
are triangle, quadrilateral, or pentagon. The classification of tilings of the
sphere by congruent triangles, pioneered by Sommerville [19] in 1923, was
completed by Ueno and Agaoka [20] in 2002. The classification of tilings of
the sphere by congruent pentagons has been recently completed through a
collective effort [4,5,9,13,22-26].

Akama and Sakano [1,2] conducted a classification for tilings of the sphere
by congruent quadrilaterals which can be subdivided into two congruent trian-
gles. It remains to classify the tilings by congruent quadrilaterals with exactly
three equal edges (a3b, first picture of Fig. 1) and by congruent quadrilaterals
with exactly two equal edges (a?bc, second picture). Ueno and Agaoka [21],
and Akama and van Cleemput [3] studied some special cases of the tilings
by congruent a®b quadrilaterals. Their work is indicative of many challenges
in the classification. In 2022, Cheung et al. [8] gave a complete classification
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FIGURE 1. Quadrilaterals with edge combinations a3b, a?bc

for tilings of the sphere by congruent quadrilaterals as well as a modernised
classification for the tilings by congruent triangles.

We call a quadrilateral with edge combination a3b almost equilateral,
where a-edge and b-edge are assumed to have different lengths. The angles are
indicated in the first picture of Fig. 1, likewise for the a?bc quadrilateral in
the second picture. These standard configurations are implicitly assumed in
this paper. We call an angle rational if its value is a rational multiple of .
Otherwise, we call the angle irrational.

The main purpose of this paper is to give an alternative classification for
tilings of the sphere by congruent almost equilateral quadrilaterals. The key is
Diophantine analysis in the following situations:

1. If all angles are rational, then we determine the angle values by finding
all rational solutions to a trigonometric Diophantine equation which all
angles must satisfy.

2. If some angles are irrational, then we determine all angle combinations
at vertices by solving a related system of linear Diophantine equations
and inequalities.

Despite the complete classification in [8], techniques in this paper have
their own independent significance. Coolsaet [11] discovered the trigonometric
Diophantine equation relating the angles of convex almost equilateral quadri-
lateral. Myerson [15] found the rational solutions to the equation. Based on
their works, we made two major advancements. The first is extending the
trigonometric Diophantine equation to general (not necessarily convex) almost
equilateral quadrilaterals. The second is establishing a technique to determine
all angle combinations at vertices using the constraint of irrational angles. This
technique is based on the study in [17].

Historically, trigonometric Diophantine equations have been closely con-
nected to many geometric situations. Conway and Jones [10] have opened doors
to the exploration of many interesting geometry problems. Notable work can
be seen in [14-16,18].

In contrast to [8], there are two significant advantages in our approach.
First, arguments in this paper are more systematic, whereas those in [8] are
often sophisticated and improvised. Second, most techniques here can be com-
puterised. In that regard, our approach is apparently more advantageous in
exhaustive search and more likely to be applied to other similar problems,
such as the study of non-edge-to-edge tilings of the sphere. Promising signs of
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such proposal can be seen in the families of non-edge-to-edge tilings by con-
gruent triangles obtained in this paper as degenerated cases of the tilings by
quadrilaterals, which supplement the discoveries by Dawson [12].

Another feature of this paper is the extrinsic geometric data of tilings,
namely the formulae for the angles and edge lengths, which are intended for
wider audience, such as engineers, designers, and architects. Full discussion
can be seen in the version on arXiv:2204.02748.

The paper is organised as follows. Section 2 explains the main results.
Section 3 explains the basic tools and the strategy. Section 4 studies the tilings
where all angles are rational, and Sect. 5 studies the tilings where some angles
are irrational.

2. Main Results
The main result of this paper is stated as follows.

Theorem 1. Tilings of the sphere by congruent almost equilateral quadrilaterals
are earth map tiling E and its flip modifications, F1E, Fo F, and rearrangement
RE, and isolated earth map tilings, S1,52,53, FS3,55, and special tilings,
QPs, 54, 56.

The tilings in the main theorem are presented in Fig. 2. The nota-
tions F, F} E, FoFE, RE in the theorem correspond to Eél,FEél,REél in
[8], where F| E, FoF are treated as the same flip modification in FEél under
a general framework. Let f denote the number of tiles in a tiling. We also use
subscripts to indicate the number of tiles. For example, the tilings F, I} E, Fo E
and RFE in Fig. 2 with f = 28 are denoted as Fsg, F} Eag, Fy Eog, RE2s. We
also remark that S1 has only two versions, S121 and Sigl. Each of the other
S7’s has only a single fixed f. Moreover, F'S3 is the flip modification of S3.
We use QP; to denote the quadrilateral subdivision of the cube Fg.

We explain the structures of these tilings explicitly by their planar repre-
sentations in first picture of Fig. 4, and Figs. 5, 6, 7. The angles are implicitly
represented according to Fig. 3. Tiles with angles arranged in the orientation

in the first picture, i.e., « — [ — v — § clockwise, are marked by “ - 7. The
other tiles, unmarked, have angles arranged counter-clockwise as in the second
picture.

The earth map tiling E is the first picture of Fig. 4. The vertical edges
in the top row of E converge to a vertex (north pole) and those in the bottom
row converge to another (south pole). The shaded tiles form a timezone. A
tiling is a repetition of timezones. The second picture is the earth map tiling
by congruent a?bc quadrilaterals. We may obtain E from this earth map tiling
by edge reduction ¢ = a or b = a. The earth map tiling with exactly three
timezones is the deformed cube.

For any positive integer s < g, let 75 be s consecutive timezones. The
first picture of Fig. 5 shows the boundary of 7;. If a = s, we may flip the
7T, part of E with respect to F; to get a new tiling Fy E. This is the reason to
call it a flip modification. In fact, we may simultaneously flip several disjoint


http://arxiv.org/abs/2204.02748

H. P. Luk and H. M. Cheung

E = Eog E = F1Eag B FE = FhEog RE = RE»g

S4 S5 S6

FI1GURE 2. Tilings of the sphere by almost equilateral quadri-
laterals: Egg, FlEgg, FQEgg, }z.Egg7 5121, 51617 52, 53, FS?),
QPs, 54, S5, S6
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FI1GURE 3. Orientations of almost equilateral quadrilateral tiles

FIGURE 4. Earth map tilings F by a?b tiles and by a?bc tiles

P

FiGURE 5. Flip modifications Fy F, Fo E and rearrangement
RE of E

S1(S121)  S1(Si6l)

QP

FIGURE 6. Polar view of S1,52,53, F'S3,QFPs, S4,55, 56

copies of 7. Similarly, if v+ = s3, we may simultaneously flip several disjoint
copies 7, with respect to F5 to get FLE.

For f = 6¢ + 4 and specific combination of angle values, we may combine
three copies of 7, and four more tiles as in the second picture of Fig. 5 to get
a rearrangement RE of E. The third picture depicts RE when ¢ = 4.

Further explanations on Fy E, Fo E, RE can be seen in [8, Section 2].
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S5

FIGURE 7. Isolated earth map tilings S1,.52,53, FS3,S55

The isolated earth map tilings and the special tilings are in Fig. 6.

Figure 7 presents a different view of 51,52, 53, F53,S55. Comparing with
Fig. 4, combinatorially, each of them belongs to a family of earth map tilings
(with shaded timezones different from that in £'). However, they can be realised
as geometric tilings only for specific numbers of timezones.

There are other studies on tilings of earth map types. Two pentagonal
earth map tilings (with various modifications) are constructed in [9] and a
combinatorial study on pentagonal earth map tilings was given by Yan [25].

Tables 1, 2, 3, 4 give the geometric and combinatoric data of the tilings.

3. Basic Tools
3.1. Concepts and Notations

Quadrilateral.

A polygon is simple if the boundary is a simple closed curve. A polygon
is convez if it is simple and every angle < 7. By [13, Lemma 1], at least one
tile in a tiling of the sphere is simple. If all the tiles are congruent, then all
tiles are simple.

For quadrilaterals in tilings, we assume that the angles and edges admit
values in (0, 27r). The simple tile condition implies a < 7 for both quadrilaterals
in Fig. 1.

The area of the quadrilateral is the surface area 47w of the unit sphere
divided by number f of tiles. Then, we get the quadrilateral angle sum

at+fB+y+d=(2+F)m (1)

Vertex.

We denote by o™ 3"v*§! a vertex consisting of m copies of o, and n copies
of 3, and k copies of v, and [ copies of 6. For example, a3? is a vertex with
m=1,mn=2and k=1=0. A vertex a/™3"~v*6" has vertex angle sum

ma +nf + ky+ 16 = 2. (2)

By (1), at least one of the non-negative integers m, n, k, [ is zero.
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TABLE 1. Data of isolated tilings 1

Tilings L f L Edges and Angles L Vertices
a = cos— 1 —cosa
cosa—1" 6ovS
_ _1 (2cosa—1) cos(a+27)—cos? a ayo,
Ps 6 b = cos (T—cos a)32 s 233

oe+’y+6:27r,ﬁ:§7r

a= Cos_l(%\/g —1) ~ 0.34m,
b= cos™!(3/5 — 6) ~ 0.257,

o =2cos ! % 10 ~ 0.42m, 6062,
51 12| 43, 60672,
3 11 23
v=35m—cos " 7V10 =~ 0.46m,

3

§=m—cos™! i 10 ~ 0.807

a=cos™ ! %(—3 — V2 4+ /5 ++/10) = 0.347,
b= cos~ (=9 — 6v/2 + 45 + 3v/10) = 0.117,

a=2cos~! ﬁ\/7+\/§+f—\/10zo.427r, 8a62,
s1 16 1 8a3v?
/8_ 57‘-7 264 ’
— 3 -1 _1 ~
v = §m—cos ﬁ\/7+\/§+\f7\/10~0.54ﬂ'7
a1 1 _ ~
§=m — cos m\/7+\/§+f V10 ~ 0.797
_ -1 _1 1~
a = cos 7 2\/5 1~ 0.337,
=cos™1 L/ — 25 &
b = cos 7 22v/2 — 25 ~ 0.127, S
_ 1 Y
52 16| ¢~ 2™ 83262,
B=cos™! 1(v2-1)~ 0.43m, 20
v =23m,
§ = cos™! %(1 —V2) = 0.57
2
S3 16 a = iﬂ-’ b= %71—7 8ary :
1 1 1 8aB6°,
FS3 a=m,f=zgm,y=5m, 6= 234

In our practice, m,n,k,l in a vertex notation are assumed to be > 0
unless otherwise specified. For example, o™ (™ does not include o™, 5™. Such
practice is one subtle difference from [8]. To streamline the discussion, we give
a shorthand argument: we simply say “by af?” to mean “by a3? being a
vertex” or “by the angle sum o + 28 = 27 of a3?”. We use a = 3 to mean
«, # having the same value. We use o # 3 to mean «, # having distinct values.

