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Approximate Sampling of Graphs
with Near-P -Stable Degree Intervals

Péter L. Erdős , Tamás Róbert Mezei and István Miklós

Abstract. The approximate uniform sampling of graph realizations with a
given degree sequence is an everyday task in several social science, com-
puter science, engineering etc. projects. One approach is using Markov
chains. The best available current result about the well-studied switch
Markov chain is that it is rapidly mixing on P -stable degree sequences
(see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does
not change any degree sequence. However, there are cases where degree
intervals are specified rather than a single degree sequence. (A natural
scenario where this problem arises is in hypothesis testing on social net-
works that are only partially observed.) Rechner, Strowick, and Müller–
Hannemann introduced in 2018 the notion of degree interval Markov
chain which uses three (separately well studied) local operations (switch,
hinge-flip and toggle), and employing on degree sequence realizations
where any two sequences under scrutiny have very small coordinate-wise
distance. Recently, Amanatidis and Kleer published a beautiful paper
(DOI:10.4230/LIPIcs.STACS.2023.7), showing that the degree interval
Markov chain is rapidly mixing if the sequences are coming from a system
of very thin intervals which are centered not far from a regular degree se-
quence. In this paper, we substantially extend their result, showing that
the degree interval Markov chain is rapidly mixing if the intervals are
centered at P -stable degree sequences.

Keywords. Degree sequences, Realizations, Switch Markov chain, Rapidly
mixing, Sinclair’s multi-commodity flow method, P-stability, Weak
P-stability.

1. Introduction

In this relatively short, highly technical paper, we prove a substantial extension
of a recent result of Amanatidis and Kleer [1, Theorem 1.3]. Our proof is based
on the unified approach that was developed in Erdős et al. [4] for P -stable
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degree sequences. For sake of brevity in this section, we concisely describe the
problem itself, but we will not give a detailed description of the background.
For further details, the diligent reader is referred to Amanatidis and Kleer and
Erdős et al. [1,4].

Approximate sampling graphs with given degree sequences play increas-
ingly important role in modeling different real-life dynamics. One basic way
to study them is the switch Markov chain method, made popular by Kannan
et al. [9]. The currently best result via this method is Erdős et al. [4] where it
is proved that the switch Markov chain is rapidly mixing on P -stable degree
sequences. The notion of P -stability was introduced by Jerrum and Sinclair
[8] and studied for its own sake at first by Jerrum et al. [6].

In real-life applications, it is not always possible to know the exact degree
sequence of the targeted network. For example, a natural scenario where this
problem arises is in hypothesis testing on social networks that are only partially
observed. Therefore, it can happen that we have to sample networks with
slightly different degree sequences. It is possible to study the situation via
Markov chain decompositions, where there is another Markov chain to move
among the component chains. A good example for this approach is the proof
of Amanatidis and Kleer [1, Theorem 1.1].

Another possibility is to introduce further local operations, since the
switch operation itself does not change the degree sequence. Such operations
are the hinge flip and the toggle (the deletion–insertion) operations. These two
latter operations were introduced by Jerrum and Sinclair in their seminal work
about approximate 0-1 permanents [7]. (The number of perfect matchings of a
bipartite graph is equal to the permanent of the bipartite adjacency matrix.)
These three operations together are often applied in network building appli-
cations in practice (as it was pointed out in Coolen et al. [2]) but without any
theoretical insurance for the correct result.

Rechner et al. [10] defined a Markov chain with these three local opera-
tions for bipartite graphs. Amanatidis and Kleer recognized in their important,
recent paper [1] the following very interesting fact: assume that the inconsis-
tencies in the degree sequences are never bigger than one (the degrees can be
i or i+1) coordinate-wise, and the degree intervals are placed close to a given
constant r (the interval placements can vary between [r − rα, r + rα] where al-
pha is at most 1/2). The authors coined the name near-regular degree intervals
for this degree sequence property and the name degree interval Markov chain
for this whole setup. Their result is that the degree interval Markov chain for
near-regular degree intervals is rapidly mixing.

Our main result (Theorem 2.20) is that this Markov chain is rapidly
mixing for such tight degree intervals where they are placed at P -stable degree
sequences. Since all degree sequences close to some constant are P -stable, but
P -stable degree sequences can be very far from regular sequences, our result
is clearly a very extensive generalization of the theorem of Amanatidis and
Kleer.

To our great surprise, it turned out that this result can be derived from
the proof of the main theorem of Erdős et al. [4]. For that end, we had to
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analyze in detail the auxiliary structures of the proof and to extend to cover
this setup. The result of this analysis is the notion of precursor (Sect. 3.3).
In turn, this notion is conducive to a rather short proof of the rapidly mixing
property. Therefore, the main task in this paper is to define the appropriate
precursor.

2. Definitions and Notation

Many of the definitions in this section are extensions or generalizations of
notions introduced in Erdős et al. [4]. We will alert the reader whenever this
is the case.

We consider N the set of non-negative integers. Let [n] = {1, . . . , n}
denote the integers from 1 to n, and let

(
[n]
k

)
denote the set of k-element

subsets of [n]. Given a subset S ⊆ [n], let 1S : [n] → {0, 1} be the characteristic
function of S, that is, 1S(s) = 1 ⇔ s ∈ S. We often use � to emphasize that
a union of pairwise disjoint sets is taken. The graphs in this paper are vertex-
labeled and finite. Parallel edges and loops are forbidden, and unless otherwise
stated, the labeled vertex set of an n-vertex graph is [n]. The line graph L(G)
of a graph G is a graph on the vertex set E(G) (so the vertices of L(G) are
taken from

(
[n]
2

)
), where any two edges e, f ∈ E(G) that are adjacent are joined

(by an edge). The line graph is also free of parallel edges and loops. A trail
is a walk that does not visit any edge twice. An open trail starts and ends on
two distinct vertices. A closed trail does not have a start nor an end vertex.
Given a matrix M ∈ Z

n×n, its �1-norm is ‖M‖1 =
∑

ij |Mij |.

Definition 2.1. Given two graphs on [n] as vertices, say, X = ([n], E(X)) and
Y = ([n], E(Y )), we define their symmetric difference graph

X�Y = ([n], E(X)�E(Y )).

Definition 2.2. Given a set of edges R ⊆ (
[n]
2

)
, we may treat R as a graph. If

X is a graph on the vertex set [n], let

X�R = ([n], E(X)�R).

Definition 2.3. A degree sequence on n vertices is a vector d ∈ N
n which is

coordinate-wise at most n−1. The set of realizations of d denotes the following
set of graphs:

G(d) =
{

G
∣
∣
∣V (G) = [n],degG(i) = di∀i ∈ [n]

}
,

where degG(i) is the degree of the ith vertex in G. The degree sequence d is
graphic if G(d) is non-empty. A set of degree sequences D may contain graphic
as well as non-graphic degree sequences.

The degree sequence of a graph G on [n] as vertices is the vector degG =
(degG(1),degG(2), . . . ,degG(n)).
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Definition 2.4. For a pair of vectors �, u ∈ N
n we write � ≤ u if and only if

� is coordinate-wise less than or equal to u, that is, �i ≤ ui for all i ∈ [n].
Furthermore, let

[�, u] = {d ∈ N
n |� ≤ d ≤ u} .

Definition 2.5. If � ≤ u are both degree sequences of length n, then [�, u] is
a degree sequence interval. A degree sequence interval [�, u] is called thin if
ui ≤ �i + 1 for all i ∈ [n]. We denote the set of realizations of the degree
sequence interval [�, u] by

G(�, u) =
⋃

d∈[�,u]

G(d).

Remark 2.6. Not every degree sequence in [�, u] is necessarily graphic, even if
both � and u are graphic.

Definition 2.7. Given a polynomial p ∈ R[x], we say that a degree sequence
d ∈ N

n is p-stable if
∣
∣
∣G(d) ∪

⋃

{i,j}∈([n]
2 )

G(d + 1{i,j})
∣
∣
∣ ≤ p(n) · |G(d)|.

Definition 2.8. A set of degree sequences D is p-stable if every degree sequence
d ∈ D is p-stable.

Definition 2.9. A set of degree sequences D is P -stable if there exists p ∈ R[x]
such that D is p-stable.

In Erdős et al. [4], only P -stability is defined, but in this paper, it is more
convenient to also define p-stability.

Remark 2.10. A finite set of degree sequences D is always P -stable.

Let us introduce a weaker stability notion for degree sequence intervals.

Definition 2.11. Given p ∈ R[x], we say that a degree sequence interval [�, u] ⊆
N

n is weakly p-stable if
∣
∣
∣

⋃

{i,j}∈([n]
2 )

G(�, u + 1{i,j})
∣
∣
∣ ≤ p(n) · |G(�, u)|. (1)

Definition 2.12. A set I of degree sequence intervals is weakly P -stable if there
exists p ∈ R[x] such that every [�, u] ∈ I is weakly p-stable. (Any finite I is
weakly P -stable.)

Remark 2.13. If the set of degree sequences [�, u] is p-stable, then [�, u] is
weakly p-stable.

Remark 2.14. It is possible indeed that [�, u] is weakly p-stable, but [�, u] (as
a set of degree sequences) is not p-stable. For example, take � = (0)n

i=1 and
u = (n − 1)n

i=1: the interval [�, u] is clearly 1-stable, but most of the degree
sequences on n vertices are not 1-stable.
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Figure 1. The three types of operations employed by the
degree interval Markov chain. Solid ( ) and dashed ( )
line segments represent edges and non-edges, respectively

Definition 2.15. (Degree interval Markov chain) Let us define the degree in-
terval Markov chain G(�, u). The state space of the Markov chain is G(�, u).
In the following, we define three types of transitions: switches, hinge-flips, and
edge-toggles (Fig. 1). If the current state of the Markov chain is G ∈ G(�, u),
then

• with probability 1/2, the chain stays in G (the Markov chain is lazy),
• with probability 1/6, pick 4 vertices a, b, c, d (uniformly and randomly),

and the Markov chain changes its state to G′ = G�{ab, cd, ac, bd} if
degG′ = degG (in which case the transition is a switch), otherwise the
chain stays in G,

• with probability 1/6, pick 3 vertices a, b, c (uniformly and randomly), and
the Markov chain changes its state to G′′ = G�{ab, bc} if e(G′′) = e(G)
and G′′ ∈ G(�, u) (a hinge-flip), otherwise the chain stays in G,

• with probability 1/6, pick a pair of vertices a, b (uniformly and randomly),
and the Markov chain changes its state to G′′′ = G�{ab} if G′′′ ∈ G(�, u)
(an edge-toggle), otherwise the chain stays in G.

We will use the following seminal result of Sinclair. Let PrG(x → y) de-
note the transition probability from state x to y in the Markov chain G. Let
σ ≡ |V (G)|−1 be the unique stationary distribution on G. Given a multicom-
modity flow f on G, let �(f) be the length of the longest path with positive
flow, and let ρ(f) be the maximum loading through an oriented edge of the
Markov graph, that is,

ρ(f) = max
xy∈E(G)

1
σ(x) PrG(x → y)

∑

xy∈γ∈ΓX,Y

f(γ). (2)

where ΓX,Y is the set of all simple directed paths from X to Y in G.

