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Rational Angles and Tilings of the Sphere
by Congruent Quadrilaterals
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Abstract. We apply Diophantine analysis to classify edge-to-edge tilings
of the sphere by congruent almost equilateral quadrilaterals (i.e., edge
combination a3b). Parallel to a complete classification by Cheung, Luk,
and Yan, the method implemented here is more systematic and applicable
to other related tiling problems. We also provide detailed geometric data
for the tilings.
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1. Introduction

We study edge-to-edge tilings of the sphere by congruent polygons, such that
each vertex has degree ≥ 3. It is well known that the polygons in these tilings
are triangle, quadrilateral, or pentagon. The classification of tilings of the
sphere by congruent triangles, pioneered by Sommerville [19] in 1923, was
completed by Ueno and Agaoka [20] in 2002. The classification of tilings of
the sphere by congruent pentagons has been recently completed through a
collective effort [4,5,9,13,22–26].

Akama and Sakano [1,2] conducted a classification for tilings of the sphere
by congruent quadrilaterals which can be subdivided into two congruent trian-
gles. It remains to classify the tilings by congruent quadrilaterals with exactly
three equal edges (a3b, first picture of Fig. 1) and by congruent quadrilaterals
with exactly two equal edges (a2bc, second picture). Ueno and Agaoka [21],
and Akama and van Cleemput [3] studied some special cases of the tilings
by congruent a3b quadrilaterals. Their work is indicative of many challenges
in the classification. In 2022, Cheung et al. [8] gave a complete classification
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Figure 1. Quadrilaterals with edge combinations a3b, a2bc

for tilings of the sphere by congruent quadrilaterals as well as a modernised
classification for the tilings by congruent triangles.

We call a quadrilateral with edge combination a3b almost equilateral,
where a-edge and b-edge are assumed to have different lengths. The angles are
indicated in the first picture of Fig. 1, likewise for the a2bc quadrilateral in
the second picture. These standard configurations are implicitly assumed in
this paper. We call an angle rational if its value is a rational multiple of π.
Otherwise, we call the angle irrational.

The main purpose of this paper is to give an alternative classification for
tilings of the sphere by congruent almost equilateral quadrilaterals. The key is
Diophantine analysis in the following situations:

1. If all angles are rational, then we determine the angle values by finding
all rational solutions to a trigonometric Diophantine equation which all
angles must satisfy.

2. If some angles are irrational, then we determine all angle combinations
at vertices by solving a related system of linear Diophantine equations
and inequalities.

Despite the complete classification in [8], techniques in this paper have
their own independent significance. Coolsaet [11] discovered the trigonometric
Diophantine equation relating the angles of convex almost equilateral quadri-
lateral. Myerson [15] found the rational solutions to the equation. Based on
their works, we made two major advancements. The first is extending the
trigonometric Diophantine equation to general (not necessarily convex) almost
equilateral quadrilaterals. The second is establishing a technique to determine
all angle combinations at vertices using the constraint of irrational angles. This
technique is based on the study in [17].

Historically, trigonometric Diophantine equations have been closely con-
nected to many geometric situations. Conway and Jones [10] have opened doors
to the exploration of many interesting geometry problems. Notable work can
be seen in [14–16,18].

In contrast to [8], there are two significant advantages in our approach.
First, arguments in this paper are more systematic, whereas those in [8] are
often sophisticated and improvised. Second, most techniques here can be com-
puterised. In that regard, our approach is apparently more advantageous in
exhaustive search and more likely to be applied to other similar problems,
such as the study of non-edge-to-edge tilings of the sphere. Promising signs of
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such proposal can be seen in the families of non-edge-to-edge tilings by con-
gruent triangles obtained in this paper as degenerated cases of the tilings by
quadrilaterals, which supplement the discoveries by Dawson [12].

Another feature of this paper is the extrinsic geometric data of tilings,
namely the formulae for the angles and edge lengths, which are intended for
wider audience, such as engineers, designers, and architects. Full discussion
can be seen in the version on arXiv:2204.02748.

The paper is organised as follows. Section 2 explains the main results.
Section 3 explains the basic tools and the strategy. Section 4 studies the tilings
where all angles are rational, and Sect. 5 studies the tilings where some angles
are irrational.

2. Main Results

The main result of this paper is stated as follows.

Theorem 1. Tilings of the sphere by congruent almost equilateral quadrilaterals
are earth map tiling E and its flip modifications, F1E,F2E, and rearrangement
RE, and isolated earth map tilings, S1, S2, S3, FS3, S5, and special tilings,
QP6, S4, S6.

The tilings in the main theorem are presented in Fig. 2. The nota-
tions E,F1E,F2E,RE in the theorem correspond to EA

�1, FEA
�1, REA

�1 in
[8], where F1E,F2E are treated as the same flip modification in FEA

�1 under
a general framework. Let f denote the number of tiles in a tiling. We also use
subscripts to indicate the number of tiles. For example, the tilings E, F1E,F2E
and RE in Fig. 2 with f = 28 are denoted as E28, F1E28, F2E28, RE28. We
also remark that S1 has only two versions, S121 and S161. Each of the other
Si’s has only a single fixed f . Moreover, FS3 is the flip modification of S3.
We use QP6 to denote the quadrilateral subdivision of the cube P6.

We explain the structures of these tilings explicitly by their planar repre-
sentations in first picture of Fig. 4, and Figs. 5, 6, 7. The angles are implicitly
represented according to Fig. 3. Tiles with angles arranged in the orientation
in the first picture, i.e., α → β → γ → δ clockwise, are marked by “ - ”. The
other tiles, unmarked, have angles arranged counter-clockwise as in the second
picture.

The earth map tiling E is the first picture of Fig. 4. The vertical edges
in the top row of E converge to a vertex (north pole) and those in the bottom
row converge to another (south pole). The shaded tiles form a timezone. A
tiling is a repetition of timezones. The second picture is the earth map tiling
by congruent a2bc quadrilaterals. We may obtain E from this earth map tiling
by edge reduction c = a or b = a. The earth map tiling with exactly three
timezones is the deformed cube.

For any positive integer s < f
2 , let Ts be s consecutive timezones. The

first picture of Fig. 5 shows the boundary of Ts. If α = sβ, we may flip the
Ts part of E with respect to F1 to get a new tiling F1E. This is the reason to
call it a flip modification. In fact, we may simultaneously flip several disjoint

http://arxiv.org/abs/2204.02748
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E = E28 F1E = F1E28 F2E = F2E28 RE = RE28

S1 = S121 S1 = S161 S2

S3 FS3 QP6

S4 S5 S6

Figure 2. Tilings of the sphere by almost equilateral quadri-
laterals: E28, F1E28, F2E28, RE28, S121, S161, S2, S3, FS3,
QP6, S4, S5, S6
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Figure 3. Orientations of almost equilateral quadrilateral tiles

Figure 4. Earth map tilings E by a3b tiles and by a2bc tiles
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Figure 6. Polar view of S1, S2, S3, FS3, QP6, S4, S5, S6

copies of Ts. Similarly, if γ+δ = sβ, we may simultaneously flip several disjoint
copies Ts with respect to F2 to get F2E.

For f = 6q +4 and specific combination of angle values, we may combine
three copies of Tq and four more tiles as in the second picture of Fig. 5 to get
a rearrangement RE of E. The third picture depicts RE when q = 4.

Further explanations on F1E,F2E,RE can be seen in [8, Section 2].
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Figure 7. Isolated earth map tilings S1, S2, S3, FS3, S5

The isolated earth map tilings and the special tilings are in Fig. 6.
Figure 7 presents a different view of S1, S2, S3, FS3, S5. Comparing with

Fig. 4, combinatorially, each of them belongs to a family of earth map tilings
(with shaded timezones different from that in E). However, they can be realised
as geometric tilings only for specific numbers of timezones.

There are other studies on tilings of earth map types. Two pentagonal
earth map tilings (with various modifications) are constructed in [9] and a
combinatorial study on pentagonal earth map tilings was given by Yan [25].

Tables 1, 2, 3, 4 give the geometric and combinatoric data of the tilings.

3. Basic Tools

3.1. Concepts and Notations

Quadrilateral.
A polygon is simple if the boundary is a simple closed curve. A polygon

is convex if it is simple and every angle ≤ π. By [13, Lemma 1], at least one
tile in a tiling of the sphere is simple. If all the tiles are congruent, then all
tiles are simple.

For quadrilaterals in tilings, we assume that the angles and edges admit
values in (0, 2π). The simple tile condition implies a < π for both quadrilaterals
in Fig. 1.

The area of the quadrilateral is the surface area 4π of the unit sphere
divided by number f of tiles. Then, we get the quadrilateral angle sum

α + β + γ + δ = (2 + 4
f )π. (1)

Vertex.
We denote by αmβnγkδl a vertex consisting of m copies of α, and n copies

of β, and k copies of γ, and l copies of δ. For example, αβ2 is a vertex with
m = 1, n = 2 and k = l = 0. A vertex αmβnγkδl has vertex angle sum

mα + nβ + kγ + lδ = 2π. (2)

By (1), at least one of the non-negative integers m,n, k, l is zero.
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Table 1. Data of isolated tilings 1

Tilings f Edges and Angles Vertices

P6 6

a = cos−1 cos α
cos α−1 ,

b = cos−1 (2 cos α−1) cos(α+ 2
3 π)−cos2 α

(1−cos α)2 ,

α + γ + δ = 2π, β = 2
3π

6αγδ,
2β3

S1 12

a = cos−1( 23
√
5 − 1) ≈ 0.34π,

b = cos−1(3
√
5 − 6) ≈ 0.25π,

α = 2 cos−1 1
4

√
10 ≈ 0.42π,

β = 2
3π,

γ = 2
3π − cos−1 1

4

√
10 ≈ 0.46π,

δ = π − cos−1 1
4

√
10 ≈ 0.80π

6αδ2,
6αβγ2,
2β3

S1 16

a = cos−1 1
2 (−3 − √

2 +
√
5 +

√
10) ≈ 0.34π,

b = cos−1(−9 − 6
√
2 + 4

√
5 + 3

√
10) ≈ 0.11π,

α = 2 cos−1 1√
12

√
7 +

√
2 +

√
5 − √

10 ≈ 0.42π,

β = 1
2π,

γ = 3
4π − cos−1 1√

12

√
7 +

√
2 +

√
5 − √

10 ≈ 0.54π,

δ = π − cos−1 1√
12

√
7 +

√
2 +

√
5 − √

10 ≈ 0.79π

8αδ2,
8αβγ2,
2β4

S2 16

a = cos−1 1√
7

√
2
√
2 − 1 ≈ 0.33π,

b = cos−1 1√
7

√
22

√
2 − 25 ≈ 0.12π,

α = 1
2π,

β = cos−1 1
2 (

√
2 − 1) ≈ 0.43π,

γ = 3
4π,

δ = cos−1 1
2 (1 − √

2) ≈ 0.57π

8αγ2,

8β2δ2,
2α4

S3
16 a = 1

4π, b = 1
2π,

α = π, β = 1
2π, γ = 1

2π, δ = 1
4π

8αγ2,
8αβδ2,
2β4FS3

In our practice, m,n, k, l in a vertex notation are assumed to be > 0
unless otherwise specified. For example, αmβn does not include αm, βn. Such
practice is one subtle difference from [8]. To streamline the discussion, we give
a shorthand argument: we simply say “by αβ2” to mean “by αβ2 being a
vertex” or “by the angle sum α + 2β = 2π of αβ2”. We use α = β to mean
α, β having the same value. We use α �= β to mean α, β having distinct values.

The notation αβ2 · · · means a vertex with at least one α and two β’s,
i.e., m ≥ 1 and n ≥ 2. We call the angle combination in · · · (and the sum of
angles in · · · ) the remainder of the vertex. A b-vertex is a vertex with a b-edge
(i.e., with γ, δ) and a b̂-vertex is a vertex without b-edge (i.e., without γ, δ).