The notation a/3%--- means a vertex with at least one a and two 3’s,
ie., m > 1 and n > 2. We call the angle combination in --- (and the sum of
angles in - - - ) the remainder of the vertex. A b-vertex is a vertex with a b-edge
(i.e., with 7, ) and a b-vertex is a vertex without b-edge (i.e., without ~, ).

The critical step in classifying tilings is to find all the possible angle
combinations at vertices. There are various constraints on these combinations.
Examples of such constraints are the vertex angle sum and the quadrilateral
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TABLE 2. Data of isolated tilings 2

Tilings J f L Edges and Angles Vertices
a= iﬂ',
b=rcos™! i(Q\/i —1) = 0.357,
sa |16 | a=3zm B=3im 8af?,
—cos—! L /T _ 42 ~ da=v6,
v =cosT! VT —4V2 R 0417, 6262
§=m—cos™! \/7 7 — 44/2 = 0.597
a=cos™! %\/5 +2v/3 ~ 0.207,
b=cos™! F 2(4 — +/3) ~ 0.30m,
_2
QPs |24 | *T 3™ 8a?,
B=m—sin"! Jv/4+ VB~ 057m, 12/2’262,
6
v =3, K
=1 1 ~
6 = sin 7 4+3~0437
.9 .4
_ _1 sin §7r+251n 37
a = cos B(toos Tm) T 0.17m,
b=cos™ ! %(lem2 l7T—\/?7)cot%ﬂ’ 18a32,
S5 36 + 2v/3 cos %WCOt 5™+ 4sin %71 tan éw) 60262,
~ 0.26, 6767,
a= ﬂﬂ % :%71',6:%71’ 6ary=é,
a = cos~ (4 cos éw —3) = 0.23m,
6 36 b= cos™1 (6 cos éﬂ—Q—Z\/{;sin éﬂ' 14062,
—3v/3tan §m — 4) ~ 0.12, 10033,
_1 _5 _ 7 _5 8+38,
a=;zm, f=3m,v=m 6= 237 v
3 9 18 6 6a2[3'y

angle sum. We call the combinations satisfying the constraints admissible. An
anglewise vertex combination (AVC) is a collection of all admissible vertices in
a tiling. For example, the following is AVC (20) from Proposition 4.4:

AVC = {76,475, 8", aB", a3 6%, "5, 37267}

We emphasise that m,n, k,l are generic notations reserved for the numbers
of a, 3,7,d. The generic n in an AVC may take different values at different
vertex. We remark that some vertices in an AVC may not appear in a tiling.
For example, the AVC of the earth map tiling E below has only two vertices

AVC = {and, B2 ).
Here, we use instead of “=" to denote the set of all vertices which actually
appear in a tiling.

An angle sum system is a linear system consisting of the quadrilateral
angle sum and vertex angle sums. For example, for vertices o™ gni~k15l,

“—m
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TABLE 3. Data of earth map tilings 1

Tilings ‘ f ‘ Edges and Angles J Vertices
E,RE >6 b= cos—1 (2 cos a—1) cos(a+8)—cos? a
= cos (1—cos a)?
E >6 a+y+6:2ﬂ,5:éﬂr fazé,
J 25t
a=gm B =3m (f = 6)ars,
v+6= %ﬂ' 203;
63676
RE | 28| a=(1-}m B= g (f = Dans,
232
yHE=(1+P)m 205 %,
4118
ne(d -3l
a=itm g=in, (f = 6)ays,
3 773n
§=(2 4n , > 2 ﬂ
y+6=( )Ty > 6376
f
ne (57 -1,
a= f T, 8= 7 (f = 4)as,
2a2ﬂ772n
vH+S=02-)r y> 7 n
(2-) 1576
a=m = %ﬂ', (f *f2)04757
y+oé=m 2a34,
28% 5
a=(1-m B=4m (f = 2)ane,
yHE=(1+ Y 20551,
28% 15
e {(£ ?f), if a >,
L5 ), ity >
7(LS ; ), if v > (f—2 o,
a=4x L-
+§f (2 - 4")7r 20[5} "
v 7 26mv6

a2 Akl qmgrakslin a tiling, where my, ng, ki, lj, m,n,k,1 > 0 and 1 <
1 < 2, the angles satisfy the angle sum system below

(X+6+’Y+5=(2+%)ﬂ',
mia+n1 B+ kiy + 110 = 2m,
moa + nof + koy + 120 = 2m,
ma +nB+ ky+ 16 = 2.
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TABLE 4. Data of earth map tilings 2

Tilings L f L Edges and Angles L Vertices
@ = cos! e
FE,RE >8 b= _1 (2cos a—1) cos(a+/3)—cos? a
= cos (1—cos )2
a=m p=in, ;
y+oéb=m daps,
2,}/252
RE >8 i f
n€(§7z)’ (f = Davs,
a=(2- 47”)71', 8= %ﬂ', 4a6™,
y+8=4ng 2p% —2ny262
ne(§f) (f = B)as,
oa=(2- 47")7r7 8= %ﬂ’, 6a3™,
y+8="4ng 255 31,363
(f = 6)avs,
a:%mﬂ:%w, Gﬁi
+6=2n aps,
7 3 24363
a=(5—37)m B=7%m 295,
RE >8 5 5 5 f+2
T=(5-5p)mb=37 4Oéﬁff4,
20376 62

If the four equations are linearly independent, then the unique solution implies
that all four angles are rational. If some angle is irrational, then this angle sum
system has rank < 3, which we call the irrationality condition.

If ayd is a vertex, we will get a different system where the irrationality
condition is rank = 2.

In fact, as seen in [8], technical and mostly ad hoc combinatorial argu-
ments are required to derive three vertices in the majority of cases. By dividing
into rational angle and irrational angle analysis albeit artificial, we can sys-
tematically determine all the vertices. Our strategy is outlined in Sect. 3.4,
and implemented in Sects. 4 and 5.

The notations #a, #03, etc., denote the total number of «, the total num-
ber of 3, etc., in a tiling. If each angle appears exactly once at the quadrilateral,
then

f=Ha=#0=Hry=#0

We also, for example, denote by #ad? the total number of vertex adé? in a
tiling. For AVC (16) = {ad?, a33,~35, a?3+%}, we have

f=#a=#ad® + #af’ + 240’57,
f=#0=3#af + #a’6?,
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FIGURE 8. Adjacent angle deduction (AAD)

B|o B|é

o o
6« e

B8 5 B

FIGURE 9. The two possible AADs of o

f=#y=3#6 + 2#°B,
f = #6 = 2#ad? + #~°30.

Adjacent Angle Deduction.

Angles at a vertex can be arranged in various ways. An adjacent angle
deduction (AAD) is a compact notation representing the angle arrangement
and the tile arrangement at a vertex. Symbolically, “ | ” denotes an a-edge
and “]” denotes a b-edge. For example, all three pictures in Fig. 8 are AADs
of 32~ for the almost equilateral quadrilateral. The AADs of |v|3|3|v] in the
pictures can be further represented by |°+v%|73% |87 3|, 1°77|7 8" 8|°+°|
and |°42|*B7[73%|P+?], respectively.

As seen above, the AAD notations can be regarded as mini pictures.
Similar to their pictorial counterparts, the notations can be rotated and re-
versed. For example, the AAD of the second picture can also be written as
11821821343 |997] (rotation) and |7?|57 |37+ | (reversion).

The use of AAD notation can be flexible. For example, we write 3%|*/3
(the first picture of Fig. 8) if it is our focus on 3?42 We use 3%|*3--- to
denote a vertex with such angle arrangement.

The AAD has reciprocity property: an AAD A\0|Pp at Ap--- implies an
AAD at 6*|#p at Op--- and vice versa.

We give an example of proof by AAD. Up to rotation and reversion,
the possible AADs for ala are of|Pa,a®%a, ada. If 5%--. §%-.. are not
vertices, then ala has unique AAD of|°a. Moreover, a vertex a® has two
possible AADs [°a®|°a?%a?|, |°a?°a?|Pa?|, depicted in Fig. 9. This implies
that §]0--- is always a vertex.

Some typical applications of AAD are listed below:

o If 3|6+ is not a vertex, then m in o™ is even.

e If §|0--- is not a vertex, then a’|°a--- is also not a vertex.
e If 8|3---,6]|6--- are not vertices, then a|a has the unique AAD of|°a.



H. P. Luk and H. M. Cheung

o If B|B---,B|0--- are not vertices, then car cannot be a vertex. In other
words, there are no three consecutive a’s at a vertex.

The application of AAD depends on the information available. It helps to
conduct efficient and concise discussion in place of tens of pictures. In principle,
the AAD argument can be programmed in decision algorithms.

3.2. Technique

We use “up to symmetry” to refer to the exchange (a, ) < (5, ) in the almost
equilateral quadrilateral (Fig. 1).

Combinatorics

Let v; be the number of vertices of degree i > 3. From [8], the basic formulae
about edge-to-edge tilings of the sphere by quadrilaterals are

f=6+> (h—3)u, (3)

h>4

U3 =8—|—Z(h—4)vh. (4)

h>4

Equation (3) implies f > 6, and f = 6 if and only if all vertices have degree
3. Equation (4) implies v3 > 8, which further implies that degree 3 vertices
always exist.

In [4,13,20,22,23], a crucial step in classification is to find all admissible
vertices. This means that we need to find various constraints that angle combi-
nations at vertices must satisfy. Here, we list some combinatorial constraints.

Lemma 3.1. (Counting Lemma, [8, Lemma 4]) In a tiling of the sphere by
congruent polygons, suppose two different angles 6, appear the same number
of times in the polygon. If, at every vertex, the number of 6 is no more than
the number of p, then at every vertex, the number of 6 equals the number of

@Y.

The assumption is that every vertex is 0Pp?--- with 0 < p < ¢ and no
0, ¢ in the remainder. The conclusion is that every vertex is 8PP - - - | with no
0, ¢ in the remainder.

Lemma 3.2. (Parity Lemma, [8, Lemma 2]) The total number of v and § at
any vertex is even.