Theorem 2.16. (adapted from Sinclair [11, Proposition 1 and Corollary 6’])
Let G be an irreducible, symmetric, reversible, and lazy Markov chain. Let f
be a multicommodity flow on G which sends σ(X)σ(Y ) commodity between
any ordered pair X,Y ∈ V (G). Then, the mixing time of the Markov chain in
which it converges ε close in �1-norm to σ started from any element in V (G)
is

τG(ε) ≤ ρ(f) · �(f) · (log |V (G)| − log ε) , (3)
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One of the most famous applications of this idea is the result of Jerrum
and Sinclair [7] providing a probabilistic approximation of the permanent. The
following result also relies on Theorem 2.16, and it describes the largest known
class of degree sequences where the switch Markov chain is rapidly mixing (that
is, the rate of convergence of the Markov chain is bounded by a polynomial of
the length of the degree sequence).

Theorem 2.17. [4] The switch Markov chain is rapidly mixing on the realiza-
tions of any degree sequence in a set of P -stable degree sequences (the rate of
convergence depends on the set).

There are several known P -stable regions, one of the earliest and most
well-known ones is the following.

Theorem 2.18. (Jerrum, McKay, and Sinclair [6]) Let δ = min(d) and Δ =
max(d) be the minimum and maximum value elements in d. The set of degree
sequences d satisfying

(Δ − δ + 1)2 ≤ 4δ(n − Δ − 1), d ∈ N
n (4)

for any n are P -stable. (See Fig. 2.)

Amanatidis and Kleer [1] recently published a surprising new type of
result, a clever approximate uniform sampler (see, for e.g., [7]) for G(�, u)
where elements of [�, u] are near regular. They achieve this using a composite
Markov chain. They also provide the first step in the direction of sampling
G(�, u) directly using the degree interval Markov chain.

Let us reiterate that Amanatidis and Kleer [1] apply the Markov chain
suggested by Rechner, Strowick, and Müller–Hannemann [10], which is rou-
tinely used in practice.

Theorem 2.19. (Theorem 1.3 in Amanatidis and Kleer [1]) Let 0 < α < 1
2 and

0 < ρ < 1 be fixed. Let r = r(n) with 2 ≤ r ≤ (1−ρ)n. If [�i, ui] ⊆ [r−rα, r+rα]
and ui − 1 ≤ �i ≤ ui for all i ∈ [n], then the degree interval Markov chain
G(�, u) is rapidly mixing.

Let wm be the number of realizations in G(�, u) with m edges. The con-
ditions ui − 1 ≤ �i ≤ ui for all i ∈ [n] are sufficient to prove that wm is log-
concave, i.e., wm−1wm+1 ≤ w2

m, see Amanatidis and Kleer [1, Theorem 5.4].
The main idea for that proof is a symmetric difference decomposition, which
we also characterize in our key decomposition lemma, Lemma 3.21.

Our contribution. The main objective of this paper is to prove the following
theorem.

Theorem 2.20. Suppose I is a set of weakly P -stable and thin degree sequence
intervals. Then, the degree interval Markov chain G(�, u) is rapidly mixing for
any (�, u) ∈ I.

It is not hard to see that Theorem 2.19 is a special case of Theorem 2.20:
substituting into Eq. (4), we get
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1
2n (1− ρ)n n

1
4n

3
4n

n

δ

Δ

δ+Δ
2

degree

Figure 2. Theorem 2.18 defines pairs of lower and upper
bounds (δ and Δ), such that any degree sequence which obeys
these bounds is P -stable; the area between these functions
is filled with vertical lines. The pairs (δ,Δ) of most distant
bounds allowed by Eq. (4) are given by intersections with
vertical lines. For example, any degree sequence which is
(element-wise) between δ = 1

4n and Δ = 3
4n is P -stable. In

comparison, the solid gray region represents a
√

r-wide region
around the regular degree sequences, which corresponds to the
domain of Theorem 2.19

(2rα + 1)2 ≤ 4(r − rα)(n − r − rα − 1),

which holds for any r and α if n is large enough; see Fig. 2.
The switch Markov chain can be embedded into the degree interval

Markov chain (the transition probabilities differ by constant factors). Actually,
we will use the proof of Theorem 2.17 as a plug-in in the proof of Theorem
2.20, so this paper does not provide a new proof for the switch Markov chain.
We will not consider bipartite and direct degree sequences in this paper, but
note that Theorem 2.17 applies to those as well. It is easy to check that the
proof of Theorem 2.20 works verbatim for bipartite graphs, because the edge-
toggles and hinge-flips are applied on vertices that are joined by paths of odd
length (hence in different classes). In all likelihood, the proof of Theorem 2.20
can be probably extended to directed graphs, because directed graphs can be
represented as bipartite graphs endowed with a forbidden 1-factor.

3. Constructing and Bounding the Multicommodity Flow

We will define a number of auxiliary structures. Via these structures, we will
define a multicommodity flow on the degree interval Markov chain G(�, u) and
measure its load.
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3.1. Constructing and Counting the Auxiliary Matrices

Kannan et al. [9] already introduced an auxiliary matrix to examine the load
of a multicommodity flow. Our auxiliary matrices will be a little different. We
start with some definitions, then prove two easy statements.

Definition 3.1. Let the adjacency matrix of a graph X on vertex set [n] be
AX ∈ {0, 1}n×n. Let A(vw) be the adjacency matrix of the graph ([n], {vw})
with exactly one edge. Let us define

M̂(X,Y,Z) = AX + AY − AZ .

Remark 3.2. If X,Y,Z are graphs on [n], then M̂(X,Y,Z) ∈ {−1, 0, 1, 2}n×n.

Let us define the matrix switch operation. (In a previous paper [4], this
operation was called a generalized switch.)

Definition 3.3. (Switch on a matrix) The switch operation on a matrix M on
vertices (a, b, c, d) produces the matrix

M − A(ab) − A(cd) + A(ac) + A(bd).

Remark 3.4. A switch on a graph X corresponds to a switch on its adjacency
matrix AX .

Definition 3.5. Let M ∈ {−1, 0, 1, 2}n×n and let degM ∈ Z
n with (degM )i =∑n

j=1 Mij be the sequence of its row-sums. We say that M is c-tight (for some
c ∈ N) if M is a symmetric matrix with zero diagonal and there exists a graph
W ∈ G(degM ,degM +1{i,j}) for some {i, j} ∈ (

[n]
2

)
such that ‖M−AW ‖1 ≤ 2c.

Recall the definition of weak p-stability and Eq. (1). We will use the
number of c-tight matrices to bound the number of auxiliary matrices.

Lemma 3.6. The number of matrices M ∈ {−1, 0, 1, 2}n×n that are c-tight and
degM ∈ [�, u] for a weakly p-stable [�, u] is at most
∣
∣
∣
{
M ∈ {−1, 0, 1, 2}n×n | degM ∈ [�, u]andMisc − tight

}∣
∣
∣ ≤ n2c · p(n) · |G(�, u)|.

Proof. We can obtain any c-tight M we want to enumerate as follows. First,
select, an appropriate {i, j} ∈ (

n
2

)
and a realization W ∈ G(�, u + 1{i,j}): by

weak p-stability, there are at most p(n) · |G(�, u)| such choices. Then, select
c symmetric pairs of positions where the adjacency matrix AW is changed to
−1 or +2 (while preserving symmetry). The latter selection can be made in at
most

(
n
2

)c · 2c different ways. �

The following lemma is crucial for proving the tightness of the auxiliary
matrices arising in the multicommodity flow. A switch operation on a matrix
takes a 2 × 2 submatrix and adds +1’s and −1’s to the two–two diagonally
opposed entries so that the row- and column-sums are preserved.

Lemma 3.7. (Based on Lemma 7.2 of Erdős et al. [4]) Suppose M ∈
{−1, 0, 1, 2}n×n is a symmetric matrix whose diagonal is zero. Suppose fur-
ther, that
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u v

Figure 3. The functions s(u, •) and s(v, •) pair the edges
incident on u and v, respectively. The orange arcs ( ) join
edges that are pairs in s(u, •). The cyan arcs ( ) join edges
that are pairs in s(v, •). The cyan loop ( ) corresponds to
the relation s(v, uv) = uv

(i) the number of +2 entries of M is at most 4,
(ii) the number of −1 entries of M is at most 2,
(iii) there exists V ⊆ [n] where M |V ×V contains every +2 and −1 entries of

M ,
(iv) there exists v ∈ V such that the +2 and −1 entries of M are all located

in the row and column corresponding to v,
(v) the row-sum of v in M |V ×V is minimal, and finally,
(vi) every row- and column sum in M |V ×V is at least 1 and at most |V | − 2.
Then, M is 5-tight.

Proof. By Lemma 7.2 of Erdős et al. [4], there exist at most two matrix
switches that turn M into a {0, 1} matrix with the possible exception of a sym-
metric pair of −1 entries. The −1’s remaining after the two matrix switches
can be removed by adding +1 to the pairs of negative entries. �
3.2. The Alternating-Trail Decomposition

We consider the set
(
[n]
2

)
in lexicographic order, which induces an order on the

set of edges of any graph defined on [n].

Definition 3.8. Given a set of edges ∇ ⊆ (
[n]
2

)
on [n] as vertices, let ∇v =

{e | v ∈ e ∈ ∇}. We call s : {(v, e) | v ∈ e ∈ ∇} → ∇ a pairing function on
∇ if s(v, •) : ∇v → ∇v defined as s(v, •) : e �→ s(v, e) is an involution, i.e.,
s(v, •) is it own inverse for any v ∈ [n]. (The bullet • is the placeholder for the
variable e which is the second argument of s.) The set of all pairing functions
on ∇ is denoted by Π(∇) (Fig. 3).

Definition 3.9. Let L(∇, s) be the following subgraph of the line graph of
([n],∇): join e, f ∈ ∇ if and only if e �= f and there exists a vertex v ∈ e ∩ f
such that s(v, e) = f (or equivalently, s(v, f) = e).

Lemma 3.10. Each connected component of L(∇, s) is a path or a cycle.

Proof. Every edge e = ij ∈ ∇ has at most two neighbors in L(∇, s), the edges
s(i, e) and s(j, e), thus the maximum degree in L(∇, s) is 2. �
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Remark 3.11. A cycle in a line graph corresponds to a closed trail in the
original graph. A path in a line graph corresponds to an open trail in the
original graph (which may in theory start and end at the same vertex, but
this will never be the case in our applications, see Lemma 3.21). Definition
3.9 generalizes a concept of Kannan et al. [9], where all of the components are
cycles.

Definition 3.12. Suppose ∇ ⊆ (
[n]
2

)
and s is a pairing function on ∇. Denote

by ps the number of connected components of L(∇, s), and let us define the
unique partition

∇ = W s
1 � W s

2 � · · · � W s
ps

, (5)

where each W s
k is the vertex set of a component of L(∇, s), and the sets

(W s
k )ps

k=1 are listed in the order induced by their lexicographically first edges.

Definition 3.13. For any set of edges W and s ∈ Π(∇), let

s|W = {(v, e) �→ s(v, e) |v ∈ e ∈ W and s(v, e) ∈ W} .

Subsequently, we also define

s − e = s|∇\{e}.

Remark 3.14. If W is the vertex set of a component of L(∇, s), then s|W ∈
Π(W ).

