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Zequn Lv, Ervin Győri, Zhen He, Nika Salia , Chuanqi Xiao and
Xiutao Zhu

Abstract. In this work, we give the sharp upper bound for the number
of cliques in graphs with bounded odd circumferences. This generalized
Turán-type result is an extension of the celebrated Erdős and Gallai the-
orem and a strengthening of Luo’s recent result. The same bound for
graphs with bounded even circumferences is a trivial application of the
theorem of Li and Ning.

1. Introduction

A central topic of extremal combinatorics is to investigate sufficient conditions
for the appearance of given substructures. In particular, for a given graph H
and a set of graphs F , the generalized Turán number ex(n,H,F) denotes the
maximum number of copies of H in a graph on n vertices containing no F as
a subgraph, for every F ∈ F . In 1959, Erdős and Gallai [2] determined the
maximum number of edges in a graph with a small circumference, the length
of a longest cycle. For integers n and k such that n ≥ k ≥ 3, they proved

ex(n,K2, C≥k) ≤ (k − 1)(n − 1)
2

,

where Kk denotes the complete graph with k vertices and C≥k denotes the
family of cycles of length at least k. The bound is sharp for every n congruent
to one modulo k − 2. Equality is attained by graphs with n−1

k−2 maximal 2-
connected blocks each isomorphic to Kk−1. Recently, Li and Ning [3] proved
that to obtain the same upper bound, it is enough to forbid only long even
cycles

ex(n,K2, Ceven
≥2k ) ≤ (2k − 1)(n − 1)

2
, (1)
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where Ceven
≥2k denotes the family of even cycles of length at least 2k, that is

{C2k, C2k+2, . . . }. We also denote the family of odd cycles of length at least
2k+1 by Codd

≥2k+1 := {C2k+1, C2k+3, . . . }. For a graph G and a family of graphs
F , we say G is F-free, if for all graphs F ∈ F , G does not contain F as a
subgraph, not necessarily induced. For graphs G and H, let us denote the
number of copies of H in G by H(G).

Note that graphs with bounded odd circumferences might have a qua-
dratic number of edges (as a function of the number of vertices) since the
n-vertex complete balanced bipartite graph is odd cycle-free with

⌊
n2

2

⌋
edges.

On the other hand, Voss and Zuluga [6] proved that every 2-connected graph
G with minimum degree at least k ≥ 3, with at least 2k + 1 vertices, contains
an even cycle of length at least 2k. Even more, if G is not bipartite, then it
contains an odd cycle of length at least 2k − 1.

There are numerous papers strengthening, generalizing, and extending
the celebrated Erdős and Gallai theorem. Recently, Luo [4] proved

ex(n,Kr, C≥k) ≤ (n − 1)
k − 2

(
k − 1

r

)
, (2)

for all n ≥ k ≥ 4. Chakraborti and Chen [1] strengthened Luo’s result by ob-
taining a sharp upper bound for every n. This bound is a great tool for obtain-
ing results in hypergraph theory. The bound was consequently reproved with
different methods multiple times [5,7]. In this paper, we strengthen Luo’s the-
orem. In particular, we obtain the same tight bounds for graphs with bounded
odd circumferences. On the other hand, the result for graphs with bounded
even circumference is trivial after applying (1) and a result of Luo [4, Cor.1.7],

ex(n,Kr, Pk+1) ≤ n

k

(
k

r

)
,

where Pk+1 denotes the path of length k. Since the graph G does not contain a
cycle of length 2k, the neighborhood of each vertex contains no path of length
2k − 2. In particular, for all r ≥ 3 we have

ex(n,Kr, Ceven
≥2k ) ≤ 1

r

∑
v

d(v)
2k − 2

(
2k − 2
r − 1

)

≤ 1
r

ex(n,K2, Ceven
≥2k )

k − 1

(
2k − 2
r − 1

)
≤ n − 1

2k − 2

(
2k − 1

r

)
.

For graphs with small odd circumferences, we have the following theorem.

