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Abstract. We study a new variant of connected coloring of graphs based
on the concept of strong edge coloring (every color class forms an induced
matching). In particular, an edge-colored path is strongly proper if its
color sequence does not contain identical terms within a distance of at
most two. A strong proper connected coloring of G is the one in which
every pair of vertices is joined by at least one strongly proper path. Let
spc(G) denote the least number of colors needed for such coloring of a
graph G. We prove that the upper bound spc(G) ≤ 5 holds for any 2-
connected graph G. On the other hand, we demonstrate that there are
2-connected graphs with arbitrarily large girth satisfying spc(G) ≥ 4.
Additionally, we prove that graphs whose cycle lengths are divisible by
3 satisfy spc(G) ≤ 3. We also consider briefly other connected colorings
defined by various restrictions on color sequences of connecting paths.
For instance, in a nonrepetitive connected coloring of G, every pair of
vertices should be joined by a path whose color sequence is nonrepetitive,
that is, it does not contain two adjacent identical blocks. We demonstrate
that 2-connected graphs are 15-colorable, while 4-connected graphs are
6-colorable, in the connected nonrepetitive sense. A similar conclusion
with a finite upper bound on the number of colors holds for a much wider
variety of connected colorings corresponding to fairly general properties
of sequences. We end the paper with some open problems of concrete and
general nature.
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1. Introduction

Let G be a simple connected graph with colored edges. A path P in G is
proper if no two consecutive edges of P have the same color. An edge coloring
of G (not neccessarily proper in the usual sense) is called a proper connected
coloring if every pair of distinct vertices is joined by at least one proper path.
The least number of colors needed for such a coloring of a graph G is denoted
by pc(G).

In the proper edge coloring of a graph, in a traditional sense, each pair
of edges with a common vertex is colored differently, so every path is proper.
Hence, by the well-known theorem of Vizing [20],

pc(G) ≤ χ′(G) ≤ Δ(G) + 1.

It is also easy to see that for every tree T , we have pc(T ) = χ′(T ) = Δ(T ).
However, if G is a 2-connected graph,1 then we already have pc(G) ≤ 3, and
this is tight. This somewhat surprising fact was proved by Borozan, Fujita,
Gerek, Magnant, Manoussakis, Montero, and Tuza in [3] (see also [14]), where
the proper connected coloring was introduced, in analogy to the well-studied
topic of rainbow connected coloring, invented by Chartrand, Johns, McKeon,
and Zhang in [6] (see [15]). In the later concept, as you can imagine, the point
is that each pair of vertices should be connected by a rainbow path, i.e., one in
which no two edges have the same color. In a similar way, one may investigate
a variety of coloring concepts involving various restrictions on color patterns
allowable on connecting paths (see [4,5,7]).

In the present paper, we consider a new variant of connected coloring,
inspired by the concept of strong edge coloring of graphs, invented by Fouquet
and Joliviet [10], and, independently, by Erdős and Nešetřil [9]. In the strong
edge coloring of a graph G, every color class should form an induced matching,
which means that not only every pair of adjacent edges is colored differently,
but also every pair of edges adjacent to some other common edge should be
differently colored (see [8] for a recent survey on this topic). In particular, in a
strong edge coloring of a path, any sub-path with at most three edges must be
rainbow. We will call such paths strongly proper. Analogously, an edge-colored
graph is called strongly proper connected if any two vertices are connected by
at least one strongly proper path. The least number of colors needed for such
a coloring of a graph G is denoted by spc(G) and referred to as the strong
proper connection number of G.

In much the same way as for the traditional edge coloring, we have the
trivial bound spc(G) ≤ χ′

s(G), where χ′
s(G) is the strong chromatic index of G,

defined naturally as the least number of colors needed for a strong edge coloring
of G. However, this parameter is more mysterious than its classical archetype
χ′(G). In particular, a long-standing conjecture by Erdős and Nešetřil [9] states
that χ′

s(G) ≤ 5
4Δ(G)2. This bound is tight (if true), as is demonstrated by the

family of blowups of C5. Currently best general result, obtained by Hurley, de

1A graph G is k-connected if it cannot be disconnected by deleting k − 1 vertices. Similarly,
G is k-edge-connected if it cannot be disconnected by deleting k − 1 edges.
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Joannis de Verclos, and Kang [11], states that the bound χ′
s(G) ≤ 1.772Δ(G)2

holds for sufficiently large Δ(G) (see [8] for a survey of many other results
toward the Erdős-Nešetřil conjecture).