Definition 3.15. If ∇ = {ui−1ui | i = 1, . . . , r} is a set of r distinct edges, let
s = u0u1 . . . ur−1ur ∈ Π(∇) denote

s =
⋃

1≤i≤r−1

{
(ui, ui−1ui) �→ uiui+1, (ui, uiui+1) �→ ui−1ui

}
∪

∪
{{(u0, u0u1) �→ u0u1, (ur, ur−1ur) �→ ur−1ur} if u0 �= ur,

∅ if u0 = ur.

Lemma 3.16. Let ∇ = {ui−1ui | i = 1, . . . , r} and s = u0u1 . . . ur. Then,
• the walk u0u1 . . . ur is a closed trail if and only if L(∇, s) is a cycle, and
• the walk u0u1 . . . ur is an open trail if and only if L(∇, s) is a path.

In other words, the Eulerian trails on ∇ can be naturally identified with those
pairing functions s ∈ Π(∇) for which L(∇, s) is connected.

Proof. Trivial. �

Figure 4 shows a closed trail defined by a pairing function.
From now on, by slight abuse of notation, we will not distinguish between

s = u0u1 . . . ur as a pairing function and the trail it describes.

Definition 3.17. Let Z be an arbitrary graph on n-vertices and let ∇ ⊆ (
[n]
2

)

be an arbitrary subset of pairs of vertices. A pairing function s ∈ Π(∇) is said
to be Z-alternating or alternating in Z if for every v ∈ e ∈ ∇ either

• e is a unique solution to s(v, e) = e (the function s(v, •) has at most one
fixpoint), or
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Figure 4. An example for ∇ = ∇X,Y and an (X,Y )-
alternating s ∈ Π(∇) (see Definition 3.18). Red edges be-
long to X and blue edges belong to Y . There are 24 different
π ∈ Π(∇) that are (X,Y )-alternating. There is one such π
where L(∇, π) has 3 components (the two C6’s and a C4 in
the middle), and there are 6 cases where L(∇, π) has 2 com-
ponents. The black arcs represent an s such that L(∇, s) has
exactly one component, or, in other words, s defines a closed
Eulerian trail on ∇

• e ∈ ∇ ∩ E(Z) and s(v, e) ∈ ∇\E(Z), or
• e ∈ ∇\E(Z) and s(v, e) ∈ ∇ ∩ E(Z).

In other words, the trail s|W s
k

traverses edges in Z and Z in turn for any
k = 1, . . . , ps; furthermore, at any vertex v ∈ [n], there is at most one trail s|W s

k

which starts or ends at v. For example, if ij /∈ E(Z) and s(i, ij) = ij = s(j, ij),
then the trail s|{ij} consists of one non-edge of Z.

Furthermore, we say that s ∈ Π(∇) is Z-alternating with at most c ex-
ceptions if

|{{e, s(v, e)} v ∈ e ∈ ∇, s(v, e) �= e and
(
{e, s(v, e)} ⊆ ∇ ∩ E(Z) or {e, s(v, e)} ⊆ ∇ \ E(Z)

)}∣
∣
∣ ≤ c (6)

and s(v, •) has at most one fixpoint for every v ∈ [n]. We say that v is a site
of non-alternation of s in Z if {e, s(v, e)} is set of size 2 which is a subset of
either ∇ ∩ E(Z) or ∇ \ E(Z).

Definition 3.18. Let X,Y ∈ G(�, u), where [�, u] is a thin degree sequence in-
terval. Denote ∇X,Y = E(X)�E(Y ). An s ∈ Π(∇X,Y ) which is both X-
alternating and Y -alternating is called (X,Y )-alternating.

Lemma 3.19. Any pairing function s ∈ Π(∇X,Y ) is X-alternating if and only
if s is Y -alternating.

Proof. Trivial, since ∇X,Y \E(X) = E(Y )\E(X) and ∇X,Y ∩E(X) = E(X)\
E(Y ). �
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Definition 3.20. Given a degree sequence interval [�, u], for any X,Y ∈ G(�, u),
define

SX,Y =
{

s ∈ Π(∇X,Y )
∣
∣ s is (X,Y ) − alternating

}
.

Recall Definition 3.13. The following key decomposition lemma (KD-
lemma) will be referred to repeatedly in this paper.

Lemma 3.21. (Key decomposition lemma) Let [�, u] be a thin degree sequence
interval, and let X,Y ∈ G(�, u), s ∈ SX,Y . Then, s|W s

k
is (X,Y )-alternating,

and s|W s
k

describes an Eulerian trail on W s
k for any 1 ≤ k ≤ ps. If s|W s

k

describes an open trail, then its end-vertices are (by definition) distinct, and
the end-vertices of the trail s|W s

k
are disjoint from the end-vertices of any other

open trail s|W s
j
(j �= k).

Proof. We have |degX(v) − degY (v)| ≤ 1 for any v ∈ V . Thus, the involution
s(v, •) pairs the X-edges of ∇X,Y incident to v to the Y -edges of ∇X,Y incident
to v, with the exception of the at most one fixpoint of s(v, •). The closed trails
must have even length, because s(v, •) pairs X-edges to Y -edges at any v.

Clearly, if an open trail s|W s
i

both starts and ends at v, then s(v, •) has at
least two fixpoints, which is a contradiction. Similarly, we have a contradiction
if more than one trail terminates at some vertex v. Lastly, if s|W s

k
is an open

trail, then the degree degW s
k
(v) is even, except if v is one of the two end-vertices

of s|W s
k
, in which case degW s

k
(v) is odd. �

Lemma 3.22. For any thin degree sequence interval [�, u] on n vertices and any
two graphs X,Y ∈ G(�, u)

|SX,Y | =
∏

v∈[n]

⌈deg∇X,Y
(v)

2
⌉
!, (7)

where the right hand side is the product of factorials.

Proof. We have

|degE(X)\E(Y )(v) − degE(Y )\E(X)(v)| = |degX(v) − degY (v)| ≤ 1.

If degX(v) = degY (v), then we have (degX(v)−degX∩Y (v))! = (1
2 deg∇X,Y

(v))!
ways to choose s(v, •) such that it is an involution which maps edges of X to
edges of Y : if s(v, •) had a fixpoint, then by parity it must have had another,
too, which contradicts Definition 3.17.

If degX(v) = degY (v) + 1 and s(v, e) = e, then e ∈ E(X)\E(Y ) and
e is the only fixpoint of s(v, •). Therefore, there are degX(v) − degX∩Y (v) =
1
2 (deg∇X,Y

(v)+1) ways to choose the fixpoint, and (degX(v)−degX∩Y (v)−1)!
ways to choose the rest of the map s(v, •). �

Lemma 3.23. For any graph Z ∈ G(�, u) for a thin degree sequence interval
[�, u] and any ∇ ⊆ (

[n]
2

)
, we have
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∣
∣
∣
{

s ∈ Π(∇)
∣
∣ s isZ − alternating with at mostcexceptions

}∣
∣
∣

≤ n3c ·
∏

v∈[n]

⌈deg∇(v)
2

⌉
! (8)

Proof. There are at most n3c different choices for the set on the left hand side
of Eq. (6). If we fix the non-alternating pairs, then the number of remaining
choices at s(v, •) are still upper bounded by � 1

2 deg∇(v)�!, thus Eq. (8) holds.
�

3.3. The Precursor

So far, every proof of rapid mixing for the switch Markov chain which is based
on Sinclair’s method contains at its core a counting lemma (Greenhill [5]). The
purpose of the counting lemma is to enumerate the possible auxiliary struc-
tures and parameter sets from which the source and sink of any commodity
passing through a realization Z can be recovered from. The difficult technical
parts of the proofs are concerned with the maintenance and upkeep associ-
ated to these structures. To our surprise, for thin degree sequence intervals, by
slightly tweaking these structures, the arising technicalities can almost entirely
be reduced to Erdős et al. [4], and a major shortcut is taken by this paper by
reusing these parts. A relatively long, but mostly elementary Definition 3.25
will specify the properties that we expect from the auxiliary structures and
parameter sets borrowed from Erdős et al. [4]. In Sect. 4, we will use this frame-
work to recombine the borrowed parts into a proof for thin degree sequence
intervals.

The decomposition in Definition 3.12 is formally very similar to the de-
composition in Erdős et al. [4, Section 4.1]. Whenever the degree sequences of
X and Y are identical (∇ = ∇X,Y and s ∈ SX,Y ), the two decompositions are
actually identical. In any other case, for every two unit differences between the
degree sequences of X and Y we will utilize a hinge-flip or an edge-toggle in
the multicommodity flow between X and Y .

Let us now turn to defining the framework for the reduction to Erdős et
al. [4]. We need the following structure and in particular the matrix M to be
able to find an appropriate reduction which is compatible with the processes
of Erdős et al. [4].

Definition 3.24. Let M ∈ {0, 1, 2}n×n be a symmetric matrix with zero diag-
onal. For technical purposes, let us define the following set of triples:

DM =

⎧
⎪⎨

⎪⎩
(X,Y, s)

∣
∣
∣
∣
∣

where

⎧
⎪⎨

⎪⎩

X,Y graphs on [n], s ∈ SX,Y ,

{vw | v �= w, Mvw = 2} ⊆ E(X) ∩ E(Y ),
{vw | v �= w, Mvw = 0} ⊆ E(X) ∩ E(Y ).

⎫
⎪⎬

⎪⎭
.

(9)

The next definition collects a number of properties (of the multicommod-
ity flow and the auxiliary structures designed for the switch Markov chain) that
we want to preserve from Erdős et al. [4].
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Definition 3.25. We call the ordered triple (Υ,B, π) a precursor with parameter
c ∈ N, if the following properties hold. The objects ΥM , BM , and πM are
functions for any symmetric matrix M ∈ {0, 1, 2}n×n with zero diagonal, where
n ∈ N. We require that the domain of ΥM satisfies

dom(ΥM ) ⊆ DM , (10)

Furthermore, for any (X,Y, s) ∈ dom(ΥM ), let us define two degree sequences:

�X,Y =
(

min{degX(i),degY (i)}
)n

i=1
,

uX,Y =
(

max{degX(i),degY (i)}
)n

i=1
.

We require that ΥM (X,Y, s) is a sequence of graphs that forms a path con-
necting X and Y in the Markov graph G(�X,Y , uX,Y ). We require that πM and
BM is defined on

dom(πM ) = dom(BM ) = {(X, Y, s, Z) | Z ∈ ΥM (X, Y, s), (X, Y, s) ∈ dom(ΥM )}.