Lemma 3.3. (Balance Lemma, [8, Lemma 6]) In a tiling of the sphere by con-
gruent almost equilateral quadrilaterals, v% - -- is a vertex if and only if % - - -
is a verter. If ¥2--- ,6%--- are not vertices, then every b-vertex has eractly
one 7y and one §.

Lemma 3.4. [8, Lemma 9] In a tiling of the sphere by congruent quadrilaterals,
if two angles 01,05 do not appear at any degree 3 vertex, then there is a degree
4 vertex 03--- (i=1or 2) or 020;--- (i,j =1,2), or a degree 5 vertex 003
(p+a=>5)
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Lemma 3.5. [8, Lemma 10] In a tiling of the sphere by congruent quadrilaterals,
if 6 is the unique degree 3 vertex, then f > 24 and there is a degree 4 vertex
without 6.

Lemma 3.6. [8, Lemma 11] In a tiling of the sphere by congruent quadrilaterals,
if 02 is the unique degree 3 vertex, then f > 16 and there is a degree 4 vertex
without 6.

In the last three lemmas, the technique of counting angles is involved.
Whenever counting is applied, implicitly, there is a criterion for distinguishing
angles which is often clear in the context.

Geometry

The geometry of the quadrilateral imposes more constraints on angle combi-
nations at vertices.

Lemma 3.7. [8, Lemma 7| In a tiling of the sphere by congruent quadrilaterals,
there is at most one angle > 7w in the quadrilateral.

Lemma 3.8. [23, Lemma 3] In a simple almost equilateral quadrilateral, o > 3
if and only if v > 9.

Lemma 3.9. ([8, Lemma 14], [3, Lemma 2.1]) In a simple almost equilateral
quadrilateral

o ifa,B,y<m, thenB+nm>v+dandd+7m>p+;

o ifa, B, <m, thena+m>~v+dandy+7>a+6.

Lemma 3.10. [8, Lemma 15] In a simple almost equilateral quadrilateral
o ifvy,d <m, then a > if and only if B > §;
o if y <, then B =140 if and only if a = b;
o if § <, then o =~ if and only if a = b.

In fact, the proof of [8, Lemma 15| shows that, if v < 7, then 8 > ¢ if
and only if a < b, and 8 = ¢ if and only if a = b.

Lemma 3.11. In a simple quadrilateral, if three angles and the two edges be-
tween these angles are < m, then the other two edges are also < .

Proof. We call a triangle standard when all edges and angles are < 7. A stan-
dard triangle is simple and convex.

Suppose LOPQRS is such quadrilateral in Fig. 10 where ZP, ZQ, ZS,
PQ,PS < w. Then, PQ, PS are, respectively, contained in the left part and
right part of the boundary of the lune (the intersection of two hemispheres)
defined by antipodal points P, P*, and ZP. As ZQ, /S < m, the rays from @
and S, which respectively coincide with QR and SR, point towards the interior
of the lune. Extending the ray from @ until it meets at @’ on the other side
of the boundary, we get a standard triangle APQQ" where QQ' < .

If S is contained in PQ’ in the first picture, then OPQRS being simple
and /S < 7 imply that the ray from S will eventually intersect at R where
R lies between QQ'. If S is outside PQ’, then it is contained in Q’'P* in the



H. P. Luk and H. M. Cheung

FiGUure 11. OABCD with o, 3,6 < wand v > 7

second picture. Therefore, OPQRS being simple and £S < 7 also imply that
the ray from S will eventually intersect at R where R lies between QQ’. In
either case, QR, RS are contained in the lune, and hence, QR, RS < 7. O

Lemma 3.12. In a simple almost equilateral quadrilateral, if o, 3,0 < m, then
v > m implies 3 > 9.

Proof. By a,a, 3,0 < w, Lemma 3.11 implies b < 7. Moreover, AC, BD in
Fig. 11 is contained in the lune defined by A, A*, . Therefore, AC, BD <
and every triangle contained in AABD is a standard triangle. We also know
that AABD contains JABCD and ABCD. Let (3,0’ be the base angles of
ABCD adjacent to 3,4, respectively.

Since AB = AD = a, we know that AABD, AABC' are isosceles trian-
gles. Then, B8+ ' = 6 + ¢’ and a3 = ~;. Therefore, v > « implies v2 > as.
This means that CD < AD = BC. Then, in ABCD, we get ' < ¢§'. Hence,
6 >9. O

Lemma 3.13. In a tiling of the sphere by congruent almost equilateral quadri-
laterals, we have

e 3=10if and only if v = m;

e o=~ if and only if 6 = 7.

Proof. If 3 = 6, then Lemma 3.7 implies 3,6 < w. By b # a, Lemma 3.10
implies v > 7. Then, by Lemma 3.7, we get a« < 7. If v > 7, then v > « and
Lemma 3.12 imply § > §, a contradiction. Hence, v = .

If v = 7, then the quadrilateral is in fact an isosceles triangle AABD in
Fig. 12 with edges AB = AD = a and BD = a + b. Hence, 3 = . O
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A B

D

F1GURE 12. AABD with /C =~ =

FIGURE 13. General quadrilaterals as closed paths with
chosen sides

The four angles of the almost equilateral quadrilateral should be related
by one single equation. To explain the equation, we need to expand our defi-
nition of polygons.

A general polygon is a closed path of piecewise geodesic arcs together
with a choice of a side. A geodesic arc is a part of a great circle on the sphere.
The edges of a general polygon are geodesic arcs. The vertices are where the
edges meet. There are two complementary angles at each vertex. A side is
fixed by a choice of one angle. Figure 13 demonstrates how a side of a general
quadrilateral is fixed by the choice of angle .

Coolsaet [11, (2.3), Theorem 2.1] proved the following identity for convex
almost equilateral quadrilateral. Cheung [6,8] proved the identity without the
convexity assumption.

Lemma 3.14. ([6, Theorem 21|, [8, Lemma 18]) The four angles of an almost
equilateral quadrilateral satisfy

sin 2asin (6§ — ) = sin 3Bsin (v — 1a) . (5)

We remark that (5) is also true if the quadrilateral is not simple. It
matches the trigonometric Diophantine equation in [15, Equation (4)]. In
Sect. 4, we generalise Coolsaet’s method [11, Theorem 3.2] to determine ratio-
nal angles.

3.3. Preliminary Cases

There are up to four distinct angle values among «, 3,~,d. If all angles have
the same value, then a = b. Therefore, a genuine (a # b) almost equilateral
quadrilateral has at least two distinct angle values.

Proposition 3.15. There is no tiling by congruent almost equilateral quadrilat-
erals with two distinct angle values.

It is established by [3, Theorem 3.3] that congruent convex symmetric
(o =  and v = 0) genuine almost equilateral quadrilaterals do not admit
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tilings. With Lemma 3.7, this result by Akama and van Cleemput is sufficient
to rule out the symmetric almost equilateral quadrilaterals.

Proof. Suppose there are two distinct angle values. Lemma 3.8 implies no three
angles in the tile sharing the same value. Then, we have three possibilities: (1)
a=~vand 8=90,(2) a=dand f =7, and (3) « = F and v = 4.

Suppose o = vy and § = §. Lemma 3.7 implies «, 3,7, < m. By b # a
and Lemma 3.13, a = «y if and only if § = m, contradicting § < 7.

Suppose a = § and § = . Up to symmetry, Lemma 3.8 implies a > 3 =
v > 0 = a. This implies a = § =y = 4, a contradiction.

Suppose o = @ and v = §, we know « # 7. Lemma 3.7 implies every
angles < 7 so the tile is convex. The quadrilateral angle sum becomes

20+ 2y = (2 + %)ﬂ'.

3

By (4), we get v3 > 0. Then, Parity Lemma implies that ay? or o? is a vertex.
2

If an? is a vertex, the angle sum system implies o = %71' andy = (1— ?)TF.
By convexity, Lemma 3.9 implies o + m > 27, and hence, f < 8, or f = 6.
Then, o =~ = %w, contradicting o # .

Now, o® must be a vertex. Then, v appears at some degree > 4 vertex.
The angle sum system implies a = %w and v = (% + %)7‘(’ Then, we get
20 + 27, a + 4, 6y > 2, which imply that v only appears at v?--- = 4% and
v = %7‘(. By v = (% + %)w, we get f =12. By a = %w and v = %w, there are
no other vertices, notably no ay---.

The AAD |y“|%y] at v* implies o2 - - -, which is a®. By a = # and v = 6,
the two possible AADs of o? in Fig. 9 are [Ya®|7a®|[7a®| or [Ya®|Ta®|*a”|.
Both imply a7 ---, a contradiction. Therefore, ¥* is not a vertex and there is
no tiling. O

Lemma 3.16. In a tiling of the sphere by congruent almost equilateral quadri-
laterals with at least three distinct angle values, up to symmetry, either ayo is
a vertex, or one of the pairs below are vertices.
e o and one of av?, ad?, v?, 36%;
o2 and one of ay?, ad?, 562;
ad? and By?;
a® and one of v*, 6%, 738,753, v262;
af? and one of ¥4, 84,738,763, 7262;
av? and one of o, B4, 6%, 33, a3, a2 3%, 0262, 3262, aB36?;
ad? and one of o, B4, v, 3B, a3, a2 32, a?~?, 3242, afy?.
In each of the last four items, the tiling has a unique degree 3 vertex.

If a tiling has a unique degree 3 vertex, then Lemma 3.6 (respectively
Lemma 3.5) implies f > 16 (respectively f > 24).

Proof. By (4), vs > 0 means that there exists some degree 3 vertex. By Parity
Lemma, the degree 3 b-vertices are ayé, 876, ay?, ad?, 3v2, 382, and the degree
3 b-vertices are a2, 32, a3, a3%. The degree 4 vertices are

4 o4 4 4 3 222 3 2.2 2¢2 2
a7ﬂa’Ya6aaﬁ7aﬁ7algaa’}/aa67a75a
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afy®,aB6?, 322, 5746, 326%,7°6,~% 8%, 74",

If ayd, Byd are both vertices, Then, o = § and Lemma 3.8 implies v = 9,
contradicting at least three distinct angle values. Hence, only one of them can
be a vertex. The pairs leading to these two equalities are dismissed.

Suppose ad, fyd are not vertices.

If there are two degree 3 vertices, we then dismiss the pairs contradicting
Lemma 3.8. For example, ay?, 362 are dismissed for this reason. Meanwhile,
a?f3, 3% imply o = v whereby Lemma, 3.13 implies § = 7. Then, §2--- is not
a vertex. By Balance Lemma, 3v? cannot be a vertex. Therefore, o3, 372 are
also dismissed. Up to symmetry, we obtain all degree 3 pairs.