In this paper, we prove a finite upper bound on spc(G) for 2-connected
graphs. Our main result reads as follows.

Theorem 1. Every 2-connected graph G satisfies spc(G) ≤ 5.

We do not know if this upper bound is tight. Clearly, spc(G) ≥ 3 for any
graph of diameter at least 3. Curiously, it is not so easy to produce examples
of 2-connected graphs demanding four colors. However, we provide a general
construction of a family of graphs with spc(G) = 4 and arbitrarily large girth.
Moreover, this family contains infinitely many bipartite graphs.

Theorem 2. For every d ≥ 3, there exists a 2-connected graph Gd with girth
at least d, such that spc(Gd) ≥ 4.

We complement these results by proving that graphs with all cycle lengths
divisible by 3 are 3-colorable in a strongly proper connected sense.

Theorem 3. Let G be a 2-connected graph. If the length of every cycle in G is
divisible by 3, then spc(G) ≤ 3.

The proof of this result is simple, but it provides a good illustration of
the main idea used in the proof Theorem 1. The main tool is based on the ear
decomposition of graphs. Recall that an open ear decomposition of a graph G
is a sequence P1, . . . , Ph of subgraphs of G that partition the set of edges of
G, where P1 is a cycle and every Pi, with 2 ≤ i ≤ h, is a path that intersects
P1 ∪ · · · ∪Pi−1 in exactly its endpoints. Each Pi is called an ear. We will make
use of following well-known result of Whitney [21].

Theorem 4. (Whitney, 1932) A graph G with at least two edges is 2-connected
if and only if it has an open ear decomposition.

A paradigm of colorful connectedness can be studied for other types of
colorings as well. As postulated by Brause, Jendrol’, and Schiermeyer [4], one
may fix any property P of words (sequences), and then investigate the cor-
responding P-connected coloring, defined by the condition that every pair of
vertices is joined by a path whose color sequence has the property P. Consider
for example the following, particularly intriguing property of sequences, which
is close (in some sense) to the one stemming from the strong edge coloring of
graphs.

A sequence of the form c1c2 · · · cnc1c2 · · · cn is called a repetition. An edge-
colored path is nonrepetitive if its color sequence does not contain a repetition
as a block, i.e., a subsequence of consecutive terms. An edge-colored graph G is
nonrepetitively connected if every pair of distinct vertices is joined by at least
one nonrepetitive path. Denote by nrc(G) the least number of colors needed
for such a coloring of G.

Is it true that nrc(G) is finitely bounded for 2-connected graphs? Notice
that it is not at all obvious that nrc(P ) is finite for every path P . However,
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by a 1906 result of Thue [18], every path can be nonrepetitively colored using
just three colors. Therefore, there is a chance for a finite bound and we prove
that this is indeed true.

Theorem 5. Every 2-connected graph G satisfies nrc(G) ≤ 15 and every 4-
connected graph G satisfies nrc(G) ≤ 6.

Let us mention that the notion of nonrepetitive coloring of graphs, as
introduced by Alon, Ha�luszczak, Grytczuk, and Riordan in [1], can be consid-
ered more generally, in a way similar to the usual proper coloring of graphs
(in both, edge or vertex version). A recent survey by Wood [22] collects many
interesting results on this topic.

The proof of Theorem 5 is based on known results on spanning trees
in k-connected graphs. It can be easily extended to more general scenarios
involving fairly universal properties of words. We discuss these issues in the
final section of the paper, where we state a general conjecture on P-connected
coloring of graphs. Proofs of all our results are collected in the next section.

2. Proofs of the Results

2.1. 2-Connected Graphs with Cycle Lengths Divisible by 3
We start with a simple proof that 2-connected graphs whose all cycle lengths
are divisible by 3 satisfy spc(G) ≤ 3.