Moreover,

a. The length of ΥM (X,Y, s) is at most c · |∇X,Y |.
b. The size |(E(X)�E(Z)) \ ∇X,Y | ≤ c for any Z ∈ ΥM (X,Y, s).
c. The matrix M − AZ is c-tight for any Z ∈ ΥM (X,Y, s).
d. The pairing function πM (X,Y, s, Z) is a member of Π(∇X,Y ) and it is

alternating in Z with at most c exceptions.
e. πM (X,Y, s,X) = πM (X,Y, s, Y ) = s.
f. If L(∇X,Y , s) is connected, then L(∇X,Y , πM (X,Y, s, Z)) is also con-

nected.
g. The cardinality of

Bn =
{

BM (X,Y, s, Z) | Z ∈ ΥM (X,Y, s), M arbitrary,

(X,Y, s) ∈ dom(ΥM ), |V (X)| = n
}

is at most a constant times nc, i.e., |Bn| = O(nc).
h. The function

Ψ = {(Z,∇X,Y , πM (X,Y, s, Z), BM (X,Y, s, Z))

�→ (X,Y, s)
∣
∣ M is arbitrary, Z ∈ ΥM (X,Y, s)

}

is well defined, i.e., two different images in the co-domain are not assigned
to the same element from the domain of Ψ . �

Typically, the value of BM (X,Y, s, Z) will be a long tuple (an ordered set
of parameters). The exact value of c is not important here, the requirements
only impose a lower bound on its value. However, it is important to note that
c is a constant, independent even from the number of vertices n. Note also
that in applications of Definition 3.25, the matrix M will not be completely
arbitrary.
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Definition 3.26. A subset P is a precursor domain if it is a set of triples
(X,Y, s) such that X and Y have the same vertex set [n] for some n ∈ N

(where n may vary) and s ∈ SX,Y . We say that a precursor (Υ,B, π) is defined
on a precursor domain P if and only if for any n ∈ N and symmetric matrix
M ∈ {0, 1, 2}n×n with zero diagonal, we have

dom(ΥM ) ⊇ P ∩ DM .

Let us define two precursor domains:

Cthin =
{

(X,Y, s)
∣
∣
∣ s ∈ SX,Y , L(∇X,Y , s) is connected, and

‖degX −degY ‖∞ ≤ 1
}

, (11)

Rthin =
{

(X,Y, s)
∣
∣
∣ s ∈ SX,Y and ‖degX −degY ‖∞ ≤ 1

}
. (12)

The set Cthin describes the identifiers of the small parts from which the
whole multicommodity flow will be built from. In contrast, the multicommod-
ity flow was built in Erdős et al. [4] for each triple in Rthin directly.

Lemma 3.27. If there exists a precursor with parameter c which is defined on
Cthin, then there exists a precursor on Rthin with parameter 3c.

Proof. We will show that the precursor can be extended so that it is also de-
fined on Rthin without violating Definition 3.25. For any (X,Y, s) ∈ Rthin ∩
DM , we construct a path in the Markov graph of G(�X,Y , uX,Y ), where
[�X,Y , uX,Y ] is the smallest degree sequence interval that contains both degX

and degY . By the thinness of I, we have |�(i) − u(i)| ≤ 1 for every i ∈ [n].
According to Definition 3.12 and the KD-lemma (Lemma 3.21), any s ∈ SX,Y

partitions ∇X,Y = E(X)�E(Y ) into edge sets of (X,Y )-alternating trails, let
that decomposition be

∇X,Y = W s
1 � W s

2 � · · · � W s
ps

.

Let

GX,Y
k = X�

k⋃

i=1

W s
i ,

so that GX,Y
0 = X and GX,Y

ps
= Y . By definition, s|W s

k
is connected, so

(GX,Y
k−1 , GX,Y

k , s|W s
k
) ∈ Cthin for k = 1, . . . , ps. Let us confirm that GX,Y

k ∈
G(�, u). If sk is a closed trail, then the degree sequences of GX,Y

k and GX,Y
k−1 are

identical. If sk is an open trail whose end-vertices are v and w, then the degree
sequences of GX,Y

k and GX,Y
k−1 differ by 1 precisely on v and w; since these

end-vertices are distinct from any other end-vertices of another open trail sj ,
such a change of the degree of v and w not occur for any other k. Thus, the
degree v satisfies

degGX,Y
i

(v) ∈ {degX(v),degY (v)} for any i = 1, . . . , ps and any v ∈ [n],

(13)

and so degGX,Y
i

∈ [�X,Y , uX,Y ].
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It is easy to see that (GX,Y
k−1 , GX,Y

k , s|W s
k
) ∈ DM . If e ∈ E(X) ∩ E(Y ),

then e /∈ W s
i for any i. Similarly, if e ∈ E(X) ∩ E(Y ), then e /∈ W s

i for any i.
We may now define ΥM on Rthin recursively: concatenate the sequences

ΥM (GX,Y
k−1 , GX,Y

k , s|W s
k
) in increasing order of k to obtain

ΥM (X,Y, s) =
(
ΥM

(
GX,Y

k−1 , GX,Y
k , s|W s

k

))ps

k=1
, (14)

where the concatenation keeps only one of the last and first element of consec-
utive sequences. For Z ∈ ΥM

(
GX,Y

k−1 , GX,Y
k , s|W s

k

)
(take the maximal k such

that the relation holds) let

πM (X,Y, s, Z) =

(
k−1⋃

i=1

s|W s
i

)

∪ πM

(
GX,Y

k−1 , GX,Y
k , s|W s

k
, Z

)
∪

(
ps⋃

i=k+1

s|W s
i

)

(15)

BM (X,Y, s, Z) =
(
k − 1, BM

(
GX,Y

k−1 , GX,Y
k , s|W s

k
, Z

))
(16)

We claim that the extended functions provide a precursor on Rthin.
Let us check the non-trivial properties of Definition 3.25. Suppose that Z ∈
ΥM

(
GX,Y

k−1 , GX,Y
k , s|W s

k

)
. Then, degZ ∈ [�X,Y , uX,Y ], since degGX,Y

k−1
,degGX,Y

k
∈

[�X,Y , uX,Y ].

Checking Definition3.25(b). By Definition 3.25(b),
∣
∣
∣
(
E

(
GX,Y

k−1

)
�E(Z)

)
\

W s
k | ≤ c, and

(E(X)�E(Z)) \ ∇X,Y =

(

E
(
GX,Y

k−1

)
�E(Z)�

k−1⋃

i=1

W s
i

)

\ ∇X,Y

⊆
(
E

(
GX,Y

k−1

)
�E(Z)

)
\ W s

k , (17)

therefore, the LHS has cardinality at most c as well.

Checking Definition 3.25(b). The precursor property holds for Cthin and(
GX,Y

k−1 , GX,Y
k , sk

)
∈ Cthin ∩ DM , therefore, M − AZ is c-tight.

Checking Definition 3.25(d). By Eq. (17), πM (X,Y, s, Z) alternates in Z with
at most 2c extra exceptions on top of the c non-alternations of
πM

(
GX,Y

k−1 , GX,Y
k , s|W s

k
, Z

)
.

Checking Definition 3.25(g).
The cardinality of the range of BM (X,Y, s, Z) grows by a factor of at

most n2, due to the one extra integer k − 1.

Checking Definition 3.25(h). The last missing piece to proving that the ex-
tended functions are a precursor on Rthin is showing that Ψ is well defined
on the larger domain. By Definition 3.25(f), the connected components of
L(∇X,Y , πM (X,Y, s, Z)) determine W s

i and s|W s
i

for any i �= k, and also
πM (GX,Y

k−1 , GX,Y
k , s|W s

k
, Z) and W s

k .
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The number k − 1 is recorded in BM (X,Y, s, Z) (see Eq. (16)), which is
an argument of Ψ . Knowing k, we can select πM (GX,Y

k−1 , GX,Y
k , s|W s

k
, Z) from

the components of L(∇X,Y , πM (X,Y, s, Z)), see Eq. (15). Because the original
functions provide a precursor on Cthin, the original Ψ function is well defined,
so the following value:

Ψ

(

Z,W s
k , πM

(
GX,Y

k−1 , GX,Y
k , s|W s

k
, Z

)
, BM

(
GX,Y

k−1 , GX,Y
k , s|W s

k
, Z

)
)

=
(
GX,Y

k−1 , GX,Y
k , s|W s

k

)
.

is determined. Since

E(X) = E
(
GX,Y

k−1

)
�

k−1⋃

i=1

W s
i , E(Y ) = E(X)�∇X,Y , s =

ps⋃

i=1

s|W s
i
,

we have shown that Ψ is well defined even on the extended domain. �
In the proof of Lemma 3.27, we extensively used the fact that the degree

sequence intervals in I are thin.

Theorem 3.28. Let I be a set of weakly P -stable degree sequence intervals. If
there exists a precursor on Rthin with parameter c then the degree interval
Markov chain G(�, u) is rapidly mixing for any [�, u] ∈ I.
Proof. This proof is not new and fairly straightforward, but it is presented for
the sake of completeness. The core of this approach had already appeared in
the paper of Kannan et al. [9]. We will practically repeat the skeleton of the
proof of Erdős et al. [4] using the definitions of the precursor, which hides the
majority of the technical difficulties. We will take M = AX +AY , but we want
to be explicit about the dependence on X and Y even when M appears as an
index, so let X + Y denote the matrix AX + AY in this proof.

Let [�, u] ∈ I, where � and u are degree sequences on [n]. Let us define
the multicommodity flow f on the Markov graph of G(�, u): for every X,Y ∈
G(�, u) and s ∈ SX,Y , send σ(X)σ(Y )/|SX,Y | amount of flow on ΥX+Y (X,Y, s).
The total flow in f from X to Y sums to σ(X)σ(Y ).

Let us recall Eq. (3):

τG(�,u)(ε) ≤ ρ(f) �(f) (log |G(�, u)| − log ε) ≤ ρ(f) �(f)
((

n

2

)
− log ε

)
.

(18)

By Definition 3.25(a), �(f) ≤ c · (
n
2

)
. It only remains to show that ρ(f) is

polynomial in n. Continuing Eq. (2) with the substitution G = G(�, u):

ρ(f) = max
ZW∈E(G)

1
σ(Z) PrG(Z → W )

∑

X,Y ∈G(�,u), s∈SX,Y

ZW∈E(ΥX+Y (X,Y,s))

f(ΥX+Y (X,Y, s))

ρ(f) ≤ max
ZW∈E(G)

1
σ(Z) · 6/n4

∑

X,Y ∈G(�,u), s∈SX,Y

ZW∈E(ΥX+Y (X,Y,s))

σ(X)σ(Y )
|SX,Y |
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ρ(f) ≤ n4

6|G(�, u)| · max
ZW∈E(G)

∑

X,Y ∈G(�,u), s∈SX,Y

ZW∈E(ΥX+Y (X,Y,s))

1
|SX,Y |

ρ(f) ≤ n4

6|G(�, u)| · max
Z∈V (G)

∑

X,Y ∈G(�,u), s∈SX,Y

Z∈ΥX+Y (X,Y,s)

1
|SX,Y | (19)

According to Definition 3.25(h), given Z, ∇X,Y , πX+Y (X,Y, s, Z), and
BX+Y (X,Y, s, Z), the function Ψ determines (X,Y, s). Therefore, the relation
Z ∈ ΥX+Y (X,Y, s) is equivalent to saying that there exists a triple (∇, π,B)
such that (Z,∇, π,B) ∈ Ψ−1(X,Y, s):

ρ(f) ≤ n4

6|G(�, u)| · max
Z∈V (G)

∑

(Z,∇,π,B)∈Ψ−1(X,Y,s)

1
|SX,Y | (20)

Next, we use Lemma 3.22, which shows that |SX,Y | is determined by ∇X,Y ,
and its value does not depend directly on X or Y :

ρ(f) ≤ n4

6|G(�, u)| · max
Z∈V (G)

∑

(Z,∇,π,B)∈Ψ−1(X,Y,s)

∏

v∈[n]

(
⌈deg∇(v)

2
⌉
!
)−1

(21)

Given Z, the matrix M̂(X,Y,Z) (Definition 3.1) determines ∇X,Y = E(X)
�E(Y ): the edges that belong to ∇X,Y are precisely those where the sum of
the adjacency matrices AX + AY = M̂(X,Y,Z) + AZ takes 1. Furthermore,
by a property of the precursor, for any Z ∈ ΥX+Y (X,Y, s), we have degZ ∈
[�X,Y , uX,Y ], therefore,

deg
M̂(X,Y,Z)

= degAX+AY −AZ
= degX + degY −degZ ∈ [�X,Y , uX,Y ] ⊆ [�, u].