Suppose there is only one degree 3 vertex. Up to symmetry, it suffices to
discuss o?, 8%, ay?,ad?. If one of a?,aB3? is the only degree 3 vertex, then
Lemma 3.4 and Parity Lemma imply that one of ~*, 8% +35,v6%,7282 is a
vertex. If ay? is the only degree 3 vertex, then Lemma 3.6 assures a degree 4
vertex without 7. Therefore, one of a*, 3%, 5%, o33, a3, o252, 0262, 3262, 362
is a vertex. Same for a2, one of o, 8, v* a8, a3, a? B2, a%42, 32~%, afBy?
is a vertex. These are the remaining pairs. U

We remark that, in the proof above, counting is used in Lemmas 3.4, 3.6.
Because the four angles are distinguished by three distinct angle values and
the b-edge, counting angles is made possible.

It will be explained in Sect. 3.4 that knowing two vertices is sufficient
to determine all angle combinations at vertices. By the above lemma, we only
need extra discussion for the case where ayd is a vertex.

Lemma 3.17. If a tiling of the sphere by congruent almost equilateral quadri-
laterals has avyé, then o --- does not have v, 6.

The conclusion is that a2 - - - is a b-vertex. Therefore, o2 - - - = ™, a™223",
9 bl

Proof. Assume the contrary. By ayd, Parity Lemma implies that one of a2 - - -

a?6?--. is a vertex. Up to symmetry of v < J, we may assume a272 --- 8
a vertex. Then, a +v < 7w and o6 imply § > «. This implies that 62--- is
not a vertex. Then, Balance Lemma implies that +2--- is also not a vertex,
contradicting a?y2---. O

Lemma 3.18. If a tiling with f > 8 has at least three distinct angle values and
ayd is a vertex, then o > [ and v > 0. In particular, § < w. Moreover, if
a?--- is not a vertex, then the b-vertices are 3", a3" and the vertices having

strictly more § than v are ad?, af"62.

Proof. Assume § > «. Lemma 3.8 implies a@ < 3. Then, Lemma 3.9 and a~v§
imply 8+ 7 > v+ =27 — «, which gives a 4+ 3 > 7. The angle sum system
implies 8 = %77. Therefore, we have ?7‘(‘ =203 > a+ 0 > m, and hence, f < 8, a
contradiction. Lemma 3.8 implies @ > § and § < . Then. Lemma 3.7 implies
0 <.

By avd, we get |y[--- [5] = |~[5] Ivlald], |v[B-- - BI5]

If a?--- is not a vertex, then B¥*B---, BY|*§---, §%|*§--- are not
vertices. By no g¥|*B---, we get *B---f = p*B*--- 3% and 0°5---5 =
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FIGURE 14. Tiling E = Py

§¢B% ... . Then, |§|3---B|5] =] 6%|8%---B¥|*| implies a?---, a contra-
diction. Therefore, |§|5- - 3]6] cannot happen. Hence, |0]---|6] =] 0]|«|d],
lafB--- 8oL 1613 - - - BlalB - - Blo}

A vertex with strictly more ¢ than ~ contains || ---|d]. Since |d]---|d]
has «, by ayd, we know that the vertex has no . Moreover, by no a?---,
the vertex has only one || - - |§|. Meanwhile, a-yé implies that | §|«|d] is not a
vertex. Therefore, the vertex is |6|a|B--- B|d] or |6]8--- Bla|B- - - B]d], which
is a 8762, O

Proposition 3.19. If f = 6, then the tiling is uniquely given by the earth map
tiling E (or the cube Pg) in Fig. 14 with the set of admissible vertices AVC =

{ans, 3%}

The proof is an easy exercise which can also be checked by computer.

3.4. Strategy

With groundwork in place, we assume at least three distinct angles and f > 8.
Notably, by Lemma 3.8 and Proposition 3.15, we assume

a# B, v#6.

Among «, 3,7,9, there are two possibilities: all angles are rational or
some angle is irrational.

If all angles in a convex almost equilateral quadrilateral are rational
(Sect. 4), then Coolsaet [11, Theorem 3.2] used [15, Theorem 4] to obtain
all the angle relations from (5). After extending (5) to non-convex almost
equilateral quadrilaterals in Lemma 3.14, we combine Coolsaet’s method with
Lemma 3.16 to determine all admissible vertices.

If some angle is irrational (Sect. 5), then we apply Lemma 3.16 and the
irrationality condition to determine all admissible vertices.

In both situations, the discussion is more complicated if ad is a vertex.
We apply Lemmas 3.17, 3.18 to determine all admissible vertices.

4. Rational Angles

In this section, we assume that «,3,7,0 € (0,27) are rational. Myerson’s
theorem [15] has provided rational solutions to (5).
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TABLE 5. Rational solutions to (6) in [0, 3]

[ oo [0 [ 2 [ o [ o [0 [ 2 [ o
1. iﬂ' %ﬂ' ﬁﬂ' %7’1’ 9. %7‘1’ 1—757r %7‘(‘ %7‘(‘
2. ﬁw 15—471' %71‘ 2—5171' 10. %ﬂ' %7‘!’ 1—10 1—107r
3. %ﬂ' %ﬂ' %ﬂ' 1—5471' 11. %ﬂ %T{' 1—30 1—30#
4. %ﬂ' Q%W %ﬂ' %7’1’ 12. 1—157r %T{' %ﬂ' %71’
5. %ﬂ' %ﬂ' %ﬂ' 2—707r 13. 1—257r 1—757T %71’ 1—307r
6. %ﬂ' %71’ %ﬂ 1—2571' 14. 1—127r 1—52# 1—1077 1—3071'
7. %ﬂ' %Tr %ﬂ' 3—707r 15. 1—1071' %T{' %ﬂ' %ﬂ'
8. %ﬂ' %ﬂ' 12—57r %7’1’

Theorem 2. [15, Theorem 4] The rational angle solutions (x1, %2, T3, T4) to
sin ;1 sin z9 = sinx3 sin x4 (6)

with z; € [0, 3] for 1 <i <4, are given by
I. one of the following and their permutations:
e 1 =23 =0 and any rational angles xa,x4;
e 11 =2x3 and To = T4;
1I. (%77,9, %9, %7‘(‘ - é@) for any rational angle 6 € |0, %71'], and its permuta-
tions;
III. the 15 rational angle solutions listed in Table 5, and their permutations.

The permutations in the theorem are those which keep (6) invariant.
They are

($1,$2,$371'4), ($1,$2,£C471'3), ($2,$1,$371'4)7 (.T2,$1,.T,471'3), (7)
(SU3,SC4,ZIZ1,ZL’2), (%4,%3,1’1,1’2), (%3,504,1’2,1’1), (SU4,.T3,ZIZ2,ZL’1).

We remark that Type I solutions are not included in Myerson’s origi-
nal theorem as they are solutions to {sinzy; = 0, sinazz = 0} or {sinz; =
sinzg, sin xo = sin x4}, which may have been deemed “trivial”.

We also note that Type II solutions can be summarised by the identity

sin ¢ sin 6 = sin $0sin(§7m — 36).

For Type III solutions in Table 5, we remark a misprint in the previous
literatures where x5 of thirteenth row should be 1—75 instead of 1%. With the
correct value, the conclusion in [11, Theorem 3.2] is valid.

By (5), we know

56'1:%067 1'2:6_%5, x3:%Ba $4:'Y_%04
satisfy (6). If all z; € [0, %W], then we can apply Theorem 2 to determine the
angles. We know %a, %/6’ € (0,7) and the ranges of § — %ﬂ,'y - %a can be
wider. To apply Theorem 2, we therefore need to “recalibrate”: for example,
if z; € (3w, ), then it should be changed to 7 — z; € (0, 47). By similar
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modifications of switching signs and/or adding an integer multiple of 7 and
using sin(m — ) = sinz and sin(—z) = — sinz, we may reduce all angle values
to [0, 37] and (6) still holds.

For Type I solutions, we may bypass the calibration with the angle re-
lations given by the subsequent Lemma 4.1. Modifying the discussion of [11,
Theorem 3.2] and Type I solutions to (5), we have one of the following:

sin (v — %oz) =0, sin(6— %6) = 0; (8)
sin (y— o) =sinia, sin(6—18) =sinip; (9)
sin (”y — %a) = sin (5 — %ﬂ) , sin %5 = sin %a. (10)

They correspond to the following relations between the angles:

2y =a+ 2Ny,
26 = B+ 2N

2y = (14 (-1)M)a+ 2N;m,

{25: (1+ (=1)N2)3 + 2No; (12)
2y = ()M (25— ) + o 2N,

{a = (=1)M23 + 2Ny, (13)

After further simplification, the result is summarised below.

Lemma 4.1. In an almost equilateral quadrilateral tile with at least three dis-
tinct angles, if the angles satisfy one of (8), (9), (10), then we have one of the
following:
1. ifa,B,7,0 <7, then a = 27 and 3 = 20 hold;
2. if either one of a,8 > 7w and all other angles < m, then one of the
following is true:
i. a=2vy and =20,
ii. a4+ 0 =271 and a+ 26 = 5+ 2v;
3. if v > m and all other angles < w, then one of the following is true:
i.y=mand =9,
il. a4 27 =2y and B = 26;
4. if 6 > w and all other angles < 7, then one of the following is true:
i.d=mand a =,
il. =2y and B+ 27 = 26.

For Type II, III solutions, by Lemma 3.7, we only need to consider the
calibrations in Table 6. In particular, “case a > 7” in the table means oo > 7
and the other three angles < 7, etc.

In general, there are more calibrations for angles with wider ranges. How-
ever, those ranges are not needed for tiling classification.

We generalise the scheme in [11, Theorem 3.2] in the following steps.