Proof of Theorem 3. Let G be a 2-connected graph. By Theorem 4, G has an
open ear decomposition, which we denote as ED = (P1, . . . , Ph). Let Gi be the
subgraph of G consisting of the first i ears of ED, that is, Gi = P1 ∪ · · · ∪ Pi.
For each ear Pi, let si and ti be the endpoints of Pi. First, we present a claim
concerning the lengths of Pi and some other paths in Gi.

Claim 1. Let Pi be an ear from ED. Then, the length of Pi and the lengths of
all paths between si and ti in the graph Gi−1 are divisible by 3 (see Fig. 1).

Proof. The statement is obvious for i = 1, so assume that i > 1. The graph
Gi−1 is 2-connected, so there exist two paths, Q and R, from si to ti, such
that Q∩R = {si, ti}. Let q and r be the lengths of Q and R, respectively, and
let p be the length of Pi. The paths Q and R form a cycle in Gi−1, so q + r
must be divisible by 3. Moreover, Q and Pi, as well as R and Pi, form a cycle
in Gi. Therefore, we have

q + r = q + p = r + p ≡ 0 (mod 3).

This implies that q+r+p = 0 (mod 3), and therefore, q = r = p = 0 (mod 3),
which completes the proof of the claim. �

Let us define a sequence of oriented graphs D0,D1, . . . , Dh, such that D0

is empty and for each i > 0, Di is obtained from Di−1 by adding the path Pi,
oriented from si to ti. Let D be the last oriented graph in this sequence, i.e.,
D := Dh. Now, we will color the edges of D with 3 colors. In this coloring,
every directed path will be strongly proper. It is easy to see that the digraph
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Figure 1. An exemplary ear decomposition ED =
{P1, P2, P3, P4} of some graph with cycles of length divisible
by 3 (P1 is a cycle with 12 edges, P2 is a path with 6 edges,
P3 and P4 are paths with 3 edges)

D is strongly connected (there is a directed path between any ordered pair of
vertices in D), so our coloring will give us even more than the required edge
coloring of G.

Let C be a 3-coloring of the edges of D by colors {1, 2, 3}, and let P be
a directed path in D. We say that P has a canonical pattern if the sequence
of colors of P forms a block (subsequences of consecutive terms) in the infinite
periodic sequence (1, 2, 3, 1, 2, 3, 1, 2, 3, . . .). Note that a path P has a canonical
pattern if and only if P is strongly proper.

Claim 2. There exists a 3-coloring C of the edges of D, such that for every
restriction Ci of C to the subgraph Di, 1 ≤ i ≤ h, the following properties
hold:

(i) For every v ∈ V (Di), all edges going out of v have the same color.
(ii) For every v ∈ V (Di), all edges going into v have the same color.
(iii) Every path in Di has a canonical pattern.
(iv) Every digraph Di is strongly connected.

Proof. We will construct the coloring C by inductively defining Ci, for i =
1, 2, . . . , h. The base case is when D1 is a directed cycle of length divisible by
3. We color the edges of D1 consecutively with colors 1, 2, 3, obtaining thereby
the coloring C1. The properties (i)–(iv) are obviously satisfied.

Let 2 ≤ i ≤ h be fixed and suppose that we have the coloring Ci−1 of the
edges of Di−1 satisfying properties (i)–(iv). Recall that Di is obtained from
Di−1 by adding the path Pi from si to ti. We will construct the coloring Ci

from Ci−1 by coloring the edges of Pi as follows (see Fig. 2):
(a) the first edge of Pi has the same color as the edges going out of si in

Di−1,
(b) the remaining edges of Pi are colored in such a way that Pi has a canonical

pattern (for example, if the first edge has color 2, then the second one
has color 3, the third one 1, the fourth one 2, and so on). We will prove
that Ci satisfies properties (i)–(iv).
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Figure 2. A coloring of Pi (a fragment of the graph Di−1 is
dashed, the path Pi is drawn by normal lines, and the numbers
1, 2, 3 mean colors of edges)

Properties (i) and (ii) remain obviously satisfied for vertices from V (Di)
\V (Pi). They are also satisfied for all internal vertices of Pi (all vertices of the
path excluding the two end vertices), as they have both indegree and outdegree
equal to 1 in Di, and for si by (a). For ti, property (i) is of course still satisfied,
but to see that property (ii) holds, let us take a closer look at paths from si
to ti. We know that all edges going out of si in Di have the same color [by
(i)], that all paths from si to ti in Di have a canonical pattern [for paths from
Di−1 from (iii), for Pi from (b)] and that the lengths of Pi and of every path
from si to ti in Di−1 are divisible by 3 (from Claim 1). Therefore, both Pi and
all other paths from si to ti in Di end with the same color, so all edges going
into ti have the same color and property (ii) is satisfied also for ti.