Now using that M̂(X,Y,Z) is c-tight, it follows from Lemmas 3.6 and 3.23
that

ρ(f) ≤ n4

6|G(�, u)| · max
Z∈V (G)

∑

B∈Bn

n5c · p(n) · |G(�, u)| ≤ 1
6
n5c+4 · p(n) · |Bn|,

(22)

where the right hand side is dominated by a polynomial of n (according to
Definition 3.25(g)). In conclusion, the mixing time in Eq. (18) is polynomial.

�

To prove Theorem 2.20, it only remains to construct a precursor on Cthin.
The next section proceeds with the construction in two separate stages.

4. Constructing the Precursor

We will construct a precursor on Cthin for any weakly P -stable thin set of
degree sequence intervals I in two stages. In the first stage, we show that
there exists a precursor on Cid (see Definition 4.1), and then we will extend
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this precursor to Cthin in the second stage. Then, we will apply Lemma 3.27
and Theorem 3.28 to prove Theorem 2.20.

4.1. Stage 1: Closed trails

Definition 4.1. Let us define

Cid =
{

(X,Y, s)
∣
∣
∣ s ∈ SX,Y , L(∇X,Y , s) is connected, and degX = degY

}
,

Rid =
{

(X,Y, s)
∣
∣
∣ s ∈ SX,Y and degX = degY

}
.

The graph L(∇X,Y , s) is a cycle for any (X,Y, s) ∈ Cid, because the degree
sequences of X and Y are identical. To handle this case, a large machinery was
developed in Erdős et al. [4]. However, there the range of auxiliary matrices
M was much smaller. Because of the larger range of auxiliary matrices in
the current paper, we had to introduce and explicitly define the precursor.
Therefore, we unfortunately need to repeat some parts of the proof of Erdős
et al. [4] to obtain those claims in the desired generality. The following lemma
collects the necessary technical lemmas proved in Erdős et al. [4].

Lemma 4.2. There exists a precursor on Cid with parameter c = 12.

Proof. Let (X,Y, s) ∈ Cid be arbitrary with X,Y ∈ G(d). Since s is an (X,Y )-
alternating closed trail, |∇X,Y | is even. In Erdős et al. [4], the path Υ (X,Y, s)
in the switch Markov graph is defined exactly when the degree sequences of
X and Y are identical and s ∈ SX,Y . We use the definition of Υ (X,Y, s) from
Erdős et al. [4] only when s ∈ SX,Y and L(∇X,Y , s) is a cycle, so when ps = 1.

First, let us recall that Υ (X,Y, s) in Erdős et al. [4] describes a sequence
of graphs such that each two consecutive graphs can be obtained from each
other by a switch. In Erdős et al. [4, Definition 4.2], for any s ∈ SX,Y , the path
Υ (X,Y, s) is composed by concatenating a number of Sweep sequences:

Υ (X,Y, s) =
((

Sweep(Gk
r , Ck

r )
)μk+1

r=1

)ps

k=1
,

where Ck
r are circuits and Gk

r+1 = Gk
r�Ck

r , where Gk
0 = X� �k−1

i=1 W s
i and

Gk
μk+1 = X� �k

i=1 W s
i , and W s

k = �μk+1
r=1 E(Ck

r ) and ∇X,Y = �ps

k=1W
s
k . It

is easy to check in Erdős et al. [4, Algorithm 2.1], that Sweep(Gk
r , Ck

r ) is a
sequence of switches such that each switch is incident with all four vertices on
V (Ck

r ).
When (X,Y, s) ∈ Cid ∩ DM , by definition L(∇X,Y , s) is connected and

ps = 1, thus we may define

ΥM (X,Y, s) =
(
Sweep(X� �r−1

i=1 Ci, Cr)
)μ+1

r=1
, (23)

where s decomposes ∇X,Y into (primitive) circuits (Cr)
μ
r=1 such that ∇ =

�μ
r=1E(Cr), see Erdős et al. [4, Lemma 5.13]. The circuit Cr defines a cyclical

order on its vertices, but Sweep takes a linear order, so we still need to select
the cornerstone, where the linear order starts to enumerate the vertices in
the given cyclical order. The choice of the cornerstone ([4, eq. (5.11)]) only
plays a role in proving that M̂(X,Y,Z) is close to the adjacency matrix of an
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appropriate graph in �1-norm. From the rest of Erdős et al. [4]’s point of view,
the cornerstone is arbitrarily chosen.

In this adaptation of the proof in Erdős et al. [4], the index M of
ΥM (X,Y, s) matters only in the choice of the cornerstones. The current proof
is slightly more general than that of Erdős et al. [4], because we not only con-
sider M = X + Y , but also any other M such that (X,Y, s) ∈ DM (recall
Eq. (9)). In the path ΥM (X,Y, s) incorporating Sweep(Gr, Cr) (see Eq. )23))
choose the cornerstone vr of the Sweep(Gr, Cr) as follows:

Let vr ∈ V (Cr) be the vertex which minimizes the row-sum in
(
M − AX�	r−1

i=1 Ci

) ∣
∣
∣
V (Cr)×V (Cr)

andvris lexicographically minimal with respect to this condition.

(24)

Since X,Y ∈ G(d) for some d, Lemma 2.6 of Erdős et al. [4] applies, which
claims that Sweep(X� �r−1

i=1 Ci, Cr) is a sequence of at most 1
2 |E(Cr)| − 1

switches that connect X��r−1
i=1 Ci to X��r

i=1Ci. Thus, the total length of the
switch sequence ΥM (X,Y, s) is at most 1

2 |∇X,Y |−1. For any Z ∈ ΥM (X,Y, s),
the degree sequences of X, Y and Z are identical, because switches preserve the
degree sequence. Note that for any j �= r, the sequence Sweep(X �j−1

i=1 Ci, Cj)
does not depend on the cornerstone vr.

For any Z ∈ ΥM (X,Y, s), the matrix M −AZ belongs to {−1, 0, 1, 2}n×n.
Recall Eq. (9). If (M − AZ)vw = 2, then vw is an edge in both X and Y ,
but vw is not present in Z as an edge. If, however, (M − AZ)vw = −1, then
vw /∈ E(X), E(Y ) and vw ∈ E(Z). With formulae,

{vw | (M − AZ)vw = +2} ⊆ E(X) \ E(Z) \ ∇X,Y (25)

{vw | (M − AZ)vw = −1} ⊆ E(Z) \ E(X) \ ∇X,Y (26)

respectively. In Erdős et al. [4, Lemma 2.7], the set R = RZ is defined, and it
has cardinality at most 4. By its definition, the set of edges in R is a superset
of (E(X)�E(Z)) \ ∇X,Y , which is the union of the right hands sides of Eqs.
(25) and (26). In short, every +2 and −1 entry of M − AZ is in a position
which is associated to an edge in R.

We will show that M − AZ is 7-tight. Lemma 8.2 in Erdős et al. [4] is
the analogue of this tightness statement, and its proof can be repeated for
this case with little to no modification. Suppose first that every edge in R is
incident on vr from Eq. (24): then, Erdős et al. [4, Lemma 7.1] claim that the
entries in AX +AY −AZ associated to edges in R consist of at most two pairs
of symmetric +2 entries, and at most one pair of symmetric −1 entries. By
Eqs. (25) and (26), M − AZ also contains at most two pairs of symmetric +2
entries, and at most one pair of symmetric −1 entries.

Recall that Z is obtained from X� �r−1
i=1 Ci through a series of switches

that only touch edges whose vertices are contained in V (Cr). Thus, the row-
and columns-sums of the submatrices

(M − AZ)|V (Cr)×V (Cr) and
(
M − AX�	r−1

i=1 Ci

) ∣
∣
∣
V (Cr)×V (Cr)

are identical. Let v and w be two distinct vertices in V (Cr).
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• If Mvw = 2, then by Eq. (25), vw ∈ E(X) and vw /∈ ∇X,Y , thus
(
M − AX�	r−1

i=1 Ci

)

vw
= (M − AX)vw = 2 − 1 = 1.

• If Mvw = 0, then by Eq. (26), vw /∈ E(X) and vw /∈ ∇X,Y , thus
(
M − AX�	r−1

i=1 Ci

)

vw
= (M − AX)vw = 0 − 0 = 0.

• If Mvw = 1 and vw ∈ E
(
X� �r−1

i=1 Ci

)
, then

(
M − AX�	r−1

i=1 Ci

)

vw
= 0.

• If Mvw = 1 and vw /∈ E
(
X� �r−1

i=1 Ci

)
, then

(
M − AX�	r−1

i=1 Ci

)

vw
= 1.

Every entry of
(
M − AX�	r−1

i=1 Ci

) ∣
∣
V (Cr)×V (Cr)

is either a 0 or a 1, and the

diagonal is identically zero. Since Cr is alternating in X� �r−1
i=1 Ci, there is at

least one 0 entry and one 1 entry in every row and every column. Therefore,
the row- and column-sums of (M −AZ)|V (Cr)×V (Cr) are at least 1 and at most
|V (Cr)| − 2. Moreover, Eq. (24) ensures that the row-sum corresponding to vr

in (M − AZ)V (Cr)×V (Cr) is minimal. By Lemma 3.7, M − AZ is 5-tight.
We will again use Erdős et al. [4, Lemma 2.7] to understand the more

detailed structure of RZ . If there is an edge in RZ which is not incident on
vr, then R falls under case (e) of Erdős et al. [4, Lemma 2.7]. Let Z�F be
the next graph in the Sweep sequence, where F is a C4. By Erdős et al.
[4, Lemma 2.7(d)], every edge in the set RZ�F is incident on vr. As previ-
ously, Lemma 3.7 implies that M − AZ�F is 5-tight, and thus M − AZ is
7-tight. �

Next, we will cite 3 lemmas from Erdős et al. [4]. The first of these lemmas
refers to the graph Z ′ = Z�R, which is defined in Erdős et al. [4, eq. (13)].
Note that the graph Z ′ is just a slight perturbation of Z.

Lemma 4.3. (Adapted from Lemma 5.15 in Erdős et al. [4]) For any Z ∈
Υ (X,Y, s) for s ∈ SX,Y , there exists πZ′ ∈ Π(∇) which defines a closed Euler-
ian trail on ∇X,Y which is alternating in Z ′ with at most 4 exceptions.

Lemma 4.4. (Lemma 5.21 in Erdős et al. [4]) For a fixed number n of vertices
of X and Y , the cardinality of the set of possible tuples B(X,Y,Z, s) is O(n8),
where s ∈ SX,Y and Z ∈ Υ (X,Y, s) are arbitrary.

Lemma 4.5. (Lemma 5.22 in Erdős et al. [4]) The quadruplet composed of the
graphs Z, ∇, πZ′ , and B(X,Y,Z, s) uniquely determines the triplet (X,Y, s).