Theorem 1. For integers n, k, r satisfying n ≥ 2k ≥ r ≥ 3 and k ≥ 14,

ex(n,Kr, Codd
≥2k+1) ≤ n − 1

2k − 1

(
2k

r

)
.

Equality holds only for connected n-vertex graphs which consisting of n−1
2k−1

maximal 2-connected blocks each isomorphic to K2k.
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It is interesting to ask for which integers and for which congruence classes
the same phenomenon still holds. In this direction, we would like to raise a
modest conjecture.

Conjecture 2. For an integer k ≥ 2 and a sufficiently large n. Let G be an n
vertex C3�+1-free graph for every integer � ≥ k. Then for every r, 3k ≥ r ≥ 2,
the number of cliques of size r in G is at most

n − 1
3k − 1

(
3k

r

)
.

Equality holds only for connected n-vertex graphs consisting of n−1
3k−1 maximal

2-connected blocks each isomorphic to K3k.

Moreover, we would like to propose the following conjecture. Let p be a
prime number and Cprime

≥p := {C� : � ≥ p and � prime}.

Conjecture 3. For integers n, r and a prime p satisfying r < p, we have

ex(n,Kr, Cprime
≥p ) ≤ n − 1

p − 2

(
p − 1

r

)
.

Equality holds only for connected n-vertex graphs consisting of n−1
p−2 maximal

2-connected blocks each isomorphic to Kp−1.

2. Proof of the Main Result

Proof. We prove Theorem 1 by induction on the number of vertices of the
graph. The base cases for n ≤ 2k are trivial. Let G be a graph on n vertices
where n > 2k. We assume that every Codd

≥2k+1-free graph on m vertices, for
m < n, contains at most m−1

2k−1

(
2k
r

)
copies of Kr and that equality is achieved

for the class of graphs described in the statement of the theorem.
If δ(G), the minimum degree of G, is at most k + 2, then we are done by

the induction hypothesis

Kr(G) ≤ Kr(G[V (G) \ {v}]) +
(

k + 2
r − 1

)
≤ n − 2

2k − 1

(
2k

r

)
+

(
k + 2
r − 1

)

<
n − 1
2k − 1

(
2k

r

)
,

since k ≥ 14 and r ≥ 3. From here, we may assume G is a graph with δ(G) >
k + 2, and each edge of G is in a copy of Kr.

Let v1v2v3 · · · vm be a longest path of G such that v1 is adjacent to vt

and t is the maximum possible among the longest paths. Consider the family
P of all longest paths of G on the vertex set {v1, v2, v3, . . . , vm} such that
vtvt+1 · · · vm is a sub-path with a terminal vertex vm. Let T1 be the set of
terminal vertices, excluding vm, of paths from P.

Claim 1. If t ≤ 2k, then vt is a cut vertex isolating {v1, v2, . . . , vt−1} from the
rest of the graph.
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Proof. If T1 = {v1, v2, . . . , vt−1}, then by the maximality of t, the vertex vt is
a cut vertex isolating {v1, v2, . . . , vt−1} from the rest of the graph. Hence we
may assume there exists a vi, i ≤ t−1, which is not in T1. Note that vt−1 ∈ T1

thus we have i < t − 1. Let the path u1u2 · · · ut−1utvt+1 · · · vm be a path from
P such that ur ∈ T1 and ur+1 /∈ T1 minimizing r. Note that ut = vt and
{v1, v2, . . . , vt} = {u1, u2, . . . , ut}.

Here, we show that r + 1 ≤ t/2. At first, we assume i ≤ t/2, then
v1v2 · · · vm is a path in P thus r + 1 ≤ i, we are done since i ≤ t/2. If t/2 ≤ i,
then consider the following path from P vt−1vt−2 · · · vi · · · v1vt · · · vm is a path
in P, thus r + 1 ≤ t − 1 − i + 1 = t − i, we are done since t − i ≤ t/2.