The critical step in classifying tilings is to find all the possible angle
combinations at vertices. There are various constraints on these combinations.
Examples of such constraints are the vertex angle sum and the quadrilateral
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Table 2. Data of isolated tilings 2

Tilings f Edges and Angles Vertices

S4 16

a = 1
4π,

b = cos−1 1
4 (2

√
2 − 1) ≈ 0.35π,

α = 1
2π, β = 3

4π,

γ = cos−1 1√
17

√
7 − 4

√
2 ≈ 0.41π,

δ = π − cos−1 1√
17

√
7 − 4

√
2 ≈ 0.59π

8αβ2,
4α2γδ,
6γ2δ2

QP6 24

a = cos−1 1√
13

√
5 + 2

√
3 ≈ 0.20π,

b = cos−1 1√
13

√
2(4 − √

3) ≈ 0.30π,

α = 2
3π,

β = π − sin−1 1√
6

√
4 +

√
3 ≈ 0.57π,

γ = 1
2π,

δ = sin−1 1√
6

√
4 +

√
3 ≈ 0.43π

8α3,
12β2δ2,
6γ4

S5 36

a = cos−1 sin 2
9 π+2 sin 4

9 π√
3(1+cos 2

9 π)
≈ 0.17π,

b = cos−1 1
3 (4 sin

2 1
9π − √

3 cot 4
9π

+ 2
√
3 cos 2

9π cot 4
9π + 4 sin 4

9π tan 1
9π)

≈ 0.26π,
α = 4

9π, β = 7
9π, γ = 1

3π, δ = 5
9π

18αβ2,
6α2δ2,
6γδ3,
6αγ3δ,
2γ6

S6 36

a = cos−1(4 cos 1
9π − 3) ≈ 0.23π,

b = cos−1(6 cos 1
9π + 2

√
3 sin 1

9π

−3
√
3 tan 1

9π − 4) ≈ 0.12π,

α = 1
3π, β = 5

9π, γ = 7
18π, δ = 5

6π.

14αδ2,
10αβ3,
8γ3δ,
6α2βγ2

angle sum. We call the combinations satisfying the constraints admissible. An
anglewise vertex combination (AVC) is a collection of all admissible vertices in
a tiling. For example, the following is AVC (20) from Proposition 4.4:

AVC = {αγδ, γ3δ, βn, αβn, αβnδ2, βnγδ, βnγ2δ2}.

We emphasise that m,n, k, l are generic notations reserved for the numbers
of α, β, γ, δ. The generic n in an AVC may take different values at different
vertex. We remark that some vertices in an AVC may not appear in a tiling.
For example, the AVC of the earth map tiling E below has only two vertices

AVC ≡ {αγδ, β
f
2 }.

Here, we use “≡” instead of “=” to denote the set of all vertices which actually
appear in a tiling.

An angle sum system is a linear system consisting of the quadrilateral
angle sum and vertex angle sums. For example, for vertices αm1βn1γk1δl1 ,
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Table 3. Data of earth map tilings 1

Tilings f Edges and Angles Vertices

E, F1E ≥ 6
a = cos−1 cos α

cos α−1 ,

b = cos−1 (2 cos α−1) cos(α+β)−cos2 α

(1−cos α)2

E ≥ 6 α + γ + δ = 2π, β = 4
f

π fαγδ,

2β
f
2

F1E ≥ 8

α = 2
3π, β = 4

f
π,

γ + δ = 4
3π

(f − 6)αγδ,

2α3,

6β
f
6 γδ

α = (1 − 4
f
)π, β = 4

f
π,

γ + δ = (1 + 4
f
)π

(f − 4)αγδ,

2α2β2,

4β
f
4 −1γδ

n ∈ ( f
8 , f

6 − 1
3 ],

α = 4n
f

π, β = 4
f

π,

γ + δ = (2 − 4n
f
)π, γ > π

(f − 6)αγδ,

2α3β
f
2 −3n,

6βnγδ

n ∈ ( f
8 , f

4 − 1),

α = 4n
f

π, β = 4
f

π,

γ + δ = (2 − 4n
f
)π, γ > π

(f − 4)αγδ,

2α2β
f
2 −2n,

4βnγδ

α = π, β = 4
f

π,
γ + δ = π

(f − 2)αγδ,

2αβ
f
4 ,

2β
f
4 γδ

α = (1 − 4
f
)π, β = 4

f
π,

γ + δ = (1 + 4
f
)π

(f − 2)αγδ,

2αβ
f
4 +1,

2β
f
4 −1γδ

n ∈
{
( f
4 , 3f

8 ), if α > π,

( f
8 , f

4 − 1), if γ > π;

α = 4n
f

π, β = 4
f

π,

γ + δ = (2 − 4n
f
)π

(f − 2)αγδ,

2αβ
f
2 −n,

2βnγδ

αm2βn2γk2δl2 , αmβnγkδl in a tiling, where mi, ni, ki, li,m, n, k, l ≥ 0 and 1 ≤
i ≤ 2, the angles satisfy the angle sum system below

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α + β + γ + δ = (2 + 4
f )π,

m1α + n1β + k1γ + l1δ = 2π,

m2α + n2β + k2γ + l2δ = 2π,

mα + nβ + kγ + lδ = 2π.
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Table 4. Data of earth map tilings 2

Tilings f Edges and Angles Vertices

F2E, RE ≥ 8
a = cos−1 cos α

cos α−1 ,

b = cos−1 (2 cos α−1) cos(α+β)−cos2 α

(1−cos α)2

F2E ≥ 8

α = π, β = 4
f

π,
γ + δ = π

(f − 4)αγδ,

4αβ
f
4 ,

2γ2δ2

n ∈ ( f
8 , f

4 ),

α = (2 − 4n
f
)π, β = 4

f
π,

γ + δ = 4n
f

π

(f − 4)αγδ,

4αβn,

2β
f
2 −2nγ2δ2

n ∈ ( f
8 , f

6 ),

α = (2 − 4n
f
)π, β = 4

f
π,

γ + δ = 4n
f

π

(f − 6)αγδ,

6αβn,

2β
f
2 −3nγ3δ3

α = 4
3π, β = 4

f
π,

γ + δ = 2
3π

(f − 6)αγδ,

6αβ
f
6 ,

2γ3δ3

RE ≥ 8
α = ( 43 − 4

3f
)π, β = 4

f
π,

γ = ( 23 − 2
3f

)π, δ = 2
f

π

(f − 6)αγδ,

2γ3δ,

4αβ
f+2
6 ,

2αβ
f−4
6 δ2

If the four equations are linearly independent, then the unique solution implies
that all four angles are rational. If some angle is irrational, then this angle sum
system has rank ≤ 3, which we call the irrationality condition.

If αγδ is a vertex, we will get a different system where the irrationality
condition is rank = 2.

In fact, as seen in [8], technical and mostly ad hoc combinatorial argu-
ments are required to derive three vertices in the majority of cases. By dividing
into rational angle and irrational angle analysis albeit artificial, we can sys-
tematically determine all the vertices. Our strategy is outlined in Sect. 3.4,
and implemented in Sects. 4 and 5.

The notations #α,#β, etc., denote the total number of α, the total num-
ber of β, etc., in a tiling. If each angle appears exactly once at the quadrilateral,
then

f = #α = #β = #γ = #δ.

We also, for example, denote by #αδ2 the total number of vertex αδ2 in a
tiling. For AVC (16) = {αδ2, αβ3, γ3δ, α2βγ2}, we have

f = #α = #αδ2 + #αβ3 + 2#α2βγ2,

f = #β = 3#αβ3 + #α2βγ2,
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Figure 8. Adjacent angle deduction (AAD)
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Figure 9. The two possible AADs of α3

f = #γ = 3#γ3δ + 2#α2βγ2,

f = #δ = 2#αδ2 + #γ3δ.

Adjacent Angle Deduction.

Angles at a vertex can be arranged in various ways. An adjacent angle
deduction (AAD) is a compact notation representing the angle arrangement
and the tile arrangement at a vertex. Symbolically, “ | ” denotes an a-edge
and “ ” denotes a b-edge. For example, all three pictures in Fig. 8 are AADs
of β2γ2 for the almost equilateral quadrilateral. The AADs of γ|β|β|γ in the
pictures can be further represented by δγβ |γβα|αβγ |βγδ , δγβ |γβα|γβα|βγδ

and δγβ |αβγ |γβα|βγδ , respectively.
As seen above, the AAD notations can be regarded as mini pictures.

Similar to their pictorial counterparts, the notations can be rotated and re-
versed. For example, the AAD of the second picture can also be written as
|γβα|γβα|βγδ δγβ | (rotation) and δγβ |αβγ |αβγ |βγδ (reversion).

The use of AAD notation can be flexible. For example, we write βα|αβ
(the first picture of Fig. 8) if it is our focus on β2γ2. We use βα|αβ · · · to
denote a vertex with such angle arrangement.

The AAD has reciprocity property: an AAD λθ|ρμ at λμ · · · implies an
AAD at θλ|μρ at θρ · · · and vice versa.

We give an example of proof by AAD. Up to rotation and reversion,
the possible AADs for α|α are αβ |βα, αβ |δα, αδ|δα. If β2 · · · , δ2 · · · are not
vertices, then α|α has unique AAD αβ |δα. Moreover, a vertex α3 has two
possible AADs |δαβ |δαβ |δαβ |, |δαβ |δαβ |βαδ|, depicted in Fig. 9. This implies
that β|δ · · · is always a vertex.

Some typical applications of AAD are listed below:

• If β|δ · · · is not a vertex, then m in αm is even.
• If δ|δ · · · is not a vertex, then αδ|δα · · · is also not a vertex.
• If β|β · · · , δ|δ · · · are not vertices, then α|α has the unique AAD αβ |δα.
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• If β|β · · · , β|δ · · · are not vertices, then ααα cannot be a vertex. In other
words, there are no three consecutive α’s at a vertex.

The application of AAD depends on the information available. It helps to
conduct efficient and concise discussion in place of tens of pictures. In principle,
the AAD argument can be programmed in decision algorithms.

3.2. Technique

We use “up to symmetry” to refer to the exchange (α, γ) ↔ (β, δ) in the almost
equilateral quadrilateral (Fig. 1).

Combinatorics

Let vi be the number of vertices of degree i ≥ 3. From [8], the basic formulae
about edge-to-edge tilings of the sphere by quadrilaterals are

f = 6 +
∑

h≥4

(h − 3)vh, (3)

v3 = 8 +
∑

h≥4

(h − 4)vh. (4)

Equation (3) implies f ≥ 6, and f = 6 if and only if all vertices have degree
3. Equation (4) implies v3 ≥ 8, which further implies that degree 3 vertices
always exist.

In [4,13,20,22,23], a crucial step in classification is to find all admissible
vertices. This means that we need to find various constraints that angle combi-
nations at vertices must satisfy. Here, we list some combinatorial constraints.

Lemma 3.1. (Counting Lemma, [8, Lemma 4]) In a tiling of the sphere by
congruent polygons, suppose two different angles θ, ϕ appear the same number
of times in the polygon. If, at every vertex, the number of θ is no more than
the number of ϕ, then at every vertex, the number of θ equals the number of
ϕ.

The assumption is that every vertex is θpϕq · · · with 0 ≤ p ≤ q and no
θ, ϕ in the remainder. The conclusion is that every vertex is θpϕp · · · , with no
θ, ϕ in the remainder.

Lemma 3.2. (Parity Lemma, [8, Lemma 2]) The total number of γ and δ at
any vertex is even.