We define πM (X,Y, s, Z) = πZ′ . Lemma 4.3 implies that πZ′ is alter-
nating in Z with at most 4 + 2|RZ | ≤ 12 exceptions. Let BM (X,Y, s, Z) be
identical with the parameter set B(X,Y,Z, s) defined in Erdős et al. [4]. Lem-
mas 4.3 to 4.5 ensure that every itemized requirement of Definition 3.25 holds,
similarly to the situation in Erdős et al. [4]. �Lemma4.2

Now we are at the point where Theorem 2.17 is reproved by the gen-
eralized machinery: the Markov chain G(d) (using switches only) is rapidly
mixing for any d from a P -stable set. By Lemmas 4.2 and 3.27, there exists
a precursor on Rid with parameter 3c, and the theorem follows from Remark
2.13 and Theorem 3.28.
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4.2. Stage 2: Open trails

Until now, the degree sequences of X and Y in (X,Y, s) ∈ Cthin were identical,
that is, s was a closed trail. In the second stage we deal with the case when
‖degX −degY ‖1 = 2 (while ‖degX −degY ‖∞ = 1). The following lemma is
actually a framework for reducing the construction of the precursor on Cthin to
Lemma 4.2. Note that we do not aim to optimize our estimate of the mixing
time, we are merely interested in bounding it polynomially. Surprisingly, to
construct the precursor on Cthin, it is sufficient to consider only those open
trails s that have odd length.

Informally, the forthcoming Lemma 4.6 states that if any open (X,Y )-
alternating trail of odd length can be cut up into a constant number of segments
that can be reassembled into at most two (X,Y )-alternating trails that are
either closed or can be closed by including v0vλ or v1vλ−1 to join the two
ends (alternation is not required there), then we can reduce the precursor
construction on Cthin to a precursor construction on Cid.

Lemma 4.6. Suppose there exists a precursor on Cid with parameter c, and let
c′ be a fixed integer. Suppose, moreover, that for any (X,Y, s) ∈ Cthin where
s = v0v1 . . . vλ ∈ Π(∇X,Y ) is an open trail with v0 <lex vλ for some odd integer
λ, there exist ∇1,∇2 and s1 ∈ Π(∇1), s2 ∈ Π(∇2) (where ∇2 = ∅ is allowed)
such that

1. ∇X,Y \{v0vλ} ⊆ ∇1 ∪ ∇2 ⊆
{∇X,Y ∪ {v0vλ} if v1 = vλ−1

∇X,Y ∪ {v0vλ, v1vλ−1} if v1 �= vλ−1
,

2. ∇X,Y �∇1�∇2 ⊆ {v0vλ},
3. if v1vλ−1 ∈ (∇1 ∪ ∇2)\∇X,Y , then v0vλ ∈ ∇X,Y and s1 or s2 is equal to

v0v1vλ−1vλv0.

Moreover, for both i = 1, 2:

(4) the line graph L(∇i, si) is an even cycle (or an empty graph),
(5) si − v0vλ − v1vλ−1 is (X,Y )-alternating,
(6) si − v0vλ is (X,Y )-alternating with 0 or 2 exceptions,
(7) si − v1vλ−1 is (X,Y )-alternating with 0 or 2 exceptions,
(8) the number of components of L(∇i, si) ∩ L(∇, s) is at most c′.

Then, there exists a precursor on Cthin with parameter 3c + 60c′ + 300.

We are aware that such a huge parameter is nowhere near a practical
bound. We made virtually zero effort to optimize the parameter.

Proof. Let (X,Y, s) ∈ Cthin be such that s = v0v1 . . . vλ and v0 <lex vλ. We
will now consider the case when λ is odd. As discussed earlier, the case of
even λ will be handled by a reduction to the odd case. For an odd λ, we must
have either degY = degX +1{v0,vλ} or degY = degX −1{v0,vλ}, because s is
(X,Y )-alternating and its length λ is odd.

Let ∇i and si ∈ Π(∇i) for i = 1, 2 be the set of edges and pairing
function assumed to exist in the statement of this lemma. Let M be such that
(X,Y, s) ∈ DM , and we will first define ΥM (X,Y, s), then we will also define
πM (X,Y, s, Z) and BM (X,Y, s, Z) for any Z ∈ ΥM (X,Y, s).



Approximate Sampling... 245

Let us modify the auxiliary matrix M . Recall from Definition 3.24 that
if ab ∈ ∇X,Y , then Mab = 1. By Assumption 3 of this lemma, if Mv1vλ−1 �= 1
and v1vλ−1 ∈ ∇i, then v0vλ ∈ ∇X,Y and Mv0vλ

= 1. Let us define

M
′
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M+A(v0vλ) if Mv0vλ
=0,

M − A(v0vλ) if Mv0vλ
=2,

M+A(v1vλ−1) − A(v0v1) − A(vλ−1vλ) if Mv0vλ
=1 and Mv1vλ−1=0 and v1 
= vλ−1,

M − A(v1vλ−1)+A(v0v1)+A(vλ−1vλ) if Mv0vλ
=1 and Mv1vλ−1=2 and v1 
= vλ−1,

M if Mv0vλ
=1 and Mv1vλ−1=1 or v1=vλ−1,

(27)

so that M ′
v0vλ

= 1. Also, M ′
v1vλ−1

= 1 if v1vλ−1 ∈ ∇1 ∪ ∇2. The row-sums of
M and M ′ are equal on every vertex except possibly on v0 and vλ.

By assumption (3), |∇i| is even. From Assumptions 1 and 2 it follows that
any vjvj+1 is contained in either ∇1 or ∇2, but not both, except if {vj , vj+1} =
{v0, vλ} or {vj , vj+1} = {v1, vλ−1}. Therefore, ∇1 ∩ ∇2 ⊆ {v0vλ, v1vλ−1}. Let
us start to extend the precursor. Without loss of generality, we may assume
that ∇1 �= ∅.

Case A1: ∇2 = ∅. Note that |∇X,Y | = λ is odd. Since |∇1| is even and
∇1 \∇X,Y ⊆ {v0vλ}, we must have v0vλ /∈ ∇X,Y ⇔ v0vλ ∈ ∇1. Also, v1vλ−1 ∈
∇1 ⇔ v1vλ−1 ∈ ∇X,Y . Let us slightly change X and Y , so that the symmetric
difference of the modified graphs X1, Y1 is exactly ∇1:

X1 =
{

X�v0vλ, ifs1is not alternating inX;
X, ifs1is alternating inX;

Y1 =
{

Y, ifs1is not alternating inX;
Y �v0vλ, ifs1is alternating inX;

Suppose s1 − v0vλ is not alternating in X: then v1vλ−1 ∈ ∇X,Y and the two
non-alternations of s1−v0vλ are located at v1 and vλ−1. But because s1−v0vλ−
v1vλ is alternating in X, we have |degE(X)∩∇X,Y

(v1)−degE(Y )∩∇X,Y
(v1)| = 2,

so s cannot possibly be (X,Y )-alternating, a contradiction. It follows that s1 is
alternating in X1 (and thus Y1): indeed, if s1 is not alternating in X, then the
two exceptions are the endpoints of v0vλ. Therefore, (X1, Y1, s1) ∈ Cid ∩DM ′ .

We extend the precursor to (X,Y, s) as follows.

ΥM (X,Y, s) =

{
X

togglev0vλ−−−−−−−→ ΥM ′(X1, Y1, s1) ifs1is not alternating inX

ΥM ′(X1, Y1, s1)
togglev0vλ−−−−−−−→ Y ifs1is alternating inX,

(28)

πM (X,Y, s, Z) =
{

s if Z = X,Y
πM ′(X1, Y1, s1, Z)|∇X,Y

if Z ∈ ΥM ′(X1, Y1, s1) \ {X,Y }
(29)



246 P. L. Erdős et al.

BM (X,Y, s, Z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, true) if Z = X

(0, false) if Z = Y

(
1, λ, v0vλ, v0vλ ∈ E(X), πM (X,Y, s, Z)�πM ′(X1, Y1,

s1, Z), BM ′(X1, Y1, s1, Z)
)

if Z ∈ ΥM ′(X1, Y1, s1) \ {X,Y }
(30)

Let us verify that Definition 3.25 holds for the extension. The defined
path ΥM (X,Y, s) in the Markov graph utilizes one edge-toggle, while the rest
of the steps are switches. When the edge-toggle occurs, the degree sequence
of the then current graph changes from degX to degY , because the rest of the
steps do not change the degree sequence.

If Z = X,Y , then M −AZ is 0-tight, because (X�Z)\∇ = (Y �Z)\∇ =
∅. Suppose next, that Z ∈ ΥM ′(X1, Y1, s1). If M ′ = M , then M −AZ is c-tight
by induction. If M ′ = M ± Av0vλ

, then note that the row-sums of M ′ − AX

are equal to the row-sums of M −AY , and the row-sums of M ′ −AY are equal
to the row-sums of M − AX . The degree sequence of Z is equal to degX or
degY , so M ′ − AZ is c-tight, and therefore, M − AZ is c + 1-tight.

The length of ΥM (X,Y, s) is at most 1 + c|∇1| = 1 + c|∇X,Y | + c, still
linear. The symmetric difference of X and Z outside ∇X,Y may also include
v0vλ, so the upper bound in Definition 3.25(b) increases by at most one.

The maximum number of exceptions to alternation of πM (X,Y, s, Z) in Z
is no more than the number of exceptions to alternation of πM ′(X1, Y1, s1, Z)
in Z, because v0vλ /∈ ∇X,Y . Since πM ′(X1, Y1, s1, Z) is a closed trail, even if
we restrict its domain from ∇1 to ∇X,Y , it remains connected. The range of
BM (X,Y, s, Z) increases by a polynomial multiplicative factor (of at most 4n4,
but this will be dwarfed by the bound in the next case).

Lastly, Ψ is still well defined. Trivially, if BM (X,Y, s, Z) = (0, true)
(alternatively (0, false)), then X = Z (Y = Z) and Y = Z�∇X,Y (X =
Z�∇X,Y ). If BM (X,Y, s, Z) = (1, · · · ), then we can recover πM ′(X1, Y1, s1, Z)
from πM (X,Y, s, Z) using their symmetric difference, and subsequently, we can
recover X1 and Y1 via Ψ , because we have a precursor on Cid. From these graphs
we can easily recover both X and Y , as BM (X,Y, s, Z) describes whether v0vλ

is in E(X) or not (and the same containment relation holds for E(Y ) because
v0vλ /∈ ∇X,Y ).