Step 1. Determine angle values via

e Type I solutions to angle relations in Lemma 4.1,
e Type II solutions and calibrations in Table 6,
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TABLE 6. Angle value calibrations

e | o | wm [ m | =

x2 x3
-3 38 30 8- 38

0= | 38 | e 36
o, By, 6 <m ’yf%a %ﬁ %a 7r+%ﬂf6
T+tza-v | 38 3a §-1p
7r+%oz—'y %ﬁ %oa 7r+%ﬁ—6

g | 38 |node| o-b
a>m '7_%0‘ %'B ﬂ—_%a 7r+%ﬁ—6
T %aJr'y %ﬁ TI'*%OA %ﬁ76

o —7 13 | n-la 18-

e 718 | do | -3

p2n | mrde7|v-d9| de | 610
%a—'y T %B %Oc ﬂ—%ﬁ—'—é

Jooy | 738| da | 185

oy | 8 | 3 | 6-1
y>w W+%O‘7'y %ﬁ %O‘ 7r+%ﬂ76
v-ga—7m | 3B 30 166
27r+§oc—7 %B %oz %ﬂ—&
y-ia i la T+i3-6
bn | mriema| 18 | da | w+ds-e
%0‘*7 %ﬂ %OA 5*%ﬁ77r
%af'y %,B %a 27r+%,376

e Type III solutions and calibrations in Table 6.
Step 2. Dismiss angle values that fail any of the following:
e 0<a,B,7,0 <2m;
e at least three distinct angle values, and at most one of them > ;
e Lemmas 3.8, 3.9, 3.10, 3.12.
Step 3. Select pairs in Lemma 3.16 that produce consistent even integer f >
8. Moreover, if one of a3?,av?, ad? is the unique degree 3 vertex,
then we further require f > 16; and if o is the unique degree 3
vertex, then we further require f > 24.
Step 4. We call the selected angle values valid and use them to determine the
corresponding sets of admissible vertices (AVCs).
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TABLE 7. Type II and convex: vertex pairs and angle values

Pairs f « B 5 5
@) 216 Gepr o Gopr G G
{ad? ap®} 36 i S =T S

For avd, we need to modify the argument in Step 3 and 4 using Lem-
mas 3.17, 3.18, 4.3.
Finally, we construct the tilings from the AVCs.

Proposition 4.2. If f > 8, and all angles are rational, and a~yé, vy are not
vertices, then the tilings are isolated earth map tilings S3,FS3 and special
tilings S5, S6.

Proof. By Lemma 3.7, the discussion is divided according to: all angles are
< m, or exactly one angle is > 7. We follow the four steps above. We give an
example and leave out the details of the others. The process can be swiftly
executed in computer.

Case (a, 3,7,0 < ).

Type I: By the first item in Lemma 4.1, we get « = 2y and § = 2.
Combined with the vertex angle sums of the pairs in Lemma 3.16, we find no
valid angle values. The conclusion is consistent with [11, Theorem 3.2].

Type II: There are five calibrations in the first part of Table 6. Matching
the first calibration ('y—§oz, Qﬁ, 50, 5_,@ with a solution (67r 0, 77—19 19)
we obtain

%7‘(:7—%0[, 0=18, ir—-310=1a, 10=6-1p

Combining the above with the quadrilateral angle sum, we solve for the angles
and get
a=@G - B=G+Pr, v=(HF -, d=G+Hm

Next, we substitute the above into the angle sums of the vertices in the
pairs in Lemma 3.16 and calculate the corresponding f. The vertices yield
even f > 8 are a3(f = 12),0452(‘]" = 12),0&25(811}7 f)ﬂ/64(f = 24),04,83(f =
60),7*(f = 12),0*(f = 12),7*0(any [),v0*(f = 12),7*0*(f = 12), B**(f =
36), a362(f = 24). The only pairs in Lemma 3.16 with consistent f are those
with unique degree 3 vertex o or a3%. However, both imply f = 12, contra-
dicting the additional requirement of f > 24 or f > 16 in Step 3. Hence, these
angle values are dismissed.

We repeat the above process for the calibration (y — 704, QB, 50,0 — fﬂ)
and all permutations (7) of the Type II solution (g, 6, £7 — 16, 36).

Then, we repeat all the above again for the other four calibrations in the
first part of Table 6.

At the end, we find two solutions listed in Table 7.
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TABLE 8. Type I and o > 7: vertex pairs and angle values

Pairs f a J&i v 5

{a?,7"} {ar?, 8"}, {ar?, a36%} 16 m ir

=
N

In {af?,~6%}, by f > 16 we get the lower bounds, o > &7, 3 > £Zm,v >
37,0 > 227 This implies m < 6 and n < 3 and k < 8 and | < 4 in (2). We
substitute finitely many non-negative integers m, n, k, [ within the bounds into
(2) and calculate the corresponding f. We select only those with f > 16. The

admissible vertices are listed below with their corresponding f values,
f=20, {aB®~8° ayo};
f = 243 {a527a477537a67270‘74};
f=36, {aB? a8 78,0’y ay’0,7°};
f :603 {01,62,’)/53,03/8,045,5’)/4,0[2’)/4};
f=84, {af? 78 a’y6,7°6};
f = 1327 {aﬁ27753>a4727a’76}'
In {aé?, 33}, similar calculation gives
=36, {ad® aB’~%6, 0%y, a’}.
Type III: We repeat the same process for Type II. The only difference
is that the Type II solution (%77, 0, %77 - %9, %9) is replaced by the Type III
solutions (and their permutations) in Table 5. We find no solution.
Case (f,7,0 <7 and a > 7). By a > 7, we know that a?--- is not a vertex.
It suffices to study those in the list of Lemma 3.16 without a?---.
Type I: By the second item in Lemma 4.1, we have a = 2y and § = 20,
or a + (3 =27 and a + 26 = 3 + 2. By the same argument in the previous
case using the second part of Table 6, we find all the solutions in Table 8.

Since the three pairs in Table 8 share the same angle values, we use these
values to derive all the vertices. Therefore, we get

f — 167 AVC = {aﬂ2,a'y2,aﬁéz,ﬂ4,ﬂ2'y2,'y4,a(54,5352,57252,5254,7254,ﬁ56,58}.
Type I1, III: By the same argument using the second part of Table 6, we
find no solutions.
Case (a,7,6 < m and 3 > 7). By the same argument, we find solutions only
for Type I in Table 9.
In {a3,862}, by (4) and f = 8, we get vsg = 0. Therefore, the other
vertices are 8%, o242, ay*. Therefore

f = 87 AVC = {a37552754aa2727 a74}'

In {a?3,36%}, by the exchange (a,7) < (3,6), we get the same AVC
derived from Table 8.
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TABLE 9. Type I and 8 > m: vertex pairs and angle values

Pairs f @ B gl g
{a?, 862}, {a?, 6%} 8 i ™ 3T im
{a?8, 56%} 16 %ﬂ' T %ﬂ' %ﬂ'

TABLE 10. AVCs of rational angles without a~yd

f AVC

8 {a?,86%, 8%, 0242, ay*}

16 {aB?,an?, B8, %, 8742, 4", ad", 3%6%, By°6°, 328", 428", 36°, 6%}
20 {aB?,76%, a*y6}

2 {af? o, 76, aBy?, av'}

36 {af?,a?5%,78%, a®y%, ay?6,~°%}

36 (a8, 6,46, 0207*, a8}

60 {ap?,16%,a°B,a% By*, a®y"}

84 {aB?,78%, a®y5,~° 6}

132 {af?,~v6%, a*y?, an’}

For the case «, 3,0 < w and v > 7 and the case o, 3,7 < 7w and § > T,
we apply the same arguments and find no solutions.

All the AVCs are summarised in Table 10.
AVCs without tiling

In f = 8, AVC = {a?,36%,§* a?y%, ay*}, we have B--- = (3§2. This
contradicts Counting Lemma on 3, 4.

In f = 20, AVC = {af?, v53, a?y6}, applying the Counting Lemma to
7,8, we know that 63 is not a vertex. Then, applying Lemma 3.4 to v, 4 in
AVC = {af8?,a?vd}, we get a contradiction.

In f = 24, AVC = {a3?,a* 75, aB+?, av'}, we have 2. = af3?
and y6--- = 8%, whereas a?y---,ad---,36--- are not vertices. By no
ad---, (36, the vertex afy? has unique AAD |77|%a®|73%|%~|. The AAD
of ¥%|Pa in the first picture of Fig. 15 determines tiles Ty, T5. By 5%+ = a3?
and no ad---, we get Ty. By 76 --- = ~83, we determine 7, and then Tj.
This implies v#|%a--- = a?y---, a contradiction. Then, 3v--- = a2 is not
a vertex. Then, the AAD o”|%« in the second picture determines Ty, Ts. As
B%--- = af?%, by mirror symmetry, we also know T3, which implies 3372 - - -,
contradicting no 3y - - -. Therefore, there is no a’|?a. Then, no o|°a, a®|Pa

implies no aaa. Therefore, a* is not a vertex. The AAD ~+”|%y in the third
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FIGURE 15. The AADs of a’|Pa and v7|%y

picture implies ad - - -, a contradiction. Therefore, ay* is not a vertex. The
AVC is reduced to {a3?,763}. Applying Counting Lemma to a, 3, we get a
contradiction.

In f = 60, AVC = {a3?,76%,a33,a%, fv*, a®4*}, we know that ad - -
is not a vertex. The AAD of v%|Py... gives the second picture of Fig. 15,
contradicting no ad---. Then, the AAD of a?4* is |v?|a|?y|y?|a|?v| and
By* is not a vertex. By no Bv---,(d---, there is no aver, yoy, and hence,
a3, a”, a?y* are not vertices. Then, a?--- is not a vertex. Therefore, v6% =
§%|*§ -+ is not a vertex, a contradiction.

Among f = 36, AVC = {a3?,a?5%,76%, a3y%, av35,7°%}, and f = 84,
AVC = {af?,783,a340,~4°5}, and f = 132, AVC = {a?,763, a*v?, ay®}, we
have 3%--- = af? and no By---,35---. By #2--- = a3?, the AAD o”|%a in
the third picture of Fig. 15 implies v - - -, a contradiction. By no 39 - - -, we also
do not have a|°a.. Then, by no a®|°a and o|?a, there is no acr. Therefore,
a2, av8, a*~? cannot be vertices. For f = 84,132, this means that o? - - - is
not a vertex. This implies v§% = §%|*J - - - is not a vertex, a contradiction. For
f = 36, we actually have a tiling which remains to be discussed below.

AVCs with tilings

In the AVC for f = 16, there isno a? - - - . Then, there is no AAD |§|6] and
1618+ B|6] This implies that «ad?, 3352, 3254, 4254, 365,68 are not vertices.
We get

f=16, AVC = {ap? ar? afs? g, 6%+, 876},

By the proof of [8, Proposition 39], /32, 3v%62, 322 are not vertices. The AVC
is further reduced to

=16, AVC = {an?, aBs2,5* +*}.