Lemma 3.3. (Balance Lemma, [8, Lemma 6]) In a tiling of the sphere by con-
gruent almost equilateral quadrilaterals, γ2 · · · is a vertex if and only if δ2 · · ·
is a vertex. If γ2 · · · , δ2 · · · are not vertices, then every b-vertex has exactly
one γ and one δ.

Lemma 3.4. [8, Lemma 9] In a tiling of the sphere by congruent quadrilaterals,
if two angles θ1, θ2 do not appear at any degree 3 vertex, then there is a degree
4 vertex θ3i · · · (i = 1 or 2) or θ2i θj · · · (i, j = 1, 2), or a degree 5 vertex θp

1θ
q
2

(p + q = 5).
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Lemma 3.5. [8, Lemma 10] In a tiling of the sphere by congruent quadrilaterals,
if θ3 is the unique degree 3 vertex, then f ≥ 24 and there is a degree 4 vertex
without θ.

Lemma 3.6. [8, Lemma 11] In a tiling of the sphere by congruent quadrilaterals,
if θ2ϕ is the unique degree 3 vertex, then f ≥ 16 and there is a degree 4 vertex
without θ.

In the last three lemmas, the technique of counting angles is involved.
Whenever counting is applied, implicitly, there is a criterion for distinguishing
angles which is often clear in the context.

Geometry

The geometry of the quadrilateral imposes more constraints on angle combi-
nations at vertices.

Lemma 3.7. [8, Lemma 7] In a tiling of the sphere by congruent quadrilaterals,
there is at most one angle ≥ π in the quadrilateral.

Lemma 3.8. [23, Lemma 3] In a simple almost equilateral quadrilateral, α ≥ β
if and only if γ ≥ δ.

Lemma 3.9. ([8, Lemma 14], [3, Lemma 2.1]) In a simple almost equilateral
quadrilateral

• if α, β, γ < π, then β + π > γ + δ and δ + π > β + γ;
• if α, β, δ < π, then α + π > γ + δ and γ + π > α + δ.

Lemma 3.10. [8, Lemma 15] In a simple almost equilateral quadrilateral
• if γ, δ < π, then α > γ if and only if β > δ;
• if γ < π, then β = δ if and only if a = b;
• if δ < π, then α = γ if and only if a = b.

In fact, the proof of [8, Lemma 15] shows that, if γ < π, then β > δ if
and only if a < b, and β = δ if and only if a = b.

Lemma 3.11. In a simple quadrilateral, if three angles and the two edges be-
tween these angles are < π, then the other two edges are also < π.

Proof. We call a triangle standard when all edges and angles are < π. A stan-
dard triangle is simple and convex.

Suppose �PQRS is such quadrilateral in Fig. 10 where ∠P,∠Q,∠S,
PQ,PS < π. Then, PQ,PS are, respectively, contained in the left part and
right part of the boundary of the lune (the intersection of two hemispheres)
defined by antipodal points P, P ∗, and ∠P . As ∠Q,∠S < π, the rays from Q
and S, which respectively coincide with QR and SR, point towards the interior
of the lune. Extending the ray from Q until it meets at Q′ on the other side
of the boundary, we get a standard triangle �PQQ′ where QQ′ < π.

If S is contained in PQ′ in the first picture, then �PQRS being simple
and ∠S < π imply that the ray from S will eventually intersect at R where
R lies between QQ′. If S is outside PQ′, then it is contained in Q′P ∗ in the
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P

P ∗

Q

Q∗

S

Q′R

S∗

P

P ∗

Q

Q∗
Q′

S

R

S∗

Figure 10. Quadrilateral �PQRS with ∠P,∠Q,∠S, PQ,PS < π

A

B D

C

α1 α2

β β′

γ1 γ2

δ′ δ

Figure 11. �ABCD with α, β, δ < π and γ > π

second picture. Therefore, �PQRS being simple and ∠S < π also imply that
the ray from S will eventually intersect at R where R lies between QQ′. In
either case, QR,RS are contained in the lune, and hence, QR,RS < π. �

Lemma 3.12. In a simple almost equilateral quadrilateral, if α, β, δ < π, then
γ > π implies β > δ.

Proof. By a, α, β, δ < π, Lemma 3.11 implies b < π. Moreover, AC,BD in
Fig. 11 is contained in the lune defined by A,A∗, α. Therefore, AC,BD < π
and every triangle contained in �ABD is a standard triangle. We also know
that �ABD contains �ABCD and �BCD. Let β′, δ′ be the base angles of
�BCD adjacent to β, δ, respectively.

Since AB = AD = a, we know that �ABD,�ABC are isosceles trian-
gles. Then, β + β′ = δ + δ′ and α1 = γ1. Therefore, γ > α implies γ2 > α2.
This means that CD < AD = BC. Then, in �BCD, we get β′ < δ′. Hence,
β > δ. �

Lemma 3.13. In a tiling of the sphere by congruent almost equilateral quadri-
laterals, we have

• β = δ if and only if γ = π;
• α = γ if and only if δ = π.

Proof. If β = δ, then Lemma 3.7 implies β, δ < π. By b �= a, Lemma 3.10
implies γ ≥ π. Then, by Lemma 3.7, we get α < π. If γ > π, then γ > α and
Lemma 3.12 imply β > δ, a contradiction. Hence, γ = π.

If γ = π, then the quadrilateral is in fact an isosceles triangle �ABD in
Fig. 12 with edges AB = AD = a and BD = a + b. Hence, β = δ. �
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D

A B

C

α β

δ

Figure 12. �ABD with ∠C = γ = π

∗ ∗

Figure 13. General quadrilaterals as closed paths with
chosen sides

The four angles of the almost equilateral quadrilateral should be related
by one single equation. To explain the equation, we need to expand our defi-
nition of polygons.

A general polygon is a closed path of piecewise geodesic arcs together
with a choice of a side. A geodesic arc is a part of a great circle on the sphere.
The edges of a general polygon are geodesic arcs. The vertices are where the
edges meet. There are two complementary angles at each vertex. A side is
fixed by a choice of one angle. Figure 13 demonstrates how a side of a general
quadrilateral is fixed by the choice of angle ∗.

Coolsaet [11, (2.3), Theorem 2.1] proved the following identity for convex
almost equilateral quadrilateral. Cheung [6,8] proved the identity without the
convexity assumption.

Lemma 3.14. ([6, Theorem 21], [8, Lemma 18]) The four angles of an almost
equilateral quadrilateral satisfy

sin 1
2α sin

(
δ − 1

2β
)

= sin 1
2β sin

(
γ − 1

2α
)
. (5)

We remark that (5) is also true if the quadrilateral is not simple. It
matches the trigonometric Diophantine equation in [15, Equation (4)]. In
Sect. 4, we generalise Coolsaet’s method [11, Theorem 3.2] to determine ratio-
nal angles.

3.3. Preliminary Cases

There are up to four distinct angle values among α, β, γ, δ. If all angles have
the same value, then a = b. Therefore, a genuine (a �= b) almost equilateral
quadrilateral has at least two distinct angle values.

Proposition 3.15. There is no tiling by congruent almost equilateral quadrilat-
erals with two distinct angle values.

It is established by [3, Theorem 3.3] that congruent convex symmetric
(α = β and γ = δ) genuine almost equilateral quadrilaterals do not admit
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tilings. With Lemma 3.7, this result by Akama and van Cleemput is sufficient
to rule out the symmetric almost equilateral quadrilaterals.

Proof. Suppose there are two distinct angle values. Lemma 3.8 implies no three
angles in the tile sharing the same value. Then, we have three possibilities: (1)
α = γ and β = δ, (2) α = δ and β = γ, and (3) α = β and γ = δ.

Suppose α = γ and β = δ. Lemma 3.7 implies α, β, γ, δ < π. By b �= a
and Lemma 3.13, α = γ if and only if δ = π, contradicting δ < π.

Suppose α = δ and β = γ. Up to symmetry, Lemma 3.8 implies α ≥ β =
γ ≥ δ = α. This implies α = β = γ = δ, a contradiction.

Suppose α = β and γ = δ, we know α �= γ. Lemma 3.7 implies every
angles < π so the tile is convex. The quadrilateral angle sum becomes

2α + 2γ = (2 + 4
f )π.

By (4), we get v3 > 0. Then, Parity Lemma implies that αγ2 or α3 is a vertex.
If αγ2 is a vertex, the angle sum system implies α = 4

f π and γ = (1− 2
f )π.

By convexity, Lemma 3.9 implies α + π > 2γ, and hence, f < 8, or f = 6.
Then, α = γ = 2

3π, contradicting α �= γ.
Now, α3 must be a vertex. Then, γ appears at some degree ≥ 4 vertex.

The angle sum system implies α = 2
3π and γ = (13 + 2

f )π. Then, we get
2α + 2γ, α + 4γ, 6γ > 2π, which imply that γ only appears at γ2 · · · = γ4 and
γ = 1

2π. By γ = (13 + 2
f )π, we get f = 12. By α = 2

3π and γ = 1
2π, there are

no other vertices, notably no αγ · · · .
The AAD γα|αγ at γ4 implies α2 · · · , which is α3. By α = β and γ = δ,

the two possible AADs of α3 in Fig. 9 are |γαα|γαα|γαα| or |γαα|γαα|ααγ |.
Both imply αγ · · · , a contradiction. Therefore, γ4 is not a vertex and there is
no tiling. �

Lemma 3.16. In a tiling of the sphere by congruent almost equilateral quadri-
laterals with at least three distinct angle values, up to symmetry, either αγδ is
a vertex, or one of the pairs below are vertices.

• α3 and one of αγ2, αδ2, βγ2, βδ2;
• α2β and one of αγ2, αδ2, βδ2;
• αδ2 and βγ2;
• α3 and one of γ4, δ4, γ3δ, γδ3, γ2δ2;
• αβ2 and one of γ4, δ4, γ3δ, γδ3, γ2δ2;
• αγ2 and one of α4, β4, δ4, α3β, αβ3, α2β2, α2δ2, β2δ2, αβδ2;
• αδ2 and one of α4, β4, γ4, α3β, αβ3, α2β2, α2γ2, β2γ2, αβγ2.

In each of the last four items, the tiling has a unique degree 3 vertex.

If a tiling has a unique degree 3 vertex, then Lemma 3.6 (respectively
Lemma 3.5) implies f ≥ 16 (respectively f ≥ 24).

Proof. By (4), v3 > 0 means that there exists some degree 3 vertex. By Parity
Lemma, the degree 3 b-vertices are αγδ, βγδ, αγ2, αδ2, βγ2, βδ2, and the degree
3 b̂-vertices are α3, β3, α2β, αβ2. The degree 4 vertices are

α4, β4, γ4, δ4, α3β, α2β2, αβ3, α2γ2, α2δ2, α2γδ,
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αβγ2, αβδ2, β2γ2, β2γδ, β2δ2, γ3δ, γ2δ2, γδ3.

If αγδ, βγδ are both vertices, Then, α = β and Lemma 3.8 implies γ = δ,
contradicting at least three distinct angle values. Hence, only one of them can
be a vertex. The pairs leading to these two equalities are dismissed.

Suppose αγδ, βγδ are not vertices.
If there are two degree 3 vertices, we then dismiss the pairs contradicting

Lemma 3.8. For example, αγ2, βδ2 are dismissed for this reason. Meanwhile,
α2β, βγ2 imply α = γ whereby Lemma 3.13 implies δ = π. Then, δ2 · · · is not
a vertex. By Balance Lemma, βγ2 cannot be a vertex. Therefore, α2β, βγ2 are
also dismissed. Up to symmetry, we obtain all degree 3 pairs.