Case A2: ∇1 �= ∅ and ∇2 �= ∅. Task 1: constructing ΥM (X,Y, s). Obviously,
|∇i| ≥ 4 for i = 1, 2 (si is an even length closed trail), and |∇1 ∩ ∇2| ≤ 2, so
λ ≥ 5. The reduction is similar to the previous case, however, the construction
of the precursor on (X,Y, s) will be reduced to not one, but two elements of
Cid. Recall, that any vjvj+1 �= v0vλ, v1vλ−1 appears in exactly one of ∇1 and
∇2. If v1vλ−1 ∈ ∇X,Y ∪ ∇1 ∪ ∇2, then the edge v1vλ−1 appears in exactly two
of ∇X,Y , ∇1, ∇2. Observe, that for any vertex v ∈ [n], we have

degX(v) − degE(X)∩∇X,Y
+ degE(Y )∩∇X,Y

= degY (v). (31)
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Thus, for any v �= v0, vλ, we have

degE(X)∩∇X,Y
= degE(Y )∩∇X,Y

. (32)

Suppose that si − v0vλ is not alternating in X for i = 1 and i = 2.
Then, si −v0vλ is not alternating at v1 and vλ−1, which implies that v1vλ−1 ∈
∇1,∇2 and v1vλ−1 /∈ ∇X,Y . If, say, v1vλ−1 ∈ E(X), then si(v1, v1vλ−1) ∈
E(X), but si − v0vλ − v1vλ−1 is alternating (for i = 1, 2); thus, we have
degE(X)∩∇X,Y

(v1) = degE(Y )∩∇X,Y
(v1) + 2, so s cannot possibly be (X,Y )-

alternating, a contradiction. The case v1vλ−1 /∈ E(X) similarly leads to a
contradiction, therefore, at least one of s1 − v0vλ and s2 − v0vλ must be alter-
nating in X.

By swapping ∇1 with ∇2 and s1 with s2, we may assume that s1 − v0vλ

is alternating in X. We claim that

s2 − v0vλ is not alternating in X ⇐⇒ v1vλ−1 ∈ ∇1 ∩ ∇2. (33)

If v1vλ−1 ∈ ∇1,∇2, then v1vλ−1 /∈ ∇X,Y , and as before, we get a contradiction
if si − v0vλ is alternating in X for both i = 1, 2, so s2 − v0vλ must not
alternate in X. If s2 − v0vλ is not alternating in X, then v1vλ−1 ∈ ∇2. Thus,
if s2 − v0vλ is not alternating in X and v1vλ−1 /∈ ∇1, then v1vλ−1 ∈ ∇X,Y ,
and so |degE(X)∩∇X,Y

(v1) − degE(Y )∩∇X,Y
(v1)| = 2, a contradiction.

Let us define now 4 auxiliary graphs.

X1 =
{

X�v0vλ, if s1 is not alternating inX
X, if s1 is alternating inX

Y1 = X1�∇1

X2 =
{

Y1�v0vλ, if s2 is not alternating inY1

Y1, if s2 is alternating inY1

Y2 = X2�∇2.

By our assumptions, s1 is alternating in X1. Furthermore, from (33) it fol-
lows that s2 is alternating in X2. Because si defines an alternating trail in
Xi, we have degXi

= degYi
. Trivially, E(X1)�E(X) ⊆ {v0vλ}, and by the

assumptions of the lemma,

E(Y2)�E(Y ) ⊆ {v0vλ} ∪ (
E(Y1)�∇2�E(Y )

)

⊆ {v0vλ} ∪ (
E(X)�∇1�∇2�E(Y )

)

E(Y2)�E(Y ) ⊆ {v0vλ} ∪ (∇X,Y �∇1�∇2

)

E(Y2)�E(Y ) ⊆ {v0vλ}
We claim that

s1 is alternating inXors2 is alternating inY1 (or both). (34)

Suppose that s1 is not alternating in X and s2 is not alternating in Y1. Then,
X1 = X�v0vλ and X2 = Y1�v0vλ. Because s1 is not alternating in X, we
have v0vλ ∈ ∇1. Also, because s2−v1vλ−1 is not alternating in Y1 = X1�∇1 =
X�(∇1\{v0vλ}), s2 − v1vλ−1 is not alternating in X either. But this implies
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that |degX∩∇X,Y
(v0) − degY ∩∇X,Y

(v0)| ∈ {2, 3} (depends on whether v0vλ is
in ∇X,Y or not), which is a contradiction.

From now on, we assume that X1 = X or X2 = Y1. In other words, at
least one of the following three symmetric differences is an empty set:

E(X)�E(X1), E(Y1)�E(X2), E(Y2)�E(Y ) ⊆ {v0vλ}. (35)

If exactly one of them is an empty set, then observe that

2 = ‖ degX − degY ‖1 ≡ ‖ degX − degX1
‖
1
+ ‖ degY1

− degX2
‖
1
+ ‖ degY2

− degY ‖
1

≡ 2 + 2 (mod 4),

which is a contradiction. Thus, there are exactly two empty sets on the left
hand side of Eq. (35). From degXi

= degYi
for i = 1, 2, it follows that

degXi
,degYi

∈ {degX ,degY } for i = 1, 2. (36)

In other words, we have shown that (Xi, Yi, si) ∈ Cid ∩ DM ′ for i = 1, 2, and
we may proceed with the reduction. By (34), we have three cases:

ΥM (X, Y, s)

=

⎧
⎪⎪⎨

⎪⎪⎩

X
togglev0vλ−−−−−−−→ ΥM′ (X1, Y1, s1) → ΥM′ (X2, Y2, s2) → Y if s1 is not alternating inX,

X → ΥM′ (X1, Y1, s1)
togglev0vλ−−−−−−−→ ΥM′ (X2, Y2, s2) → Y if s2 is not alternating inY1,

X → ΥM′ (X1, Y1, s1) → ΥM′ (X2, Y2, s2)
togglev0vλ−−−−−−−→ Y otherwise,

where the → signs simply represent joining two sequences (repeated graphs are
dropped from the sequence). By the above observations about the symmetric
differences and (36), ΥM (X,Y, s) is indeed a path in the desired Markov graph.

M ′ − AZ is c-tight by the properties of the precursor on Cid. Therefore,
M − AZ is (c + 3)-tight.

Task 2: Constructing πM (X,Y, s). We have to construct a connected πM (X,Y,
s, Z) from the current πM ′(Xi, Yi, si, Z) (where Z ∈ ΥM ′(Xi, Yi, si)). No-
tice that L(∇X,Y , s) − ∇i (delete ∇i from the vertex set of the line graph)
has at most c′ + 1 components, since L(∇X,Y , s) is a path. Furthermore,
L(∇i, πM ′(Xi, Yi, si))−(∇i\∇X,Y ) has at most 2 components (since |∇i\∇X,Y |
≤ 2). For Z ∈ ΥM ′(Xi, Yi, si), let

σZ = πM ′(Xi, Yi, si, Z)|∇X,Y
∪ s|∇X,Y \∇i

.

The graph L(∇X,Y , σZ) has at most c′ +3 components because πM ′(Xi, Yi, si)
|∇X,Y

and s|∇X,Y \∇i
are composed of at most 2 and c′ + 1 trails, respectively.

Note, that

σXi
= si|∇X,Y

∪ s|∇X,Y \∇i
,

and thus, |σXi
�s| ≤ 2(c′ + 3).

We claim that there exists σ′
Z ∈ Π(∇X,Y ) such that σ′

Z ⊇ σZ (extends
σZ) and |σ′

Z�σZ | ≤ 2(c′ + 3). Let Ux = {xy ∈ ∇X,Y | (x, xy) /∈ dom(σZ)} be
the set of unpaired edges incident to x. In total, we have

∑
x∈[n] |Ux| ≤ 2(c′+3).



Approximate Sampling... 249

It is sufficient now to define σ′
Z(x, •) on Ux for every x ∈ [n]. To do so, observe

that:

|Ux| = deg∇X,Y
(x) − |{(x, xy) ∈ dom(πM ′(Xi, Yi, si)|∇X,Y

)}|
−|{(x, xy) ∈ dom(s|∇X,Y \∇i

)}|.
Then, the parity of |Ux| satisfies:

|Ux| ≡ deg∇X,Y
(x) + |{(x, xy) ∈ dom(s|∇X,Y \∇i

)}| (mod 2)

|Ux| ≡ deg∇X,Y
(x) + |{xy ∈ ∇X,Y \ ∇i | s(x, xy) ∈ ∇X,Y \ ∇i}| (mod 2)

|Ux| ≡ deg∇X,Y
(x) + Ix=v0 · Iv0v1 /∈∇i

+ Ix=vλ
· Ivλ−1vλ /∈∇i

(mod 2)

From the last congruence it follows that |Ux| is even for x �= v0, vλ, so we may
choose σ′

Z(x, •) such that it pairs the edges in Ux. If v0v1 /∈ ∇i, then |Uv0 | is
even, and we may choose σ′

Z(v0, •) such that it pairs the edges in Ux (note
that σ′

Z(v0, v0v1) = σZ(v0, v0v1) = v0v1). If v0v1 ∈ ∇i, then |Uv0 | is odd and
by definition πM ′(Xi, Yi, si, Z) cannot map (v0, v0v1) to v0v1; thus, σ′

Z(v0, •)
can pair all edges of Uv0 except one, which σ′

Z(v0, •) will map to itself. Define
σ′

Z(vλ, •) on Uvλ
analogously. In any case, L(∇X,Y , σ′

Z) is composed of a path
and a certain number of cycles, in total still no more than c′ + 3 components.

Furthermore, we claim that there exists πZ ∈ Π(∇X,Y ) such that |πZ�σ′
Z |

≤ 4(c′ +3) and L(∇X,Y , πZ) is connected. The pairing function σ′
Z defines one

open trail and at most 2(c′ + 3) − 1 closed trails in ∇X,Y , and these trails
partition the edge set of the connected trail s. Any closed trail intersecting
the open trail can be incorporated into the open trail by changing the pairing
function such that the symmetric difference increases by 4.

Let the pairing function associated to Z be

πM (X,Y, s, Z) = πZ .

We know that σZ alternates with at most 3c exceptions in Z, since |(E(Xi)
�E(Z))\∇i| ≤ c and πM ′(Xi, Yi, si) alternates in Z with at most c exceptions.
Since |πZ�σZ | ≤ 6(c′+3), we get that πZ alternates in Z with at most 9(c′+3)
exceptions.

Task 3: Constructing BM (X,Y, s). Let us identify the ends of intervals of ∇i

edges in a pairing function ϑ:

TZ(ϑ) = {(x, xy) | xy ∈ ∇i and ((x, xy) /∈ dom(ϑ) or ϑ(x, xy) /∈ ∇i)}
CZ(ϑ) = {min

lex
V (L) | L is a component in L(∇i ∩ ∇X,Y , ϑ)},

where min
lex

V (L) stands for the lexicographically minimal edge in V (L). Re-

tracing the steps by which πZ is obtained, we have

|TZ(πZ)| ≤ |TZ(σZ)| + 6(c′ + 3) ≤ ∣
∣TZ(πM ′(Xi, Yi, si)|∇X,Y

∣
∣ + 6(c′ + 3)

≤ 8 + 6(c′ + 3), (37)

|CZ(πZ)| ≤ |CZ(σZ)| + 6(c′ + 3) ≤ ∣
∣CZ(πM ′(Xi, Yi, si)|∇X,Y

∣
∣ + 6(c′ + 3)

≤ 2 + 6(c′ + 3). (38)
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Let

BM (X,Y, s, Z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0, Z ≡ X) if Z = X,Y(
2, λ, v0vλ, v0vλ ∈ E(X), v1, vλ−1, (si|∇X,Y

∪
s|∇X,Y \∇i

)�s, TZ(πZ), CZ(πZ), i, πZ�σZ ,
πM (X,Y, s, Z)|∇i

�πM ′(Xi, Yi, si, Z), BM ′(Xi, Yi, si, Z)
)

if Z ∈ ΥM ′(Xi, Yi, si) \ {X,Y }
Every set listed in BM (X,Y, s, Z) has at most a constant size, so the size of
the range of BM increases by a polynomial factor of n (of at most n60c′+240).
It remains to show that Ψ is still well defined. This is trivial if Z = X,Y .
Suppose from now on, that Z ∈ ΥM ′(Xi, Yi, si). Since L(∇X,Y , πZ) is composed
of paths and cycles, TZ determines the ends of intervals of consecutive ∇i

edges in the trails determined by πZ , and CZ determines those L(∇X,Y , πZ)
components whose vertex set is a subset of ∇i. Therefore, ∇X,Y , TZ , CZ and
πZ determine ∇i. Thus, πZ |∇i

= πM (X,Y, s, Z)|∇i
can be determined, and in

turn πM ′(Xi, Yi, si, Z) can be reconstructed too. Since we have a precursor on
Cid, we get

(Xi, Yi, si) = Ψ(Z,∇i, πM ′(Xi, Yi, si, Z), BM ′(Xi, Yi, si, Z)).