By no o?---, the vertex 3% has unique AAD [73%[73%[73%|73%|. Then, the
AAD ~#|P implies 3% - -- = 3, which contradicts its unique AAD. Therefore,
~* is not a vertex. The AVC is reduced to

f =16, AVC = {avy? apé? p*}). (14)

By AVC (14), we construct S3,FS3 in Fig. 16. As per the discussion in [§],
the tiles are actually triangles and hence the pictures in Fig. 6.
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Ficure 17. Tiling S5

In f =36, AVC = {af?,a?0%,76%, a®y2, ay35,~°}, the earlier discussion
already shows that a3+? is not a vertex. The AVC is reduced to
f=36, {aB? a5 76° ay’5,7%}. (15)
By AVC (15), we construct S5 in Fig. 17.
In f = 36, AVC = {ad?,aB3,v30,a23+% a8}, by no 36--- and 6|6 -,
we do not have a®|°a, a°|?a. Therefore, there is no acver and o is not a vertex.
The AVC is reduced to

=36, {ad®,aB’ %5037} (16)
By AVC (16), we construct S6 in Fig. 18.
This completes the proof. O

We provide the pseudocode for Propositions 4.2, 4.4. In preprocessing,
we define the functions, f_Condition and Angle_Condition, for executing Step
3 in our scheme. For example, the pseudocode as written, is for the convex
case. The other cases can be defined similarly.

The pseudocode for computing angles and f via Type I solutions is given
in Algorithm 2 and the pseudocode for computing angles and f via Type II,
IIT solutions is given in Algorithm 3.
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FiGUure 18. Tiling S6

Preprocessing
1: Declare Function: f_Condition(f):=

2: if f# 0 and consistent and even and > 8 then
return true

3: else return false
4: Declare Function: Angle_Condition([«, 3,7, 0]):=

5: if [, 3,7,8] #0 and 0 < o, 3,7, < m and valid then
return true
6: else return false

In Algorithm 2, we define Vertex Eqns by the angle relation(s) in
Lemma 4.1. For example, in the convex case, we define Case_Eqns by a = 27y
and # = 25. We define Vertex_Eqns by the vertex angle sums given by the
vertices in Lemma 3.16. Then, we execute Step 2 and Step 3.

In Algorithm 3, we define Vertex_Eqns in the same way by Lemma 3.16.
We define Case_Cal by the calibrations in Table 6. We define Myerson_Sol
by Type II or III solutions. The quadrilateral angle sum defines Angle_Eqns.
After solving a, 3,7, 6 (and 0) in terms of f in the first procedure (Step 2), we
dismiss angle values which fail the criteria in Step 2. Then, we carry out Step
3 in the second procedure.

The latest wxMaxima files (version 13.04.0) of Algorithm 2 and
Algorithm 3 can be found at first author’s GitHub page https://github.
com/hoien14/Rational- Angles-and-Tilings-of-the-Sphere-by-Congruent-
Quadrilaterals.

We now turn our attention to tilings with ayd as a vertex. To simplify
the discussion, we first establish the following fact.


https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
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Algorithm 1: Type I rational angle values

—
=

: procedure SOLVE AND SELECT ANGLE VALUES

Declare Array: Vertex_Eqns, Case_Eqns, Angle_Eqns;
Declare Array: Angle_Values, Valid_Angle_Values;
Declare Rational Number: f_Soln;
for i : 1 through length(Vertex Eqns) do
Angle Eqns: concatenate(Vertex_Eqns|i], Case_Eqns),
f_Soln: solve(Angle Eqns, f),
Angle_Soln: solve(Angle Equs, [«, 3,7, d]),
if f_Condition(f_Soln) and Angle_Condition(Angle_Values) then
append(Valid_Angle_Values, Angle_Values)

Algorithm 2: Type II, III rational angle values

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

procedure SOLVE ANGLE VALUES

Declare Array: Myerson_Sol, Case_Cal, Angle_Eqns;
Declare Array: Angle_Soln, Angle_Values;
Declare Rational Number: f_Soln;
for m:1 through length(Myerson_Sol) do
for c¢:1 through length(Case_Cal) do
for ¢:1 while i <4 do
append(Angle_Eqns, Myerson_Sol[m|[i] =Case_Cal]c|[i])
f_Soln: solve(Angle_Eqns, f),
Angle_Soln: solve(Angle Equs, [, 5,7, d]),
if f Condition(f_Soln) and Angle_Condition(Angle_Soln) then
append(Angle_Values, Angle_Soln)

13: procedure SELECT VALID ANGLE VALUES

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Declare Array: Vertex_Eqns;
Declare Array: Sub_Vertices, Vertex_Angles, Valid_Angle_Values;
Declare Rational Number: f_Value;
for a:1 through length(Angle_ Values) do
for wv:1 through length(Vertex Eqns) do
Sub_Vertices: Substitute(Angle_Values[a], Vertex_Eqns[v]),
f_ Value: solve(Sub_Vertices, f),
if f_Condition(f_Value) then
Vertex_Angles: solve(Sub_Vertices, [a, 3,7, d, f_Value]),
if Angle_Condition(Vertex_Angles) then
append(Valid_Angle_Values, Vertex_Angles)

Lemma 4.3. If v =7 and f > 8, then the set of admissible vertices is

AVC = {avs,a®, a*B% ap™, B, B"v6}. (17)

Proof. Suppose v = m. Lemma 3.13 implies that the quadrilateral is in fact an
isosceles triangle AABD in Fig. 12 with edges AB = AD = a, and BD = a+b,
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and 0 = §. By Lemma 3.7, o, 3,0 < w. Then, AABD is a standard isosceles
triangle. Then, by BD > AB=AD,y=7>a > [3=7J.
By v = 7 and the quadrilateral angle sum, a+ 26 = (1 + %)w. By a > £,

1, 4

we get o > (3 + 37)m > [ = 4. Since v = m, we know that - is not

3f
a vertex. Balance Lemma implies that 62--- is also not a vertex and every
b-vertex has exactly one v and one J.
Assume o746 is not a vertex. Then, the only b-vertex is v--- = §--- =

B"v6. Counting Lemma on 3,7 implies n = 1 in "yd. Then, v = 7w and
Byd imply m = G+ 6 < (% + %)77 which implies f < 8, contradicting f > 8.
Therefore, ayd is a vertex. By v = m, a > § and a~d, we get o > %77. Therefore,
o> %7‘( andy=mand =0 = %7‘( determine all other vertices. Therefore, we
obtain AVC (17). O

Proposition 4.4. If f > 8, and all angles are rational, and one of avd, B0 is a
vertex, then the tilings are earth map tiling E, its flip modifications I\ E, Fo F,
and rearrangement RE.

Proof. Up to symmetry, we may assume ayd is a vertex. By a # [, this
implies that (Gvd is not a vertex. By f > 8 and ayd and the quadrilateral
angle sum, we get 5 = %ﬂ' < m. By f > 8, Lemma 3.18 implies § < 7. Then,
similar to the previous proposition, the proof is divided into three cases: every
angle < 7, or exactly one of o,y > m. We follow the four steps outlined before
Proposition 4.2, with adjusted Step 3 and 4. The process again can be executed
in computer.
Case (o, 3,7,0 < ).

Type I: By relations a = 2y and § = 2§ from Lemma 4.1 and a~vd, we
get

2

f28 a=(@G-g)m B=41 y=G-Fm o=im

However, f > 8 implies o > 7.

Type II: By matching the calibrations in first part of Table 6 and the
permutations (7) of Type II solution (%ﬂ', 0, %7‘(‘ - %9, %0), and then by avd,
we get

win

f28 a=gn, f=3m, y=G+Hn d=01-m
f=8 a=zm f=5m y=gpm 0=
f=12, a=gm =37, y=3m 0=3m
f=18 a=ir S=ir 4=l o=ln
f=24 a=gm f=gm y=im 0=

In the first two sets, we have a — 3 = § — ~. In the last three sets, we have
a > and § > 7. All of them contradict Lemma 3.8.

Type III: We repeat the same process for with the Type II solution
(%w,@, %7‘( — %0, %9) replaced by the Type III solutions (and their permuta-
tions) in Table 5. We get

_ _ 14 _1 _ 23 _ 3
f=12, a=xn, B=37, y=37m 0=
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Then, we obtain the AVC below
f=12, AVC = {avé, 3v6%, 3°}.
Applying Counting Lemma to v, §, we know that 3y is not a vertex and
f=12, AVC = {avs,°}.

Case (B,7,0 < mand a > 7). By a > 7, we know that a2 - - - is not a vertex. By
Lemma 3.18, the only vertices with strictly more § than ~ are ad?, af"62. We
incorporate this fact in conjunction with Balance Lemma to filter the vertices.
This will be explained in Type II and III solutions.

Type I: By Lemma 4.1 and ayd, we get

f>8, a:(%f%)w, /8:%7'(, 'yz(%—%)ﬁ, 5:%7r.
Then, we obtain the AVC as follows:
=8, AVC ={ay6,7°6,8",a", af"6%, 5", 6776, 37767}
Type II: By the same argument, we get
f=12 a=%r G-l y=2r §=2n

_ _ 10 _ 2 _ 13 _1
f=18, a=3gnr, B=g5r, v=x7T 0=35m

By angle values, we know that ad?, a3"62 are not vertices. By Lemma 3.18
and the Balance Lemma, at every vertex, the number of 7 equals the number
of §. Such vertices can only be 3° for the first set and a3, 37262, 3°~6, 32 for
the second. Hence, we have

f=12, AVC = {ayé, 3°};
f=18, AVC = {avs,aB*, B726%, 3576, 3%}.
Type III: By the same argument, we get
f=12, 042%71', ﬁ:%m 7:%71', 62%#;
=20, a:%ﬂ', ﬂz%w, ”y:%w, 5:%%;
f =130, a:%w, 5:1—257r, 'y:%m 5:3—107r.
By the same reason in Type II, at every vertex, the number of v equals the
number of d. Hence, we get
f=12, AVC = {avs,°}.

For the second set of angle values, we have 37y 4+ § > 27 and the remainder of
~2 ... has value %77. No angle combinations add up to it. Then, 42 - - - is not a
vertex. By Balance Lemma and Counting Lemma, every b-vertex has exactly

one v and one . Hence, we get
[ =20, AVC = {avs,3'}.

For the third set, a3%62 is the only vertex with strictly more 6 than ~. In
the other b-vertices, the number of v is at least that of 6. Therefore, they are
32~35, 3%4262. The only remaining vertex is 3'°. We obtain the third AVC

f =30, AVC={ans, 3°4°3, 6°9%6%, af'6, 517}
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Case (o, 3,6 < mand v > 7). By v > 7, we know that 72 --- is not a vertex.
Then, Balance Lemma implies no §2--- and every b-vertex has exactly one
and one 9.