Suppose there is only one degree 3 vertex. Up to symmetry, it suffices to
discuss α3, αβ2, αγ2, αδ2. If one of α3, αβ2 is the only degree 3 vertex, then
Lemma 3.4 and Parity Lemma imply that one of γ4, δ4, γ3δ, γδ3, γ2δ2 is a
vertex. If αγ2 is the only degree 3 vertex, then Lemma 3.6 assures a degree 4
vertex without γ. Therefore, one of α4, β4, δ4, α3β, αβ3, α2β2, α2δ2, β2δ2, αβδ2

is a vertex. Same for αδ2, one of α4, β4, γ4, α3β, αβ3, α2β2, α2γ2, β2γ2, αβγ2

is a vertex. These are the remaining pairs. �
We remark that, in the proof above, counting is used in Lemmas 3.4, 3.6.

Because the four angles are distinguished by three distinct angle values and
the b-edge, counting angles is made possible.

It will be explained in Sect. 3.4 that knowing two vertices is sufficient
to determine all angle combinations at vertices. By the above lemma, we only
need extra discussion for the case where αγδ is a vertex.

Lemma 3.17. If a tiling of the sphere by congruent almost equilateral quadri-
laterals has αγδ, then α2 · · · does not have γ, δ.

The conclusion is that α2 · · · is a b̂-vertex. Therefore, α2 · · · = αm, αm≥2βn.

Proof. Assume the contrary. By αγδ, Parity Lemma implies that one of α2γ2 · · · ,
α2δ2 · · · is a vertex. Up to symmetry of γ ↔ δ, we may assume α2γ2 · · · is
a vertex. Then, α + γ ≤ π and αγδ imply δ ≥ π. This implies that δ2 · · · is
not a vertex. Then, Balance Lemma implies that γ2 · · · is also not a vertex,
contradicting α2γ2 · · · . �
Lemma 3.18. If a tiling with f ≥ 8 has at least three distinct angle values and
αγδ is a vertex, then α > β and γ > δ. In particular, δ < π. Moreover, if
α2 · · · is not a vertex, then the b̂-vertices are βn, αβn and the vertices having
strictly more δ than γ are αδ2, αβnδ2.

Proof. Assume δ > γ. Lemma 3.8 implies α < β. Then, Lemma 3.9 and αγδ
imply β + π > γ + δ = 2π − α, which gives α + β > π. The angle sum system
implies β = 4

f π. Therefore, we have 8
f π = 2β > α+β > π, and hence, f < 8, a

contradiction. Lemma 3.8 implies α > β and δ < γ. Then. Lemma 3.7 implies
δ < π.

By αγδ, we get γ| · · · |δ = γ|δ , γ|α|δ , γ|β · · · β|δ .
If α2 · · · is not a vertex, then βα|αβ · · · , βα|αδ · · · , δα|αδ · · · are not

vertices. By no βα|αβ · · · , we get βαβ · · · β = βαβα · · · βα and δαβ · · · β =
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Figure 14. Tiling E = P6

δαβα · · · βα. Then, δ|β · · · β|δ = δα|βα · · · βα|αδ implies α2 · · · , a contra-
diction. Therefore, δ|β · · · β|δ cannot happen. Hence, δ| · · · |δ = δ|α|δ ,
δ|α|β · · · β|δ , δ|β · · · β|α|β · · · β|δ .

A vertex with strictly more δ than γ contains δ| · · · |δ . Since δ| · · · |δ
has α, by αγδ, we know that the vertex has no γ. Moreover, by no α2 · · · ,
the vertex has only one δ| · · · |δ . Meanwhile, αγδ implies that δ|α|δ is not a
vertex. Therefore, the vertex is δ|α|β · · · β|δ or δ|β · · · β|α|β · · · β|δ , which
is αβnδ2. �

Proposition 3.19. If f = 6, then the tiling is uniquely given by the earth map
tiling E (or the cube P6) in Fig. 14 with the set of admissible vertices AVC ≡
{αγδ, β3}.

The proof is an easy exercise which can also be checked by computer.

3.4. Strategy

With groundwork in place, we assume at least three distinct angles and f ≥ 8.
Notably, by Lemma 3.8 and Proposition 3.15, we assume

α �= β, γ �= δ.

Among α, β, γ, δ, there are two possibilities: all angles are rational or
some angle is irrational.

If all angles in a convex almost equilateral quadrilateral are rational
(Sect. 4), then Coolsaet [11, Theorem 3.2] used [15, Theorem 4] to obtain
all the angle relations from (5). After extending (5) to non-convex almost
equilateral quadrilaterals in Lemma 3.14, we combine Coolsaet’s method with
Lemma 3.16 to determine all admissible vertices.

If some angle is irrational (Sect. 5), then we apply Lemma 3.16 and the
irrationality condition to determine all admissible vertices.

In both situations, the discussion is more complicated if αγδ is a vertex.
We apply Lemmas 3.17, 3.18 to determine all admissible vertices.

4. Rational Angles

In this section, we assume that α, β, γ, δ ∈ (0, 2π) are rational. Myerson’s
theorem [15] has provided rational solutions to (5).
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Table 5. Rational solutions to (6) in [0, 1
2π]

x1 x2 x3 x4

1. 1
21π 8

21π 1
14π 3

14π

2. 1
14π 5

14π 2
21π 5

21π

3. 4
21π 10

21π 3
14π 5

14π

4. 1
20π 9

20π 1
15π 4

15π

5. 2
15π 7

15π 3
20π 7

20π

6. 1
30π 3

10π 1
15π 2

15π

7. 1
15π 7

15π 1
10π 7

30π

8. 1
10π 13

30π 2
15π 4

15π

x1 x2 x3 x4

9. 4
15π 7

15π 3
10π 11

30π

10. 1
30π 11

30π 1
10π 1

10π

11. 7
30π 13

30π 3
10π 3

10π

12. 1
15π 4

15π 1
10π 1

6π

13. 2
15π 7

15π 1
6π 3

10π

14. 1
12π 5

12π 1
10π 3

10π

15. 1
10π 3

10π 1
6π 1

6π

Theorem 2. [15, Theorem 4] The rational angle solutions (x1, x2, x3, x4) to

sin x1 sinx2 = sin x3 sinx4 (6)

with xi ∈ [0, 1
2π] for 1 ≤ i ≤ 4, are given by

I. one of the following and their permutations:
• x1 = x3 = 0 and any rational angles x2, x4;
• x1 = x3 and x2 = x4;

II. ( 16π, θ, 1
2θ, 1

2π − 1
2θ) for any rational angle θ ∈ [0, 1

2π], and its permuta-
tions;

III. the 15 rational angle solutions listed in Table 5, and their permutations.

The permutations in the theorem are those which keep (6) invariant.
They are

(x1, x2, x3, x4), (x1, x2, x4, x3), (x2, x1, x3, x4), (x2, x1, x4, x3), (7)

(x3, x4, x1, x2), (x4, x3, x1, x2), (x3, x4, x2, x1), (x4, x3, x2, x1).

We remark that Type I solutions are not included in Myerson’s origi-
nal theorem as they are solutions to {sin x1 = 0, sin x3 = 0} or {sin x1 =
sin x3, sinx2 = sin x4}, which may have been deemed “trivial”.

We also note that Type II solutions can be summarised by the identity

sin 1
6π sin θ = sin 1

2θ sin(12π − 1
2θ).

For Type III solutions in Table 5, we remark a misprint in the previous
literatures where x2 of thirteenth row should be 7

15 instead of 8
15 . With the

correct value, the conclusion in [11, Theorem 3.2] is valid.
By (5), we know

x1 = 1
2α, x2 = δ − 1

2β, x3 = 1
2β, x4 = γ − 1

2α

satisfy (6). If all xi ∈ [0, 1
2π], then we can apply Theorem 2 to determine the

angles. We know 1
2α, 1

2β ∈ (0, π) and the ranges of δ − 1
2β, γ − 1

2α can be
wider. To apply Theorem 2, we therefore need to “recalibrate”: for example,
if xi ∈ ( 12π, π), then it should be changed to π − xi ∈ (0, 1

2π). By similar
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modifications of switching signs and/or adding an integer multiple of π and
using sin(π −x) = sinx and sin(−x) = − sin x, we may reduce all angle values
to [0, 1

2π] and (6) still holds.
For Type I solutions, we may bypass the calibration with the angle re-

lations given by the subsequent Lemma 4.1. Modifying the discussion of [11,
Theorem 3.2] and Type I solutions to (5), we have one of the following:

sin
(
γ − 1

2α
)

= 0, sin
(
δ − 1

2β
)

= 0; (8)

sin
(
γ − 1

2α
)

= sin 1
2α, sin

(
δ − 1

2β
)

= sin 1
2β; (9)

sin
(
γ − 1

2α
)

= sin
(
δ − 1

2β
)
, sin 1

2β = sin 1
2α. (10)

They correspond to the following relations between the angles:
{

2γ = α + 2N1π,

2δ = β + 2N2π;
(11)

{
2γ = (1 + (−1)N1)α + 2N1π,

2δ = (1 + (−1)N2)β + 2N2π;
(12)

{
2γ = (−1)N1(2δ − β) + α + 2N1π,

α = (−1)N2β + 2N2π.
(13)

After further simplification, the result is summarised below.

Lemma 4.1. In an almost equilateral quadrilateral tile with at least three dis-
tinct angles, if the angles satisfy one of (8), (9), (10), then we have one of the
following:

1. if α, β, γ, δ < π, then α = 2γ and β = 2δ hold;
2. if either one of α, β ≥ π and all other angles < π, then one of the

following is true:
i. α = 2γ and β = 2δ,
ii. α + β = 2π and α + 2δ = β + 2γ;

3. if γ ≥ π and all other angles < π, then one of the following is true:
i. γ = π and β = δ,
ii. α + 2π = 2γ and β = 2δ;

4. if δ ≥ π and all other angles < π, then one of the following is true:
i. δ = π and α = γ,
ii. α = 2γ and β + 2π = 2δ.

For Type II, III solutions, by Lemma 3.7, we only need to consider the
calibrations in Table 6. In particular, “case α ≥ π” in the table means α ≥ π
and the other three angles < π, etc.

In general, there are more calibrations for angles with wider ranges. How-
ever, those ranges are not needed for tiling classification.

We generalise the scheme in [11, Theorem 3.2] in the following steps.
Step 1. Determine angle values via

• Type I solutions to angle relations in Lemma 4.1,
• Type II solutions and calibrations in Table 6,
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Table 6. Angle value calibrations

Case x1 x2 x3 x4

α, β, γ, δ < π

γ − 1
2α 1

2β 1
2α δ − 1

2β

1
2α − γ 1

2β 1
2α 1

2β − δ

γ − 1
2α 1

2β 1
2α π + 1

2β − δ

π + 1
2α − γ 1

2β 1
2α δ − 1

2β

π + 1
2α − γ 1

2β 1
2α π + 1

2β − δ

α ≥ π

γ − 1
2α 1

2β π − 1
2α δ − 1

2β

γ − 1
2α 1

2β π − 1
2α π + 1

2β − δ

π − 1
2α + γ 1

2β π − 1
2α 1

2β − δ

1
2α − γ 1

2β π − 1
2α 1

2β − δ

β ≥ π

γ − 1
2α π − 1

2β 1
2α δ − 1

2β

π + 1
2α − γ π − 1

2β 1
2α δ − 1

2β

1
2α − γ π − 1

2β 1
2α π − 1

2β + δ

1
2α − γ π − 1

2β 1
2α 1

2β − δ

γ ≥ π

π + 1
2α − γ 1

2β 1
2α δ − 1

2β

π + 1
2α − γ 1

2β 1
2α π + 1

2β − δ

γ − 1
2α − π 1

2β 1
2α 1

2β − δ

2π+ 1
2α−γ 1

2β 1
2α 1

2β − δ

δ ≥ π

γ − 1
2α 1

2β 1
2α π + 1

2β − δ

π + 1
2α − γ 1

2β 1
2α π + 1

2β − δ

1
2α − γ 1

2β 1
2α δ − 1

2β − π

1
2α − γ 1

2β 1
2α 2π + 1

2β − δ

• Type III solutions and calibrations in Table 6.
Step 2. Dismiss angle values that fail any of the following:

• 0 < α, β, γ, δ < 2π;
• at least three distinct angle values, and at most one of them ≥ π;
• Lemmas 3.8, 3.9, 3.10, 3.12.