Notice, that X−v0vλ = X1−v0vλ and Y −v0vλ = Y2−v0vλ. Since v0vλ ∈ E(Y )
if and only if v0vλ ∈ E(X)�∇X,Y , both X and Y are determined by (Xi, Yi).
Furthermore, σZ |∇X,Y \∇i

= s|∇X,Y \∇i
is already determined, and together

with si|∇X,Y
and the auxiliary parameters, they determine s.

We have now defined the precursor on any (X,Y, s) ∈ Cthin where s is an
open trail of odd length. Suppose from now on that (X,Y, s) ∈ Cthin where s
is an open trail of even length.

Case B: s = v0v1 . . . vλ−1vλ is an open trail of even length and v0 = vλ−1.
We will perform exactly one hinge-flip {vλ−2v0, vλ−2vλ}. This case is very
similar to when s is an open trail of odd length and ∇2 = ∅, so we will give
the construction, but checking the precursor properties is left to the diligent
reader. Let

s1 = v0v1 . . . vλ−2vλv0

∇1 = ∇X,Y �{vλ−2v0, vλ−2vλ}

M ′ =

⎧
⎨

⎩

M + A(vλ−2vλ) if Mvλ−2vλ
= 0

M − A(vλ−2vλ) if Mvλ−2vλ
= 2

M if Mvλ−2vλ
= 1

X1 =
{

X�{vλ−2v0, vλ−2vλ}, if s1 is not alternating in X
X, if s1 is alternating in X

Y1 =
{

Y, if s1 is not alternating in X
Y �{vλ−2v0, vλ−2vλ}, if s1 is alternating in X

ΥM (X,Y, s) =

{
X

hinge-flip−−−−−−→ ΥM ′(X1, Y1, s1) if s1 is not alternating in X

ΥM ′(X1, Y1, s1)
hinge-flip−−−−−−→ Y if s1 is alternating in X
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We define πM (X,Y, s, Z) simply by replacing the (vλ−2, vλ−2vλ) with (vλ−2,
vλ−2v0) in the pairing ΥM ′(X1, Y1, s1), remove (vλ, vλ−2vλ) from the pairing
(and create the self-paired edges at v0 and vλ). Defining a suitable BM (X,Y,
s, Z) is straightforward and it is also left to the reader.

Case C: s = v0v1 . . . vλ−1vλ is an open trail of even length and v0 �= vλ−1. Let
s′ = s−vλ−1vλ and observe that we have already defined ΥM (X,Y �vλ−1vλ, s′)
in the previous subsection, since L(∇ − vλ−1vλ, s′) is a path of odd length.

However, choosing ΥM (X,Y, s) = ΥM (X,Y �vλ−1vλ, s′) → Y violates
the precursor property because the degree at vλ−1 may become too small or
too large when the edge-toggle is performed on v0vλ−1 (the rest of the steps
are switches). Fortunately, this is very easy to fix: simply replace the edge-
toggle on v0vλ−1 in the previous definitions of ΥM with the hinge-flip between
v0vλ−1 and vλ−1vλ to obtain ΥM (X,Y �vλ−1vλ, s′). Since every other step in
ΥM (X,Y �vλ−1vλ, s′) is a switch, this ensures that for any Z ∈ ΥM (X,Y, s)
we have degZ ∈ {degX ,degY }.

We also need to define πM and BM . Since the odd length case already de-
scribes a trail from v0 to vλ−1, we can join vλ−1vλ to the edge ending the trail
at vλ−1 to obtain a suitable πM (X,Y, s, Z) (in the derived bounds, this essen-
tially increases c′ by 1). Furthermore, we also need to store in BM (X,Y, s, Z)
that the identify of vλ−1 and vλ. Since for any Z ∈ ΥM (X,Y, s). As a result, the
range of BM (X,Y, s, Z) increases by a polynomial factor (also note that the
parameter of the precursor has to be increased by a constant to accommodate
vλ−1vλ).

The well definedness of Ψ follows, because the constant number of dif-
ferences compared to the previous case can be all stored in BM (X,Y, s, Z)
without violating Definition 3.25(g).

One can say that this is proof is not very detailed, but we think it is not
worth describing the details, because it would be an almost verbatim repetition
of the first two cases. �

5. Proof of Theorem 2.20.

Let I be a set of weakly P -stable thin degree sequence intervals. By Lemma
4.2, there exists a precursor with parameter c = 12 on Cid. We want to apply
Lemma 4.6 to prove that there exists a precursor on Cthin with some fixed
parameter. Showing this, Theorem 2.20 follows: the precursor can be extended
to Rthin by Lemma 3.27, which is sufficient for proving rapid maxing of G(�, u)
on every (�, u) ∈ I by Theorem 3.28. Suppose (X,Y, s) ∈ Cthin. If s is a closed
trail, then (X,Y, s) ∈ Cid, on which we have already defined a precursor.

Suppose from now on that s = v0v1 . . . vλ is an open trail of odd length
(possibly 1). By the KD-lemma (Lemma 3.21), v0 �= vλ. To apply Lemma 4.6,
it is enough to define s1 and s2, since their domains determine ∇1,∇2. The
premises of Lemma 4.6 are elementary and trivial to check once s1 ∈ Π(∇1)
and s2 ∈ Π(∇2) are given. We will finish the proof by a complete case analysis,
where we provide a suitable s1 and s2 for each case.
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We will prove that Lemma 4.6 holds for Cthin with c′ = 2. We will dis-
tinguish between 8 main cases, 3 of these have 2 subcases. The cases will be
distinguished based on the relationship between v0, v1, vλ−1, vλ and s. Recall
that v0 �= vλ. On the corresponding figures, by exchanging X and Y , we may
suppose that v0v1 ∈ E(X). Thus, the edges of X are drawn with solid lines,
edges of Y with dashed lines, and edges not contained in ∇X,Y are dotted.
Those pairs that are contained in ∇X,Y are joined by thick solid or dashed
lines. The similarly thick dash-dotted lines represent (X,Y )-alternating seg-
ments of the trail s. Recall, that a trail may visit a vertex multiple times, but
it can only traverse an edge at most once. The trails traversed by s1 and s2

are colored in blue and red, respectively.

Case 1. First, we assume that v0vλ /∈ ∇X,Y .

s1 = v0v1 . . . vλ−1vλv0,

s2 = ∅.

v0v1

v2

vλ vλ−1

vλ−2

From now on, we assume that v0vλ ∈ ∇X,Y . In other words, the open
trail s ∈ Π(∇X,Y ) traverses v0vλ, that is, there exists 2 ≤ j ≤ λ − 2 such that
{v0, vλ} = {vj , vj+1}.

Case 2. We assume in this case that j is even.

Case 2a. If vj = v0 and vj+1 = vλ, then let

s1 = v0v1 . . . vj−1vj ,

s2 = vj+1vj+2 . . . vλ−1vλ.

v0

v1vj−1 vj+2

vλ

vλ−1

Case 2b. If vj+1 = v0 and vj = vλ, then let

s1 = v0v1 . . . vj−1vjvλ−1vλ−2

. . . vj+2vj+1,

s2 = ∅.

v0

v1vj+2 vj−1

vλ

vλ−1

From now on, we assume that j is odd.

Case 3. If vj = vλ and vj+1 = v0, then let

s1 = v0v1 . . . vjvj+1,

s2 = vjvj+1 . . . vλ−1vλ.

v0

v1vj+2 vj−1

vλ

vλ−1

From now on, we assume that vj = v0 and vj+1 = vλ.
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Case 4. If v1 = vλ−1, then let

s1 = v1v2 . . . vjvj+1v1,

s2 = vjvj+1 . . . vλ−2vλ−1v0.

v0

v1vj−1 vj+2

vλ

From now on, we assume that v1 �= vλ−1.

Case 5. If v1vλ−1 /∈ ∇X,Y .

s1 = vjvj−1 . . . v2v1vλ−1

vλ−2 . . . vj+1vj ,

s2 = v0v1vλ−1vλv0.

v0

v1

v2

vj−1 vj+2

vλ

vλ−1

vλ−2

From now on, we assume that v1vλ−1 ∈ ∇X,Y . In other words, the open
trail s ∈ Π(∇X,Y ) traverses v1vλ−1, that is, there exists 1 ≤ k ≤ λ − 1 such
that {v1, vλ−1} = {vk, vk+1}.

First, we assume that k < j; the case k > j will follow easily by symmetry.

Case 6. Suppose that k is even.

Case 6a. If vk = v1 and vk+1 = vλ−1, then let

s1 = vk+1vk+2 . . . vj−1vj

vj+1vλ−1,

s2 = v0v1 . . . vk−1vkvλ−1

vλ−2 . . . vj+2vj+1vj .

v0

v1

v2

vj−1 vj+2

vλ

vλ−1

vλ−2

vk−1 vk+2

Case 6b. If vk+1 = v1 and vk = vλ−1, then let

s1 = v0v1 . . . vk−1vkvλv0,

s2 = vkvk+1vk+2 . . . vj−1v0

vλvj+2 . . . vλ−2vλ−1.

v0

v1

v2

vj−1 vj+2

vλ

vλ−1

vλ−2

vk+2 vk−1
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Case 7. Suppose that k is odd. Case 7a. If vk = v1 and vk+1 = vλ−1, then let

s1 = vk+1vk+2 . . . vj−1v0vλvj+2 . . . vλ−2vλ−1,

s2 =
{

v0v1v2 . . . vk−1vkvk+1vλv0 if k > 1,
v0v1v2vλv0 if k = 1.

v0

v1

v2

vj−1 vj+2

vλ

vλ−1

vλ−2

vk−1 vk+2

Case 7b. If vk+1 = v1 and vk = vλ−1, then let

s1 = v0v1v2 . . . vk−2vk−1

vλ−1vλ−2

. . . vj+2vj+1vj ,

s2 = vkvk+1vk+2 . . .

vj−1vjvj+1vλ−1.

v0

v1

v2

vj−1 vj+2

vλ

vλ−1

vλ−2

vk+2 vk−1

Case 8. The remaining case is when k > j. By taking the reverse order v′
i =

vλ−i for i = 0, . . . , λ, we have λ − k − 1 < λ − j − 1, so one of the previous
subcases of Case 6 or Case 7 applies to s′ = v′

0v
′
1 . . . v′

λ−1v
′
λ. Clearly, the

relevant properties of si are preserved by reversing the order of the indices.
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