Type I: By the same argument, we get

fzg’ a:(l_%)ﬂ-v ﬂ:%ﬂ—v =T, 52%7@
128 a=(-dyr f=in y=(3-2)m 5=2n
In the first set of angle values, by v = m and Lemma 4.3, we get AVC (17).
In the second set of angle values, by ayé and no ~%... 8% the other

b-vertex can only be "yd. Meanwhile, the b-vertices are o™, 3", o™ (". By
f>8and a = (2 — X)7r, we have a > %ﬂ. Then, m < 3 in a™,a™(". In

37 3f
particular, a™ = 3. Therefore, we get
f>8, AVC = {ayé,a’ f",a™3", 3775}, (18)

Type II: By the same argument, we get

f:]'Q’ Oé:%’l'r, ﬂ:%’”a Y=, 6:%’/T

By Lemma 4.3, v =7 and f = 12, we get
f=12, AVC = {av6,a®, a?3% ap?*, 32v6, 3°}.
That is all the vertices and it is a special case of AVC (17).
Type III: By the same argument, we get
f=12, 042%77, ﬁz%w, ’)/:;%7(, 5:1—107r;
=12, a==:m, BZ%T(, ’}/Z%ﬂ', 62%#;

— _ 8 1 __ 43 _ 1
f—QO, a—ﬁ’ﬂ', /6—37'(', 7—%77'7 5—%7('

T =

By no «2---,6%--. and Parity Lemma, the first two sets of angle values give
f=12, AVC = {ans, 3°}.
Similarly, the third set of angle values give
f=20, AVC = {avd,a*3% p'%}.
All of the above AVCs contain at least one subset which admits a tiling.
It remains to explain the tilings.
AVCs with tilings
In f =12, AVC = {ad, 3753, 3%}, by applying Counting Lemma to -, 6,
we know that 392 is not a vertex. Then, we get
f=12, AVC = {ans, 3°}.
It is easy to see that the above AVC is a special case of the one below
f=8 AVC={ays 6%} (19)
In f = 20, AVC = {avd,a?3?, 3%}, by applying Counting Lemma to
a, 7y, we know that a®3? is not a vertex. The AVC is reduced to
f=20, AVC = {avs,3'"},

which is also a special case of AVC (19).
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FIGURE 20. The AAD of af"§?

In f = 30, AVC = {ad, 32738, 359262, a3*62, 315}, we have aff--- =

ap*d? and no o?---. By no o? - - -, we know that 3%|*3---, 3|6 --- are not
vertices and (3--- 3 has unique AAD B%|---|3%. In v#|*8 and +?|*6, we get
T, T, in both pictures of Fig. 19. By a5 - - - = a3*62 and the unique AAD of

B -+ B, we get 3% ---, a contradiction. Therefore, v7|*3 -+ 4P|*5 - -
are not vertices. Then, |%|---|%] is not |v?|*5| nor |47|3--- || This
implies that ($%73d is not a vertex. Applying Counting Lemma to 7,6, we
know that /3462 is not a vertex. Then, applying Counting Lemma to a, vy, we
also know that 354242 is not a vertex. The AVC is reduced to

f =30, AVC = {a’yé,ﬁ15},

which is again a special case of AVC (19).

In AVC = {avd,735, 8", aB", aBm6%, B"y2, B0, B~25%}, we know
a/y PR
= anvd, and af--- = af”, af"6?, and 3 --- = 43§, and no ay?---. The ver-
tices with strictly more v than § are 433, 3"v2. The vertex with strictly more &
than v is a2, If a2 is a vertex, the AAD determines Ty, T, T3 in Fig. 20.

Then, a7y, - - - = ayé and we determine Ty. Then, ayf3s - - - = af", o362, This
means that 8 or § is the angle in T5 just outside T5. By no ay?---, we con-
clude voy3--- = 73 --- = 43§. This means #af"6%2 < #+34. In each vertex

other than 36, af"62, 3"+2%, the number of v equals the number of §. We
have 3#~38 4 2#8"y?2 = #y = #6 = #~v36 + 2#aB"6%. Combining with
#Hafnd? < #7936, we get #"+v% = 0, and hence, "2 is not a vertex. The
AVC is reduced to

f>8, AVC={a§,7°6, 3", af", af"6, "6, 3"7*6%}. (20)
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We remark that f = 18, AVC = {an§, af*, 37262, 379, 3} as a set may
be viewed as a special case of AVC (20). However, the angle values between
the two are not compatible. Hence, they are regarded as two different sets.

If v = m, then the quadrilateral degenerates into a triangle with AVC
(17) which is a special case of AVC (18).

We summarise the AVCs in their most general forms below

f>8, AVC = {76, 3%},

f =18, AVC = {avé,aB*, 5+262, 3°~6, 37},

[ =8, AVC = {av6,v%, 67, af"™, af"6%, 370, 377262},
f>38, AVC = {ayé,a,a™p"™, 3", B~5}.

= L

By the construction of tilings in [8, Propositions 35, 48], we get the earth
map tiling F, its flip modifications F1 F, Fo E and rearrangement RE, which
will be explained below.

For the first AVC in the list, for each f > 8, we get the earth map tiling
E with AVC (19).

In fact, consecutive ’s in [8, Figure 74] constitute consecutive timezones.
Then, 5™ as a vertex in any AVC in the list means that the tiling is F. In the
remaining discussion, we may focus on the tilings without 5.

The third AVC without 8" is a simplified [8, AVC (7.10)]. Counting
Lemma implies that 73§ is a vertex if and only if a2 is a vertex. If 43§ is
a vertex, then a3"62 and the angle values imply f = 6q + 4 where ¢ € Z and
q > 1. For each such f > 10, we get the rearrangement RE with

RE : AVC = {avd,~36, aﬁ%,aﬂ%(p}. (21)

If 434 is not a vertex, then a3"6? is also not a vertex. We get [8, AVC (7.9)],
and for each f > 8, we get flip modifications

FE: AVC = {avd, o™, 376}, (22)
FyE - AVC = {ans, af", 377262} (23)

The second AVC without 3" is a special case of [8, AVC (7.9)]. If a3*
is a vertex, then we get specific flip modifications I} F, FoE with AVC =
{a§, apt, 356} and AVC = {and, aB?, 37262}, respectively (which are spe-
cial cases of AVCs (22), (23), respectively).

The fourth AVC without 8" is [8, AVC (7.8)]. Counting Lemma implies
that o® or ™" is a vertex if and only if 576 is a vertex. If &® or o™ is
a vertex, then we get

FLE : AVC = {av6,a®, 376}, (24)
FE: AVC = {avd,a™ 3", 3"~d}. (25)

We list the tilings with their AVCs in Table 11. The construction has
been explained in [8, Figures 75, 76]. O
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TABLE 11. Tilings with rational angles and vertex a~yé

Tilings | 7 | AVC
E {on8,8%)
ayé, o™ B", "6
me |, )
B {ané, 03, B"~6}
RE {an6, aB", 37262}
RE {av8,7%6,08"%" 0’5" 82)

5. Irrational Angles

In this section, we assume that at least one of «, 3,~,¢ is irrational, i.e., its
value is not a rational multiple of 7. For integers m,n, k,l,m;,n;, k;,l; > 0
where 1 < i < 2, the angle sum system of vertices o™ gm~yk1sh,
a2 Br2k2 5l qmanAkSl has an augmented matrix

11112+§

7 | M1 ny k‘1 ll 2
[A|b] o mo N2 k‘g 12 2 ’ (26)
mn k l| 2

-

The above system is required to be consistent, namely rank of [A|b] = rank of
A. If A is invertible, then the solutions to the angle values are rational. There-
fore, for some angles to be irrational, we have rank[A|l_)] = rankA < 3, which
is the irrationality condition. In practice, this means that, if we already know
two vertices o™ BriAk15h M2 gr2yk2 62 then we get two equalities satisfied
by all other vertices.

To facilitate the discussion involving (26) and determine the angle combi-
nations, we allow some of m,n, k,l to be 0. Only after the angle combinations

are determined, we require m,n, k,l > 1 in angle combinations.

Proposition 5.1. If f > 8, and some angle is irrational, and ayd, v are not
vertices, then the tilings are isolated earth map tilings S1,52, and special tilings
QP;,S54.

Proof. Using each pair of vertices in the list of Lemma 3.16, we set up A in (26)
and determine m,n, k,l. We demonstrate how to solve the associated system
of linear Diophantine equations and inequalities in two cases. The others are
determined by the same procedure (implemented in computer).

Case (Degree 3 pairs). Suppose ad?, 3y? are vertices. Row operations give

L1112+ 4 1002 2
- 11002 2 0120 2
A =10 190] 2 |~ 00112(1—2) |

mnkl| 2 000 A 1
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where )\:me?nJrkflandu:Q(erkfnfl)Jr%(ank).

The irrationality condition (rank[A\g] = rankA < 3) implies A = u = 0,
e, 2m—2n+k—I1l=0and (n+1—m —k)f =22n — k). As f # 0, the
latter implies 2n — k # 0 if and only if n+ 1 —m — k # 0. In this case, we have

f=8+ % > 8. Therefore, there are three possibilities

(1) 2m—-2n+k—-1=0,2n—k=0,n+1—m—k=0;
(2) 2m—2n+k—1=0,2n—k>0,n+1—-m—k>0,4m—2n+3k—4 > 0;
3) 2m—2n+k—-1=0,2n—k<0,n+1—-m—k <0,4m—2n+3k—4 <0.
The non-negative integer solutions to the first possibility are (m, n, k,1) =
(1,0,0,2),(0,1,2,0). The vertices are ad?, 372.
The non-negative integer solution to the second is (m, n, k,1) = (m,m,0,0).
The vertex is o™ (™.
There is no non-negative integer solution to the third and hence no vertex.
Therefore, we get

AVC = {ad?, B+, a™B™}.

The arguments for the other pairs are analogous.
Case (Degree 3,4 Pairs). In this case, one of a?, a3?, ay?, aé? is the unique
degree 3 vertex. If a® is a vertex, then Lemma 3.5 implies f > 24. If one of
aB?,av?, ad? is a vertex, then Lemma 3.6 implies f > 16.