Step 3. Select pairs in Lemma 3.16 that produce consistent even integer f ≥
8. Moreover, if one of αβ2, αγ2, αδ2 is the unique degree 3 vertex,
then we further require f ≥ 16; and if α3 is the unique degree 3
vertex, then we further require f ≥ 24.

Step 4. We call the selected angle values valid and use them to determine the
corresponding sets of admissible vertices (AVCs).
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Table 7. Type II and convex: vertex pairs and angle values

Pairs f α β γ δ

{αβ2, γδ3} ≥ 16 ( 1
3

+ 4
f
)π ( 5

6
− 2

f
)π ( 1

4
+ 3

f
)π ( 7

12
− 1

f
)π

{αδ2, αβ3} 36 1
3
π 5

9
π 7

18
π 5

6
π

For αγδ, we need to modify the argument in Step 3 and 4 using Lem-
mas 3.17, 3.18, 4.3.

Finally, we construct the tilings from the AVCs.

Proposition 4.2. If f ≥ 8, and all angles are rational, and αγδ, βγδ are not
vertices, then the tilings are isolated earth map tilings S3, FS3 and special
tilings S5, S6.

Proof. By Lemma 3.7, the discussion is divided according to: all angles are
< π, or exactly one angle is ≥ π. We follow the four steps above. We give an
example and leave out the details of the others. The process can be swiftly
executed in computer.
Case (α, β, γ, δ < π).

Type I: By the first item in Lemma 4.1, we get α = 2γ and β = 2δ.
Combined with the vertex angle sums of the pairs in Lemma 3.16, we find no
valid angle values. The conclusion is consistent with [11, Theorem 3.2].

Type II: There are five calibrations in the first part of Table 6. Matching
the first calibration (γ− 1

2α, 1
2β, 1

2α, δ− 1
2β) with a solution (16π, θ, 1

2π− 1
2θ, 1

2θ),
we obtain

1
6π = γ − 1

2α, θ = 1
2β, 1

2π − 1
2θ = 1

2α, 1
2θ = δ − 1

2β.

Combining the above with the quadrilateral angle sum, we solve for the angles
and get

α = (56 − 2
f )π, β = (13 + 4

f )π, γ = ( 7
12 − 1

f )π, δ = (14 + 3
f )π.

Next, we substitute the above into the angle sums of the vertices in the
pairs in Lemma 3.16 and calculate the corresponding f . The vertices yield
even f ≥ 8 are α3(f = 12), αβ2(f = 12), α2β(any f), β4(f = 24), αβ3(f =
60), γ4(f = 12), δ4(f = 12), γ3δ(any f), γδ3(f = 12), γ2δ2(f = 12), β2γ2(f =
36), αβδ2(f = 24). The only pairs in Lemma 3.16 with consistent f are those
with unique degree 3 vertex α3 or αβ2. However, both imply f = 12, contra-
dicting the additional requirement of f ≥ 24 or f ≥ 16 in Step 3. Hence, these
angle values are dismissed.

We repeat the above process for the calibration (γ − 1
2α, 1

2β, 1
2α, δ − 1

2β)
and all permutations (7) of the Type II solution (16π, θ, 1

2π − 1
2θ, 1

2θ).
Then, we repeat all the above again for the other four calibrations in the

first part of Table 6.
At the end, we find two solutions listed in Table 7.
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Table 8. Type I and α ≥ π: vertex pairs and angle values

Pairs f α β γ δ

{αβ2, γ4}, {αγ2, β4}, {αγ2, αβδ2} 16 π 1
2
π 1

2
π 1

4
π

In {αβ2, γδ3}, by f ≥ 16 we get the lower bounds, α > 1
3π, β ≥ 17

24π, γ >
1
4π, δ ≥ 25

48π. This implies m < 6 and n < 3 and k < 8 and l < 4 in (2). We
substitute finitely many non-negative integers m,n, k, l within the bounds into
(2) and calculate the corresponding f . We select only those with f ≥ 16. The
admissible vertices are listed below with their corresponding f values,

f = 20, {αβ2, γδ3, α2γδ};

f = 24, {αβ2, α4, γδ3, αβγ2, αγ4};

f = 36, {αβ2, α2δ2, γδ3, α3γ2, αγ3δ, γ6};

f = 60, {αβ2, γδ3, α3β, α5, βγ4, α2γ4};

f = 84, {αβ2, γδ3, α3γδ, γ5δ};

f = 132, {αβ2, γδ3, α4γ2, αγ6}.

In {αδ2, αβ3}, similar calculation gives

f = 36, {αδ2, αβ3, γ3δ, α2βγ2, α6}.

Type III: We repeat the same process for Type II. The only difference
is that the Type II solution (16π, θ, 1

2π − 1
2θ, 1

2θ) is replaced by the Type III
solutions (and their permutations) in Table 5. We find no solution.
Case (β, γ, δ < π and α ≥ π). By α ≥ π, we know that α2 · · · is not a vertex.
It suffices to study those in the list of Lemma 3.16 without α2 · · · .

Type I: By the second item in Lemma 4.1, we have α = 2γ and β = 2δ,
or α + β = 2π and α + 2δ = β + 2γ. By the same argument in the previous
case using the second part of Table 6, we find all the solutions in Table 8.

Since the three pairs in Table 8 share the same angle values, we use these
values to derive all the vertices. Therefore, we get

f = 16, AVC = {αβ2, αγ2, αβδ2, β4, β2γ2, γ4, αδ4, β3δ2, βγ2δ2, β2δ4, γ2δ4, βδ6, δ8}.

Type II, III: By the same argument using the second part of Table 6, we
find no solutions.
Case (α, γ, δ < π and β ≥ π). By the same argument, we find solutions only
for Type I in Table 9.

In {α3, βδ2}, by (4) and f = 8, we get v≥6 = 0. Therefore, the other
vertices are δ4, α2γ2, αγ4. Therefore

f = 8, AVC = {α3, βδ2, δ4, α2γ2, αγ4}.

In {α2β, βδ2}, by the exchange (α, γ) ↔ (β, δ), we get the same AVC
derived from Table 8.
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Table 9. Type I and β ≥ π: vertex pairs and angle values

Pairs f α β γ δ

{α3, βδ2}, {α3, δ4} 8 2
3
π π 1

3
π 1

2
π

{α2β, βδ2} 16 1
2
π π 1

4
π 1

2
π

Table 10. AVCs of rational angles without αγδ

f AVC

8 {α3, βδ2, δ4, α2γ2, αγ4}
16 {αβ2, αγ2, αβδ2, β4, β2γ2, γ4, αδ4, β3δ2, βγ2δ2, β2δ4, γ2δ4, βδ6, δ8}
20 {αβ2, γδ3, α2γδ}
24 {αβ2, α4, γδ3, αβγ2, αγ4}
36 {αβ2, α2δ2, γδ3, α3γ2, αγ3δ, γ6}
36 {αδ2, αβ3, γ3δ, α2βγ2, α6}
60 {αβ2, γδ3, α3β, α5, βγ4, α2γ4}
84 {αβ2, γδ3, α3γδ, γ5δ}
132 {αβ2, γδ3, α4γ2, αγ6}

For the case α, β, δ < π and γ ≥ π and the case α, β, γ < π and δ ≥ π,
we apply the same arguments and find no solutions.

All the AVCs are summarised in Table 10.
AVCs without tiling

In f = 8, AVC = {α3, βδ2, δ4, α2γ2, αγ4}, we have β · · · = βδ2. This
contradicts Counting Lemma on β, δ.

In f = 20, AVC = {αβ2, γδ3, α2γδ}, applying the Counting Lemma to
γ, δ, we know that γδ3 is not a vertex. Then, applying Lemma 3.4 to γ, δ in
AVC = {αβ2, α2γδ}, we get a contradiction.

In f = 24, AVC = {αβ2, α4, γδ3, αβγ2, αγ4}, we have β2 · · · = αβ2

and γδ · · · = γδ3, whereas α2γ · · · , αδ · · · , βδ · · · are not vertices. By no
αδ · · · , βδ · · · , the vertex αβγ2 has unique AAD γβ |βαδ|γβα|βγ . The AAD
of γβ |βα in the first picture of Fig. 15 determines tiles T1, T2. By β2 · · · = αβ2

and no αδ · · · , we get T3. By γδ · · · = γδ3, we determine T4 and then T5.
This implies γβ |βα · · · = α2γ · · · , a contradiction. Then, βγ · · · = αβγ2 is not
a vertex. Then, the AAD αβ |βα in the second picture determines T1, T2. As
β2 · · · = αβ2, by mirror symmetry, we also know T3, which implies β3γ2 · · · ,
contradicting no βγ · · · . Therefore, there is no αβ |βα. Then, no αβ |δα, αβ |βα
implies no ααα. Therefore, α4 is not a vertex. The AAD γβ |βγ in the third
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Figure 15. The AADs of αβ |βα and γβ |βγ

picture implies αδ · · · , a contradiction. Therefore, αγ4 is not a vertex. The
AVC is reduced to {αβ2, γδ3}. Applying Counting Lemma to α, β, we get a
contradiction.

In f = 60, AVC = {αβ2, γδ3, α3β, α5, βγ4, α2γ4}, we know that αδ · · ·
is not a vertex. The AAD of γβ |βγ · · · gives the second picture of Fig. 15,
contradicting no αδ · · · . Then, the AAD of α2γ4 is γβ |α|βγ γβ |α|βγ and
βγ4 is not a vertex. By no βγ · · · , βδ · · · , there is no ααα, γαγ, and hence,
α3β, α5, α2γ4 are not vertices. Then, α2 · · · is not a vertex. Therefore, γδ3 =
δα|αδ · · · is not a vertex, a contradiction.

Among f = 36, AVC = {αβ2, α2δ2, γδ3, α3γ2, αγ3δ, γ6}, and f = 84,
AVC = {αβ2, γδ3, α3γδ, γ5δ}, and f = 132,AVC = {αβ2, γδ3, α4γ2, αγ6}, we
have β2 · · · = αβ2 and no βγ · · · , βδ · · · . By β2 · · · = αβ2, the AAD αβ |βα in
the third picture of Fig. 15 implies βγ · · · , a contradiction. By no βδ · · · , we also
do not have αβ |δα. Then, by no αβ |δα and αβ |βα, there is no ααα. Therefore,
α3γ2, α3γδ, α4γ2 cannot be vertices. For f = 84, 132, this means that α2 · · · is
not a vertex. This implies γδ3 = δα|αδ · · · is not a vertex, a contradiction. For
f = 36, we actually have a tiling which remains to be discussed below.
AVCs with tilings

In the AVC for f = 16, there is no α2 · · · . Then, there is no AAD δ|δ and
δ|β · · · β|δ . This implies that αδ4, β3δ2, β2δ4, γ2δ4, βδ6, δ8 are not vertices.

We get

f = 16, AVC = {αβ2, αγ2, αβδ2, β4, β2γ2, γ4, βγ2δ2}.

By the proof of [8, Proposition 39], αβ2, βγ2δ2, β2γ2 are not vertices. The AVC
is further reduced to

f = 16, AVC = {αγ2, αβδ2, β4, γ4}.