The vertex u1 is not adjacent to two consecutive vertices from
{ur+1, ur+2, . . . , ut} by the minimality of r. Indeed if u1 is adjacent to ui

and ui+1 for r + 1 ≤ i ≤ t, then

u2u3 · · · urur+1 · · · uiu1ui+1 · · · utvt+1 · · · vm

forms a path from P that contradicts the minimality of r.
The vertex u1 is not adjacent to vertices ur+2, ur+3, . . . , u2r+1 by the

minimality of r. Indeed, suppose u1 is adjacent to ui for r + 2 ≤ i ≤ 2r + 1,
then we get a path from P

ui−1ui−2 . . . ur+1ur . . . u1uiui+1 . . . utvt+1 . . . vm,

which contradicts the minimality of r since ur+1 /∈ T1.
Finally, by the two observations from the preceding two paragraphs we

have d(u1) ≤ (r − 1) + t−(2r+1)+1
2 = t−2

2 < k, a contradiction. �

Claim 2. We have t ≤ 2k.

Proof. Suppose otherwise let us assume t > 2k. Let C denote the cycle v1v2 . . .
vtv1. Since G is Codd

≥2k+1-free t is even and vertices vt−3 and vt−2 have no
common neighbors in G[V (G) \ V (C)]. On the other hand, since every edge
is in a Kr there is a vertex vl adjacent to both vt−3 and vt−2. Let us denote
c := t − 2k.

In this paragraph, we show that c−1 ≤ l ≤ 2k−4. Consider the following
two cycles of consecutive lengths v�v�+1 . . . vt−3v� and v�v�+1 . . . vt−3vt−2v�.
One of them has an odd length, thus we have t − 2 − � + 1 ≤ 2k since
G is Codd

≥2k+1-free. Consider the following two cycles of consecutive lengths
v�v�−1 . . . v1vtvt−1vt−2vt−3v� and v�v�−1 . . . v1vtvt−1vt−2v�. One of them has
an odd length, thus we have � + 4 ≤ 2k since G is Codd

≥2k+1-free. Thus, we have
c − 1 ≤ l ≤ 2k − 4.

There is no i such that vi is adjacent with vt−1 and vi+1 is adjacent with
v1. Since otherwise, the following cycle has an odd length greater than 2k,

v1v2 . . . vivt−1vt−2 . . . vi+1v1.

Note that, since vt−1, v1 ∈ T1 and from maximality of t, we have N(v1), N(vt−1)
⊆ V (C). Since G is Codd

≥2k+1-free and t ≥ 2k+2 we have N(v1)∩N+(vt−1) = ∅,
where N+(vt−1) denotes the following set {vi+1 : vi ∈ N(vt−1)}.
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There is no i such that both l < i < l + c − 2 and v1vi is an edge of G.
Since otherwise, one of the following cycles is an odd cycle longer than 2k,

v1v2 . . . vlvt−2vt−3 . . . viv1 or v1v2 . . . vlvt−3vt−4 . . . viv1.

Thus, we have

N(v1) ∩ {vl+2, . . . , vl+c−3} = ∅.

Similarly, there is no i such that l < i < l + c and vt−1vi is an edge of G.
Since otherwise, one of the following cycles is an odd cycle longer than 2k,

vt−1vtv1 . . . vlvt−2vt−3 . . . vivt−1 or vt−1vtv1 . . . vlvt−3vt−4 . . . vivt−1.

Thus, we have

N+(vt−1) ∩ {vl+2, . . . , vl+c−3} = ∅.

Recall we have N(v1) ∩ N+(vt−1) = ∅, hence, we get

|N(v1)| ≤ ∣∣({v1, v2, . . . , v2k+c} \ N+(vt−1)
) \ {vl+2, . . . , vl+c−3}

∣∣
≤ 2k + c − (k + 3) − (c − 4) < δ(G),

a contradiction. �

From Claims 1 and 2, G contains a 2-connected block of size x ≤ 2k.
After contracting the block to a vertex we get a Codd

≥2k+1-free graph on n−x+1
vertices. By the convexity of a binomial function

( ·
r

)
and induction hypothesis,

we see that G contains at most n−1
2k−1

(
2k
r

)
cliques of size r and equality is

achieved if and only if G is a connected graph and every maximal 2-connected
component of G is isomorphic to K2k. �
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