Suppose af3?,v26% are vertices. We have f > 16. The irrationality con-
dition implies k¥ —1 = 0 and (2 —n — k)f = 4(2m — n). The latter and
f # 0 imply 2m —n # 0 if and only if 2 —n — k # 0. In this case, we have

f=16+ W > 16. There are three possibilities

() k=1=0,2m—-—n=0,2—n—k=0;
(2 k=1=0,2m>n,2—n—k>0,2m+3n+4k -8 > 0;
B)k—-1=0,2m<n,2—-n—k<0,2m+3n+4k—-8<0.
For each possibility, we obtain the vertices by integer linear programming
for the non-negative integers m, n, k,[. Therefore, we get

AVC = {af?, 7252, ™, a™ B, a™ 6}

The arguments for the other pairs are analogous.

We summarise all the AVCs in Table 12. The first two vertices in each
AVC are assumed to appear, since they come from the list of Lemma 3.16.
Then, by Counting Lemma, all vertices in these AVCs must appear, with
the exceptions of f = 24, AVC = {a?,7262, 3%, %70} and f > 16, AVC =
{aﬁ2a 72527 am, amﬂv amyé}

By the exchange (a,v) < (3,6), we see that {a3, 372, aB6?} and
{a3, 362, aBy*} become special cases of {ad?, afy?, 3"} and {ay?, o362, 3"},
respectively.

AVCs without tiling

We first discuss the AVCs from Table 12 that do not admit tilings.

As in the AAD discussion in Sect. 3.1, if o is a vertex, then (36 ---
is a vertex. Therefore, {a? ad?, 3242}, {a?,726%, a3}, {a?,8%, 3242} and
{a3,~4%6%, 3°} do not admit no tilings.
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TABLE 12. Irrational angles: AVCs without a-yd

f AVC f AVC

12 {a?, av?, 262} 24 {a® %82, 8%, 8240}

12 {a3, a52,ﬂ272} 36 {a3,7252, aﬁ?’}

24 {a®,8*, %0} 60 {a®,4%6%,8°}

24 {0®,B8%,6°4Y  dmim >4 {af428% 0™, a7 B, 48}
2k, k>4 {a?B, 362, ~+*} 4m,m >4 {avy? §%6% a™}

dm,m>2  {ad? y*,a™B"}  dmym >4 {ad? %% 0™}

24 {a®, ~* 3262} dn,n >4 {an?, 362, 3™}

24 {a3, 54,B2'y2} dn,n >4 {aéz,aﬂ'yz,ﬁn}

In AVC = {a?, an?, 3262}, all three vertices appear and the angle sum
system implies o = v and f+0 = 7, whereby § # 7, contradicting Lemma 3.13.

In AVC = {a?, 872, 3%26*}, we know that 3%26% is a vertex, whereas |y - - -
is not a vertex. By no ay---, y|y---, we know that g*|7G---, gY|73--- are
not vertices. Then, 3|8 = 3%|“8. By no ay---, we know that |§%|5|%d]--- is
not a vertex. By 3|8 = 8%|*8, the AAD of 326* is | 6|7 ~|*B7|*5|. It implies
- -+, a contradiction.

In AVC = {a?, 362, 324}, the AAD of 362 is |6%|*37|*5| It implies
- -+, a contradiction.

In AVC = {a?,7262, 3%, 3?40}, we know that o? is a vertex. Then, the
AAD of o implies that 36 --- = $2~§ is a vertex. By no a3 -- -, the AAD of
52746 is |v?7 5| B3|*5| Tt implies -y - - -, a contradiction.

In AVC = {a?8, 362,74}, the AAD of 362 is |§%|*37|*6|. This implies
a7 - - -, a contradiction.

In AVC = {a6?, 3%4%,a™}, the AAD of ad? is |§%|%a?|*5|. This implies
af---, a contradiction.

In AVC = {ad?, B+%, a™B™}, we have v--- = 342 and §--- = ad?.
Since o™ ("™ has degree > 3, we have m > 2. This implies «,3 < w. By
ad?, B2, we have 7,6 < m. Then, the tile is convex. The vertex angle sums
a+26 =21 = 342y imply y— 2o = §— 1 8. Then, (5) implies sin(y— 1) = 0
or sin %ﬂ = sin %a. By convexity and vy — %oz =0 - %,6’, the former gives
o — %ﬁ =v— %a = 0. Then, a = 2v and 3 = 26. By avy? and (82, we get
dm = a4+ 2y + 8+ 26 = 2(a + (), which implies a + § = 27, contradicting
«, 3 < w. Hence, we get sin %ﬂ = sin %a. By a, 8 < m, this implies a = 3, a
contradiction.

AVCs with tilings

In AVC = {av?,aB62, 8"}, as discussed in [8], the tilings are only geo-
metrically realisable when f = 16. In that case, the tilings are 53, F'S3 and
every angle is rational, a contradiction.
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FiGure 21. Tiling QFs

In AVC = {a?,~4%, 3262}, the tiling is QPs, given by quadrilateral subdi-
vision of the cube in Fig. 21.

In AVC = {afB? +%5%,a™, a™B,a™ys}, we have 3%--- = a3? and no
By---, B5---. The AVC assumes that af3? is the unique degree 3 vertex.
Then, the vertices a™,a™3,a™~§ have degree > 4. By 32--- = a3?, the

third picture of Fig. 15 shows that o|%a--- implies 37 ---, a contradiction.
Then, by no 85 --- ,a?Pa---, the AAD of afa is o’|?a. This implies no cever.
Therefore, we get m = 2 in a4, whereas o™, a3 are not vertices. The AVC
is reduced to

f=16, AVC = {afB? a?v6,~*6%}. (27)

By AVC (27), we construct S4 in the first picture of Fig. 22. As 2a = v+ = 7,
5S4 is a subdivision of a non-edge-to-edge parallelogram tiling in the second
picture. The right angles are a. The non-indicated parallelogram angles are
6= %71'.

In AVC = {an?, 3%0%,a™}, as discussed in [8], the tilings are only geo-
metrically realisable when f = 16 and a™ = a*. We use the AVC to construct
S2 in the first picture of Fig. 23.

In AVC = {aé?, apv?, "}, as discussed in [8], the tilings are only geo-
metrically realisable when f = 12,16. We use the AVC to construct Sy21, S161
in Fig. 24.

This completes the proof. O

Proposition 5.2. If f > 8, and some angle is irrational, and one of ayd, v
s a vertex, then the tilings are earth map tiling E and its flip modifications
FE FyFE.
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F1cure 22. Tiling 54, as a subdivision of a non-edge-to-edge
tiling by parallelograms
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FIGURE 24. Tilings S1 = S121, Si6l
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Proof. Up to symmetry, we may assume that ayd is a vertex. By « # (3, this
implies that 8¢ is not a vertex. The angle sum system gives

a+y+6=2m, ﬂ:%w.

By a~d, at least two of «,,d are irrational. The key fact is the following:
suppose ¢, are irrational angles and ¢ + 1 is a rational angle, then for
rational numbers u, v, g, the equation uy + vy = gm implies u = v.

By avé and Lemma 3.17, we know that a2 - - - is a b-vertex. At least two

of a, 7,9 are irrational. Therefore, we divide the discussion into the following
cases.
Case (v, ¢ are irrational, « is rational). By ayd, we know that v+ 4 is rational.
As v, are irrational, at each vertex, the number of v equals the number of
5. This means that the b-vertices are avd, 3"v*5%, ~v#§%. The b-vertices are
a™, o™ @™, 3", Therefore

AVC = {and, a™, ™", 8", By 6%, ¥ 5*}. (28)

Case (a,~y are irrational, § is rational). By ayd, we know that o+ is rational.
As 3,0 are rational and «, are irrational, at each vertex, the number of «
equals the number of ~y. Since a?--- can only be b-vertex, this implies that
a?--. is not a vertex. Then v--- = a7y--- has no «,~ in the remainder. By
avd and Parity Lemma, we have v--- = avd. Applying Counting Lemma
to «,~y, this implies a--- = avd. Applying Counting Lemma to +,d§, we get

6 -+ = avd. Then, the only other vertex is " where n = g Therefore

AVC = {and, 5% ). (29)

Case (a, d are irrational, « is rational). The previous argument relies only on
the parity of v, . Exchanging v < ¢ above, we get AVC (29).
Case (a7, are irrational). In this case, § is the only rational angle. Then,
™ A 8L amBr, 3ryk 376 are not vertices. Since a2--- can only be a b-
vertex, by no o™, a™ 3", this implies that a?--- is not a vertex.
Suppose v > §. By ayd and Parity Lemma, we have oy - -+ = a~yd. Then,
a--- = ayd,adl, af™s!. Counting Lemma on «,d and Parity Lemma imply
that ad’, a8 are not vertices. Then, a--- = ayd. Counting Lemma further
implies that the only other vertex is 5. We get AVC (29).
Suppose v < 6. We have ad--- = a7yd. Then, exchanging v < § and
k < 1 in the above, we get AVC (29).
We summarise the AVCs below
1. f>8, AVC = {avs, 3% };
2. f>8, AVC = {avd,a™, ", a™B", vk, gryksky.
By the tiling construction part of [8, Proposition 48], the earth map tilings
E and their flip modifications F} E, Fo E are obtained from the above AVCs.
We follow the same argument in [8, AVC (7.8), AVC (7.9)]. Hence, we get

FE: AVC = {and,a™, "6 }; (30)
FE: AVC = {avd,a™p", 3"d}; (31)
FyE : AVC = {avd, af™, v*6"); (32)
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TABLE 13. Tilings with irrational angles and vertex a~yd

Tilings J f L AVC
2 {on6,8% )
m n
RE |54 {ané,a™, f"~8}

{an6, a™pB™, B"~v6}
E {oys, aB™, yR 8%}
{ays, af™, Brykek}

FyE : AVC = {avd, af", B"y*5"}. (33)
The tilings with their AVCs are given in Table 13. The construction is
explained in the proof of [8, Proposition 48]. O

The geometric realisation of all the tilings the previous sections can be
seen in the full version on arXiv:2204.02748 or in [8]. We hereby conclude our
study with the following two theorems.

Theorem 3. Tilings of the sphere by congruent almost equilateral quadrilater-
als, where all angles are rational, are earth map tiling E and its flip modi-
fications, I\ E, Fo E, and rearrangement RE, and isolated earth map tilings,
S3, FS3,55, and special tiling S6.

Theorem 4. Tilings of the sphere by congruent almost equilateral quadrilaterals
with some irrational angles are earth map tiling E and its flip modifications,
WE FyF, and isolated earth map tilings, S1,52, and special tilings, QQPg, S4.
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