By no α2 · · · , the vertex β4 has unique AAD |γβα|γβα|γβα|γβα|. Then, the
AAD γβ |βγ implies β2 · · · = β4, which contradicts its unique AAD. Therefore,
γ4 is not a vertex. The AVC is reduced to

f = 16, AVC = {αγ2, αβδ2, β4}. (14)

By AVC (14), we construct S3, FS3 in Fig. 16. As per the discussion in [8],
the tiles are actually triangles and hence the pictures in Fig. 6.
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Figure 16. Tilings S3, FS3
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Figure 17. Tiling S5

In f = 36, AVC = {αβ2, α2δ2, γδ3, α3γ2, αγ3δ, γ6}, the earlier discussion
already shows that α3γ2 is not a vertex. The AVC is reduced to

f = 36, {αβ2, α2δ2, γδ3, αγ3δ, γ6}. (15)

By AVC (15), we construct S5 in Fig. 17.
In f = 36, AVC = {αδ2, αβ3, γ3δ, α2βγ2, α6}, by no βδ · · · and δ|δ · · · ,

we do not have αβ |δα, αδ|δα. Therefore, there is no ααα and α6 is not a vertex.
The AVC is reduced to

f = 36, {αδ2, αβ3, γ3δ, α2βγ2}. (16)

By AVC (16), we construct S6 in Fig. 18.
This completes the proof. �

We provide the pseudocode for Propositions 4.2, 4.4. In preprocessing,
we define the functions, f Condition and Angle Condition, for executing Step
3 in our scheme. For example, the pseudocode as written, is for the convex
case. The other cases can be defined similarly.

The pseudocode for computing angles and f via Type I solutions is given
in Algorithm 2 and the pseudocode for computing angles and f via Type II,
III solutions is given in Algorithm 3.
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Figure 18. Tiling S6

Preprocessing

1: Declare Function: f Condition(f):=
2: if f �= ∅ and consistent and even and ≥ 8 then

return true
3: else return false
4: Declare Function: Angle Condition([α, β, γ, δ]):=
5: if [α, β, γ, δ] �= ∅ and 0 < α, β, γ, δ < π and valid then

return true
6: else return false

In Algorithm 2, we define Vertex Eqns by the angle relation(s) in
Lemma 4.1. For example, in the convex case, we define Case Eqns by α = 2γ
and β = 2δ. We define Vertex Eqns by the vertex angle sums given by the
vertices in Lemma 3.16. Then, we execute Step 2 and Step 3.

In Algorithm 3, we define Vertex Eqns in the same way by Lemma 3.16.
We define Case Cal by the calibrations in Table 6. We define Myerson Sol
by Type II or III solutions. The quadrilateral angle sum defines Angle Eqns.
After solving α, β, γ, δ (and θ) in terms of f in the first procedure (Step 2), we
dismiss angle values which fail the criteria in Step 2. Then, we carry out Step
3 in the second procedure.

The latest wxMaxima files (version 13.04.0) of Algorithm 2 and
Algorithm 3 can be found at first author’s GitHub page https://github.
com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-
Quadrilaterals.

We now turn our attention to tilings with αγδ as a vertex. To simplify
the discussion, we first establish the following fact.

https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
https://github.com/hoien14/Rational-Angles-and-Tilings-of-the-Sphere-by-Congruent-Quadrilaterals
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Algorithm 1: Type I rational angle values

1: procedure Solve and select angle values

2: Declare Array: Vertex Eqns, Case Eqns, Angle Eqns;
3: Declare Array: Angle Values, Valid Angle Values;
4: Declare Rational Number: f Soln;
5: for i : 1 through length(Vertex Eqns) do
6: Angle Eqns: concatenate(Vertex Eqns[i], Case Eqns),
7: f Soln: solve(Angle Eqns, f),
8: Angle Soln: solve(Angle Eqns, [α, β, γ, δ]),
9: if f Condition(f Soln) and Angle Condition(Angle Values) then

10: append(Valid Angle Values, Angle Values)

Algorithm 2: Type II, III rational angle values

1: procedure Solve Angle Values

2: Declare Array: Myerson Sol, Case Cal, Angle Eqns;
3: Declare Array: Angle Soln, Angle Values;
4: Declare Rational Number: f Soln;
5: for m : 1 through length(Myerson Sol) do
6: for c : 1 through length(Case Cal) do
7: for i : 1 while i ≤ 4 do
8: append(Angle Eqns, Myerson Sol[m][i] =Case Cal[c][i])
9: f Soln: solve(Angle Eqns, f),

10: Angle Soln: solve(Angle Eqns, [α, β, γ, δ]),
11: if f Condition(f Soln) and Angle Condition(Angle Soln) then
12: append(Angle Values, Angle Soln)
13: procedure Select valid angle values

14: Declare Array: Vertex Eqns;
15: Declare Array: Sub Vertices, Vertex Angles, Valid Angle Values;
16: Declare Rational Number: f Value;
17: for a : 1 through length(Angle Values) do
18: for v : 1 through length(Vertex Eqns) do
19: Sub Vertices: Substitute(Angle Values[a], Vertex Eqns[v]),
20: f Value: solve(Sub Vertices, f),
21: if f Condition(f Value) then
22: Vertex Angles: solve(Sub Vertices, [α, β, γ, δ, f Value]),
23: if Angle Condition(Vertex Angles) then
24: append(Valid Angle Values, Vertex Angles)

Lemma 4.3. If γ = π and f ≥ 8, then the set of admissible vertices is

AVC = {αγδ, α3, α2β2, αβn, βn, βnγδ}. (17)

Proof. Suppose γ = π. Lemma 3.13 implies that the quadrilateral is in fact an
isosceles triangle �ABD in Fig. 12 with edges AB = AD = a, and BD = a+b,
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and β = δ. By Lemma 3.7, α, β, δ < π. Then, �ABD is a standard isosceles
triangle. Then, by BD > AB = AD, γ = π > α > β = δ.

By γ = π and the quadrilateral angle sum, α+2β = (1+ 4
f )π. By α > β,

we get α > (13 + 4
3f )π > β = δ. Since γ = π, we know that γ2 · · · is not

a vertex. Balance Lemma implies that δ2 · · · is also not a vertex and every
b-vertex has exactly one γ and one δ.

Assume αγδ is not a vertex. Then, the only b-vertex is γ · · · = δ · · · =
βnγδ. Counting Lemma on β, γ implies n = 1 in βnγδ. Then, γ = π and
βγδ imply π = β + δ < ( 23 + 8

3f )π which implies f < 8, contradicting f ≥ 8.
Therefore, αγδ is a vertex. By γ = π, α > δ and αγδ, we get α > 1

2π. Therefore,
α > 1

2π and γ = π and β = δ = 4
f π determine all other vertices. Therefore, we

obtain AVC (17). �

Proposition 4.4. If f ≥ 8, and all angles are rational, and one of αγδ, βγδ is a
vertex, then the tilings are earth map tiling E, its flip modifications F1E,F2E,
and rearrangement RE.

Proof. Up to symmetry, we may assume αγδ is a vertex. By α �= β, this
implies that βγδ is not a vertex. By f ≥ 8 and αγδ and the quadrilateral
angle sum, we get β = 4

f π < π. By f ≥ 8, Lemma 3.18 implies δ < π. Then,
similar to the previous proposition, the proof is divided into three cases: every
angle < π, or exactly one of α, γ ≥ π. We follow the four steps outlined before
Proposition 4.2, with adjusted Step 3 and 4. The process again can be executed
in computer.
Case (α, β, γ, δ < π).

Type I: By relations α = 2γ and β = 2δ from Lemma 4.1 and αγδ, we
get

f ≥ 8, α = (43 − 4
3f )π, β = 4

f π, γ = (23 − 2
3f )π, δ = 2

f π.

However, f ≥ 8 implies α > π.
Type II: By matching the calibrations in first part of Table 6 and the

permutations (7) of Type II solution (16π, θ, 1
2π − 1

2θ, 1
2θ), and then by αγδ,

we get

f ≥ 8, α = 1
3π, β = 4

f π, γ = (23 + 2
f )π, δ = (1 − 2

f )π;

f = 8, α = 1
3π, β = 1

2π, γ = 11
12π, δ = 3

4π;

f = 12, α = 4
9π, β = 1

3π, γ = 2
3π, δ = 8

9π;

f = 18, α = 4
9π, β = 2

9π, γ = 11
18π, δ = 17

18π;

f = 24, α = 1
3π, β = 1

6π, γ = 3
4π, δ = 11

12π.

In the first two sets, we have α − β = δ − γ. In the last three sets, we have
α > β and δ > γ. All of them contradict Lemma 3.8.

Type III: We repeat the same process for with the Type II solution
( 16π, θ, 1

2π − 1
2θ, 1

2θ) replaced by the Type III solutions (and their permuta-
tions) in Table 5. We get

f = 12, α = 14
15π, β = 1

3π, γ = 23
30π, δ = 3

10π.
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Then, we obtain the AVC below

f = 12, AVC = {αγδ, βγδ3, β6}.

Applying Counting Lemma to γ, δ, we know that βγδ3 is not a vertex and

f = 12, AVC = {αγδ, β6}.

Case (β, γ, δ < π and α ≥ π). By α ≥ π, we know that α2 · · · is not a vertex. By
Lemma 3.18, the only vertices with strictly more δ than γ are αδ2, αβnδ2. We
incorporate this fact in conjunction with Balance Lemma to filter the vertices.
This will be explained in Type II and III solutions.

Type I: By Lemma 4.1 and αγδ, we get

f ≥ 8, α = (43 − 4
3f )π, β = 4

f π, γ = (23 − 2
3f )π, δ = 2

f π.

Then, we obtain the AVC as follows:

f ≥ 8, AVC = {αγδ, γ3δ, βn, αβn, αβnδ2, βnγ2, βnγδ, βnγ2δ2}.

Type II: By the same argument, we get

f = 12, α = 10
9 π, β = 1

3π, γ = 2
3π, δ = 2

9π;

f = 18, α = 10
9 π, β = 2

9π, γ = 13
18π, δ = 1

6π.

By angle values, we know that αδ2, αβnδ2 are not vertices. By Lemma 3.18
and the Balance Lemma, at every vertex, the number of γ equals the number
of δ. Such vertices can only be β6 for the first set and αβ4, βγ2δ2, β5γδ, β9 for
the second. Hence, we have

f = 12, AVC = {αγδ, β6};

f = 18, AVC = {αγδ, αβ4, βγ2δ2, β5γδ, β9}.

Type III: By the same argument, we get

f = 12, α = 7
5π, β = 1

3π, γ = 8
15π, δ = 1

15π;

f = 20, α = 16
15π, β = 1

5π, γ = 23
30π, δ = 1

6π;

f = 30, α = 7
5π, β = 2

15π, γ = 17
30π, δ = 1

30π.

By the same reason in Type II, at every vertex, the number of γ equals the
number of δ. Hence, we get

f = 12, AVC = {αγδ, β6}.

For the second set of angle values, we have 3γ + δ > 2π and the remainder of
γ2 · · · has value 7

15π. No angle combinations add up to it. Then, γ2 · · · is not a
vertex. By Balance Lemma and Counting Lemma, every b-vertex has exactly
one γ and one δ. Hence, we get

f = 20, AVC = {αγδ, β10}.

For the third set, αβ4δ2 is the only vertex with strictly more δ than γ. In
the other b-vertices, the number of γ is at least that of δ. Therefore, they are
β2γ3δ, β6γ2δ2. The only remaining vertex is β15. We obtain the third AVC

f = 30, AVC = {αγδ, β2γ3δ, β6γ2δ2, αβ4δ2, β15}.
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Case (α, β, δ < π and γ ≥ π). By γ ≥ π, we know that γ2 · · · is not a vertex.
Then, Balance Lemma implies no δ2 · · · and every b-vertex has exactly one γ
and one δ.

Type I: By the same argument, we get

f ≥ 8, α = (1 − 4
f )π, β = 4

f π, γ = π, δ = 4
f π;

f ≥ 8, α = (23 − 4
3f )π, β = 4

f π, γ = (43 − 2
3f )π, δ = 2

f π.

In the first set of angle values, by γ = π and Lemma 4.3, we get AVC (17).
In the second set of angle values, by αγδ and no γ2 · · · , δ2 · · · , the other

b-vertex can only be βnγδ. Meanwhile, the b̂-vertices are αm, βn, αmβn. By
f ≥ 8 and α = (23 − 4

3f )π, we have α ≥ 1
2π. Then, m ≤ 3 in αm, αmβn. In

particular, αm = α3. Therefore, we get

f ≥ 8, AVC = {αγδ, α3, βn, αmβn, βnγδ}. (18)

Type II: By the same argument, we get

f = 12, α = 2
3π, β = 1

3π, γ = π, δ = 1
3π.

By Lemma 4.3, γ = π and f = 12, we get

f = 12, AVC = {αγδ, α3, α2β2, αβ4, β2γδ, β6}.

That is all the vertices and it is a special case of AVC (17).
Type III: By the same argument, we get

f = 12, α = 8
15π, β = 1

3π, γ = 41
30π, δ = 1

10π;

f = 12, α = 3
5π, β = 1

3π, γ = 17
15π, δ = 4

15π;

f = 20, α = 8
15π, β = 1

5π, γ = 43
30π, δ = 1

30π.

By no γ2 · · · , δ2 · · · and Parity Lemma, the first two sets of angle values give

f = 12, AVC = {αγδ, β6}.

Similarly, the third set of angle values give

f = 20, AVC = {αγδ, α3β2, β10}.

All of the above AVCs contain at least one subset which admits a tiling.
It remains to explain the tilings.
AVCs with tilings

In f = 12, AVC = {αγδ, βγδ3, β6}, by applying Counting Lemma to γ, δ,
we know that βγδ3 is not a vertex. Then, we get

f = 12, AVC = {αγδ, β6}.

It is easy to see that the above AVC is a special case of the one below

f ≥ 8, AVC = {αγδ, β
f
2 }. (19)

In f = 20, AVC = {αγδ, α3β2, β10}, by applying Counting Lemma to
α, γ, we know that α3β2 is not a vertex. The AVC is reduced to

f = 20, AVC = {αγδ, β10},

which is also a special case of AVC (19).
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Figure 20. The AAD of αβnδ2

In f = 30, AVC = {αγδ, β2γ3δ, β6γ2δ2, αβ4δ2, β15}, we have αβ · · · =
αβ4δ2 and no α2 · · · . By no α2 · · · , we know that βα|αβ · · · , βα|αδ · · · are not
vertices and β · · · β has unique AAD βα| · · · |βα. In γβ |αβ and γβ |αδ, we get
T1, T2 in both pictures of Fig. 19. By α1β2 · · · = αβ4δ2 and the unique AAD of
βα| · · · |βα, we get βα|αδ · · · , a contradiction. Therefore, γβ |αβ · · · , γβ |αδ · · ·
are not vertices. Then, γβ | · · · |αδ is not γβ |αδ nor γβ |β · · · β|αδ . This
implies that β2γ3δ is not a vertex. Applying Counting Lemma to γ, δ, we
know that αβ4δ2 is not a vertex. Then, applying Counting Lemma to α, γ, we
also know that β6γ2δ2 is not a vertex. The AVC is reduced to

f = 30, AVC = {αγδ, β15},

which is again a special case of AVC (19).
In AVC = {αγδ, γ3δ, βn, αβn, αβnδ2, βnγ2, βnγδ, βnγ2δ2}, we know

αγ · · ·
= αγδ, and αβ · · · = αβn, αβnδ2, and γ3 · · · = γ3δ, and no αγ2 · · · . The ver-
tices with strictly more γ than δ are γ3δ, βnγ2. The vertex with strictly more δ
than γ is αβnδ2. If αβnδ2 is a vertex, the AAD determines T1, T2, T3 in Fig. 20.
Then, α2γ1 · · · = αγδ and we determine T4. Then, α4β2 · · · = αβn, αβnδ2. This
means that β or δ is the angle in T5 just outside T2. By no αγ2 · · · , we con-
clude γ2γ3 · · · = γ3 · · · = γ3δ. This means #αβnδ2 ≤ #γ3δ. In each vertex
other than γ3δ, αβnδ2, βnγ2, the number of γ equals the number of δ. We
have 3#γ3δ + 2#βnγ2 = #γ = #δ = #γ3δ + 2#αβnδ2. Combining with
#αβnδ2 ≤ #γ3δ, we get #βnγ2 = 0, and hence, βnγ2 is not a vertex. The
AVC is reduced to

f ≥ 8, AVC = {αγδ, γ3δ, βn, αβn, αβnδ2, βnγδ, βnγ2δ2}. (20)
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We remark that f = 18, AVC = {αγδ, αβ4, βγ2δ2, β5γδ, β9} as a set may
be viewed as a special case of AVC (20). However, the angle values between
the two are not compatible. Hence, they are regarded as two different sets.

If γ = π, then the quadrilateral degenerates into a triangle with AVC
(17) which is a special case of AVC (18).

We summarise the AVCs in their most general forms below

1. f ≥ 8, AVC = {αγδ, β
f
2 },

2. f = 18, AVC = {αγδ, αβ4, βγ2δ2, β5γδ, β9},
3. f ≥ 8, AVC = {αγδ, γ3δ, βn, αβn, αβnδ2, βnγδ, βnγ2δ2},
4. f ≥ 8, AVC = {αγδ, α3, αmβn, βn, βnγδ}.

By the construction of tilings in [8, Propositions 35, 48], we get the earth
map tiling E, its flip modifications F1E,F2E and rearrangement RE, which
will be explained below.

For the first AVC in the list, for each f ≥ 8, we get the earth map tiling
E with AVC (19).

In fact, consecutive β’s in [8, Figure 74] constitute consecutive timezones.
Then, βn as a vertex in any AVC in the list means that the tiling is E. In the
remaining discussion, we may focus on the tilings without βn.

The third AVC without βn is a simplified [8, AVC (7.10)]. Counting
Lemma implies that γ3δ is a vertex if and only if αβnδ2 is a vertex. If γ3δ is
a vertex, then αβnδ2 and the angle values imply f = 6q + 4 where q ∈ Z and
q ≥ 1. For each such f ≥ 10, we get the rearrangement RE with

RE : AVC ≡ {αγδ, γ3δ, αβ
f+2
6 , αβ

f−4
6 δ2}. (21)

If γ3δ is not a vertex, then αβnδ2 is also not a vertex. We get [8, AVC (7.9)],
and for each f ≥ 8, we get flip modifications

F1E : AVC ≡ {αγδ, αβn, βnγδ}, (22)

F2E : AVC ≡ {αγδ, αβn, βnγ2δ2}. (23)

The second AVC without βn is a special case of [8, AVC (7.9)]. If αβ4

is a vertex, then we get specific flip modifications F1E,F2E with AVC =
{αγδ, αβ4, β5γδ} and AVC = {αγδ, αβ4, βγ2δ2}, respectively (which are spe-
cial cases of AVCs (22), (23), respectively).

The fourth AVC without βn is [8, AVC (7.8)]. Counting Lemma implies
that α3 or αmβn is a vertex if and only if βnγδ is a vertex. If α3 or αmβn is
a vertex, then we get

F1E : AVC ≡ {αγδ, α3, βnγδ}, (24)

F1E : AVC ≡ {αγδ, αmβn, βnγδ}. (25)

We list the tilings with their AVCs in Table 11. The construction has
been explained in [8, Figures 75, 76]. �
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Table 11. Tilings with rational angles and vertex αγδ

Tilings f AVC

E

≥ 8

{αγδ, β
f
2 }

F1E
{αγδ, αmβn, βnγδ}
{αγδ, α3, βnγδ}

F2E {αγδ, αβn, βnγ2δ2}
RE {αγδ, γ3δ, αβ

f+2
6 , α

f−4
6 δ2}

5. Irrational Angles

In this section, we assume that at least one of α, β, γ, δ is irrational, i.e., its
value is not a rational multiple of π. For integers m,n, k, l,mi, ni, ki, li ≥ 0
where 1 ≤ i ≤ 2, the angle sum system of vertices αm1βn1γk1δl1 ,
αm2βn2γk2δl2 , αmβnγkδl has an augmented matrix

[A|�b] =

⎡

⎢
⎢
⎣

1 1 1 1 2 + 4
f

m1 n1 k1 l1 2
m2 n2 k2 l2 2
m n k l 2

⎤

⎥
⎥
⎦ . (26)

The above system is required to be consistent, namely rank of [A|�b] = rank of
A. If A is invertible, then the solutions to the angle values are rational. There-
fore, for some angles to be irrational, we have rank[A|�b] = rankA ≤ 3, which
is the irrationality condition. In practice, this means that, if we already know
two vertices αm1βn1γk1δl1 , αm2βn2γk2δl2 , then we get two equalities satisfied
by all other vertices.

To facilitate the discussion involving (26) and determine the angle combi-
nations, we allow some of m,n, k, l to be 0. Only after the angle combinations
are determined, we require m,n, k, l ≥ 1 in angle combinations.

Proposition 5.1. If f ≥ 8, and some angle is irrational, and αγδ, βγδ are not
vertices, then the tilings are isolated earth map tilings S1, S2, and special tilings
QP6, S4.

Proof. Using each pair of vertices in the list of Lemma 3.16, we set up A in (26)
and determine m,n, k, l. We demonstrate how to solve the associated system
of linear Diophantine equations and inequalities in two cases. The others are
determined by the same procedure (implemented in computer).
Case (Degree 3 pairs). Suppose αδ2, βγ2 are vertices. Row operations give

[A|�b] =

⎡

⎢
⎢
⎣

1 1 1 1 2 + 4
f

1 0 0 2 2
0 1 2 0 2
m n k l 2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 0 0 2 2
0 1 2 0 2
0 0 1 1 2(1 − 2

f )
0 0 0 λ μ

⎤

⎥
⎥
⎦ ,
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where λ = 2m − 2n + k − l and μ = 2(m + k − n − 1) + 4
f (2n − k).

The irrationality condition (rank[A|�b] = rankA ≤ 3) implies λ = μ = 0,
i.e., 2m − 2n + k − l = 0 and (n + 1 − m − k)f = 2(2n − k). As f �= 0, the
latter implies 2n−k �= 0 if and only if n+1−m−k �= 0. In this case, we have
f = 8 + 2(4m−2n+3k−4)

n+1−m−k ≥ 8. Therefore, there are three possibilities

(1) 2m − 2n + k − l = 0, 2n − k = 0, n + 1 − m − k = 0;
(2) 2m−2n+k − l = 0, 2n−k > 0, n+1−m−k > 0, 4m−2n+3k −4 ≥ 0;
(3) 2m−2n+k − l = 0, 2n−k < 0, n+1−m−k < 0, 4m−2n+3k −4 ≤ 0.

The non-negative integer solutions to the first possibility are (m,n, k, l) =
(1, 0, 0, 2), (0, 1, 2, 0). The vertices are αδ2, βγ2.

The non-negative integer solution to the second is (m,n, k, l) = (m,m, 0, 0).
The vertex is αmβm.

There is no non-negative integer solution to the third and hence no vertex.
Therefore, we get

AVC = {αδ2, βγ2, αmβm}.

The arguments for the other pairs are analogous.
Case (Degree 3, 4 Pairs). In this case, one of α3, αβ2, αγ2, αδ2 is the unique
degree 3 vertex. If α3 is a vertex, then Lemma 3.5 implies f ≥ 24. If one of
αβ2, αγ2, αδ2 is a vertex, then Lemma 3.6 implies f ≥ 16.

Suppose αβ2, γ2δ2 are vertices. We have f ≥ 16. The irrationality con-
dition implies k − l = 0 and (2 − n − k)f = 4(2m − n). The latter and
f �= 0 imply 2m − n �= 0 if and only if 2 − n − k �= 0. In this case, we have
f = 16 + 4(2m+3n+4k−8)

2−n−k ≥ 16. There are three possibilities

(1) k − l = 0, 2m − n = 0, 2 − n − k = 0;
(2) k − l = 0, 2m > n, 2 − n − k > 0, 2m + 3n + 4k − 8 ≥ 0;
(3) k − l = 0, 2m < n, 2 − n − k < 0, 2m + 3n + 4k − 8 ≤ 0.

For each possibility, we obtain the vertices by integer linear programming
for the non-negative integers m,n, k, l. Therefore, we get

AVC = {αβ2, γ2δ2, αm, αmβ, αmγδ}.

The arguments for the other pairs are analogous.
We summarise all the AVCs in Table 12. The first two vertices in each

AVC are assumed to appear, since they come from the list of Lemma 3.16.
Then, by Counting Lemma, all vertices in these AVCs must appear, with
the exceptions of f = 24,AVC = {α3, γ2δ2, β4, β2γδ} and f ≥ 16, AVC =
{αβ2, γ2δ2, αm, αmβ, αmγδ}.

By the exchange (α, γ) ↔ (β, δ), we see that {α3, βγ2, αβδ2} and
{α3, βδ2, αβγ2} become special cases of {αδ2, αβγ2, βn} and {αγ2, αβδ2, βn},
respectively.
AVCs without tiling

We first discuss the AVCs from Table 12 that do not admit tilings.
As in the AAD discussion in Sect. 3.1, if α3 is a vertex, then βδ · · ·

is a vertex. Therefore, {α3, αδ2, β2γ2}, {α3, γ2δ2, αβ3}, {α3, δ4, β2γ2} and
{α3, γ2δ2, β5} do not admit no tilings.
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Table 12. Irrational angles: AVCs without αγδ

f AVC f AVC

12 {α3, αγ2, β2δ2} 24 {α3, γ2δ2, β4, β2γδ}
12 {α3, αδ2, β2γ2} 36 {α3, γ2δ2, αβ3}
24 {α3, βγ2, β2δ4} 60 {α3, γ2δ2, β5}
24 {α3, βδ2, β2γ4} 4m, m ≥ 4 {αβ2, γ2δ2, αm, α

m+1
2 β, α

m
2 γδ}

2k, k ≥ 4 {α2β, βδ2, γk} 4m, m ≥ 4 {αγ2, β2δ2, αm}
4m, m ≥ 2 {αδ2, βγ2, αmβm} 4m, m ≥ 4 {αδ2, β2γ2, αm}
24 {α3, γ4, β2δ2} 4n, n ≥ 4 {αγ2, αβδ2, βn}
24 {α3, δ4, β2γ2} 4n, n ≥ 4 {αδ2, αβγ2, βn}

In AVC = {α3, αγ2, β2δ2}, all three vertices appear and the angle sum
system implies α = γ and β+δ = π, whereby δ �= π, contradicting Lemma 3.13.

In AVC = {α3, βγ2, β2δ4}, we know that β2δ4 is a vertex, whereas γ|γ · · ·
is not a vertex. By no αγ · · · , γ|γ · · · , we know that βα|γβ · · · , βγ |γβ · · · are
not vertices. Then, β|β = βα|αβ. By no αγ · · · , we know that δα|β|αδ · · · is
not a vertex. By β|β = βα|αβ, the AAD of β2δ4 is δα|γβα|αβγ |αδ . It implies
αγ · · · , a contradiction.

In AVC = {α3, βδ2, β2γ4}, the AAD of βδ2 is δα|αβγ |αδ . It implies
αγ · · · , a contradiction.

In AVC = {α3, γ2δ2, β4, β2γδ}, we know that α3 is a vertex. Then, the
AAD of α3 implies that βδ · · · = β2γδ is a vertex. By no αβ · · · , the AAD of
β2γδ is γβ |γβα|β|αδ . It implies αγ · · · , a contradiction.

In AVC = {α2β, βδ2, γk}, the AAD of βδ2 is δα|αβγ |αδ . This implies
αγ · · · , a contradiction.

In AVC = {αδ2, β2γ2, αm}, the AAD of αδ2 is δα|βαδ|αδ . This implies
αβ · · · , a contradiction.

In AVC = {αδ2, βγ2, αmβm}, we have γ · · · = βγ2 and δ · · · = αδ2.
Since αmβm has degree ≥ 3, we have m ≥ 2. This implies α, β < π. By
αδ2, βγ2, we have γ, δ < π. Then, the tile is convex. The vertex angle sums
α+2δ = 2π = β+2γ imply γ− 1

2α = δ− 1
2β. Then, (5) implies sin(γ− 1

2α) = 0
or sin 1

2β = sin 1
2α. By convexity and γ − 1

2α = δ − 1
2β, the former gives

δ − 1
2β = γ − 1

2α = 0. Then, α = 2γ and β = 2δ. By αγ2 and βδ2, we get
4π = α + 2γ + β + 2δ = 2(α + β), which implies α + β = 2π, contradicting
α, β < π. Hence, we get sin 1

2β = sin 1
2α. By α, β < π, this implies α = β, a

contradiction.
AVCs with tilings

In AVC = {αγ2, αβδ2, βn}, as discussed in [8], the tilings are only geo-
metrically realisable when f = 16. In that case, the tilings are S3, FS3 and
every angle is rational, a contradiction.
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Figure 21. Tiling QP6

In AVC = {α3, γ4, β2δ2}, the tiling is QP6, given by quadrilateral subdi-
vision of the cube in Fig. 21.

In AVC = {αβ2, γ2δ2, αm, αmβ, αmγδ}, we have β2 · · · = αβ2 and no
βγ · · · , βδ · · · . The AVC assumes that αβ2 is the unique degree 3 vertex.
Then, the vertices αm, αmβ, αmγδ have degree ≥ 4. By β2 · · · = αβ2, the
third picture of Fig. 15 shows that αβ |βα · · · implies βγ · · · , a contradiction.
Then, by no βδ · · · , αβ |βα · · · , the AAD of α|α is αδ|δα. This implies no ααα.
Therefore, we get m = 2 in αmγδ, whereas αm, αmβ are not vertices. The AVC
is reduced to

f = 16, AVC = {αβ2, α2γδ, γ2δ2}. (27)

By AVC (27), we construct S4 in the first picture of Fig. 22. As 2α = γ+δ = π,
S4 is a subdivision of a non-edge-to-edge parallelogram tiling in the second
picture. The right angles are α. The non-indicated parallelogram angles are
β = 3

4π.
In AVC = {αγ2, β2δ2, αm}, as discussed in [8], the tilings are only geo-

metrically realisable when f = 16 and αm = α4. We use the AVC to construct
S2 in the first picture of Fig. 23.

In AVC = {αδ2, αβγ2, βn}, as discussed in [8], the tilings are only geo-
metrically realisable when f = 12, 16. We use the AVC to construct S121, S161
in Fig. 24.

This completes the proof. �

Proposition 5.2. If f ≥ 8, and some angle is irrational, and one of αγδ, βγδ
is a vertex, then the tilings are earth map tiling E and its flip modifications
F1E,F2E.
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Proof. Up to symmetry, we may assume that αγδ is a vertex. By α �= β, this
implies that βγδ is not a vertex. The angle sum system gives

α + γ + δ = 2π, β = 4
f π.

By αγδ, at least two of α, γ, δ are irrational. The key fact is the following:
suppose ϕ,ψ are irrational angles and ϕ + ψ is a rational angle, then for
rational numbers u, v, q, the equation uϕ + vψ = qπ implies u = v.

By αγδ and Lemma 3.17, we know that α2 · · · is a b̂-vertex. At least two
of α, γ, δ are irrational. Therefore, we divide the discussion into the following
cases.
Case (γ, δ are irrational, α is rational). By αγδ, we know that γ +δ is rational.
As γ, δ are irrational, at each vertex, the number of γ equals the number of
δ. This means that the b-vertices are αγδ, βnγkδk, γkδk. The b̂-vertices are
αm, αmβn, βn. Therefore

AVC = {αγδ, αm, αmβn, βn, βnγkδk, γkδk}. (28)

Case (α, γ are irrational, δ is rational). By αγδ, we know that α+γ is rational.
As β, δ are rational and α, γ are irrational, at each vertex, the number of α

equals the number of γ. Since α2 · · · can only be b̂-vertex, this implies that
α2 · · · is not a vertex. Then γ · · · = αγ · · · has no α, γ in the remainder. By
αγδ and Parity Lemma, we have γ · · · = αγδ. Applying Counting Lemma
to α, γ, this implies α · · · = αγδ. Applying Counting Lemma to γ, δ, we get
δ · · · = αγδ. Then, the only other vertex is βn where n = f

2 . Therefore

AVC = {αγδ, β
f
2 }. (29)

Case (α, δ are irrational, γ is rational). The previous argument relies only on
the parity of γ, δ. Exchanging γ ↔ δ above, we get AVC (29).
Case (α, γ, δ are irrational). In this case, β is the only rational angle. Then,
αm, γk, δl, αmβn, βnγk, βnδl are not vertices. Since α2 · · · can only be a b̂-
vertex, by no αm, αmβn, this implies that α2 · · · is not a vertex.

Suppose γ > δ. By αγδ and Parity Lemma, we have αγ · · · = αγδ. Then,
α · · · = αγδ, αδl, αβnδl. Counting Lemma on α, δ and Parity Lemma imply
that αδl, αβnδl are not vertices. Then, α · · · = αγδ. Counting Lemma further
implies that the only other vertex is βn. We get AVC (29).

Suppose γ < δ. We have αδ · · · = αγδ. Then, exchanging γ ↔ δ and
k ↔ l in the above, we get AVC (29).

We summarise the AVCs below
1. f ≥ 8, AVC = {αγδ, β

f
2 };

2. f ≥ 8, AVC = {αγδ, αm, βn, αmβn, γkδk, βnγkδk}.
By the tiling construction part of [8, Proposition 48], the earth map tilings

E and their flip modifications F1E,F2E are obtained from the above AVCs.
We follow the same argument in [8, AVC (7.8), AVC (7.9)]. Hence, we get

F1E : AVC ≡ {αγδ, αm, βnγδ}; (30)

F1E : AVC ≡ {αγδ, αmβn, βnγδ}; (31)

F2E : AVC ≡ {αγδ, αβn, γkδk}; (32)
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Table 13. Tilings with irrational angles and vertex αγδ

Tilings f AVC

E

≥ 8

{αγδ, β
f
2 }

F1E
{αγδ, αm, βnγδ}
{αγδ, αmβn, βnγδ}

F2E
{αγδ, αβn, γkδk}
{αγδ, αβn, βnγkδk}

F2E : AVC ≡ {αγδ, αβn, βnγkδk}. (33)

The tilings with their AVCs are given in Table 13. The construction is
explained in the proof of [8, Proposition 48]. �

The geometric realisation of all the tilings the previous sections can be
seen in the full version on arXiv:2204.02748 or in [8]. We hereby conclude our
study with the following two theorems.

Theorem 3. Tilings of the sphere by congruent almost equilateral quadrilater-
als, where all angles are rational, are earth map tiling E and its flip modi-
fications, F1E,F2E, and rearrangement RE, and isolated earth map tilings,
S3, FS3, S5, and special tiling S6.

Theorem 4. Tilings of the sphere by congruent almost equilateral quadrilaterals
with some irrational angles are earth map tiling E and its flip modifications,
F1E,F2E, and isolated earth map tilings, S1, S2, and special tilings, QP6, S4.
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