Now, consider the property (iii). It remains clearly satisfied for paths
which do not contain edges from Pi.

Now, consider some path R from u to v, where u, v ∈ V (Di), which
contain all edges from Pi (see Fig. 3a). It means that R consists of some path
R1 from u to si (maybe empty), the path Pi and some path R2 from ti to v
(maybe empty). Let Q be a path from si to ti in the graph Di−1. From (iii),
we have that the path: R1 ∪ Q ∪ R2 has a canonical pattern, from (i) that the
first edge of Pi has the same color as the first edge of Q and from Claim 1
that the lengths of Pi and Q are divisible by 3. Therefore, R has a canonical
pattern and property (iii) remains satisfied in this case.

Next, let us consider a path R from u to v, where both u and v are
internal vertices of Pi (see Fig. 3b). First, assume that R is contained in Pi

(that is, the order of the vertices on the path Pi is as follows: si, u, v, ti). Then,
R has a canonical pattern from (b). Therefore, let us assume the opposite; it
means that the order of the vertices on the path Pi is: si, v, u, ti. Let us call
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Figure 3. The property (iii)—every path R from Di has a
canonical pattern

the parts of R as follows: let R1 be a part of R from u to ti, let R2 be a part
of R from ti to si, and let R3 be a part of R from si to v. Note that R1 and
R3 are parts of Pi and R2 is a path from ti to si in Di−1. Let W be some path
from si to ti in Di−1. Let w1 be a vertex from W , such that the distance from
w1 to ti on W is congruent to the same value modulo 3 as the distance from u
to ti on Ri. Let W1 be a part of W from w1 to ti. Because Pi has a canonical
pattern [from (b)], and also, W and W1 ∪ R2 have canonical patterns [from
(iii)], and R1 ends with the same color as W1 [from (ii)], we have that the path
R1 ∪ R2 has a canonical pattern. Similarly, considering w2 as any vertex from
V (Di−1) such that w2 belongs to some path from si to ti and the distance
from si to w2 is congruent to the same value modulo 3 as the distance from
si to v, we get that the path R2 ∪ R3 has a canonical pattern. Therefore, the
whole path R has a canonical pattern and property (iii) remains satisfied also
in this case.

The last case is when one endpoint of a path is from V (Di−1) and the
second one is an internal vertex of P . Carrying out analogous considerations
as in the previous case, we get that the property (iii) is fulfilled here as well,
which completes the proof of (iii).

For property (iv), it suffices to notice that adding a directed ear to a
strongly connected digraph Di−1 preserves strong connectivity for Di.

Therefore, the proof of the claim is complete by induction. �

We constructed the coloring C of the edges of D, such that every path in
D has a canonical pattern. It means that every path of D is strongly proper.
Therefore, G with coloring C is strongly proper connected. The proof of The-
orem 3 is complete. �
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Figure 4. An exemplary ear decomposition ED =
{P1, P2, P3, P4} of some graph, where the thickest lines de-
pict P1 and the thinnest lines depict P4 (P1 is a cycle with 10
edges, P2 is a path with 4 edges, P3 is a path with 3 edges,
and P4 is a path with 2 edges)

2.2. 2-Connected Graphs Satisfy spc(G) ≤ 5
Proof of Theorem 1. Recall that a graph H is called minimally 2-connected
if it is 2-connected, but it looses this property if we remove any single edge.
Let H be a minimally 2-connected spanning subgraph of G. We will construct
an edge coloring of H with at most 5 colors that makes H strongly proper
connected. Note that it suffices to get the assertion of the theorem, as the
remaining edges from E(G)\E(H) can be colored arbitrarily without affecting
validity of the coloring.

From Theorem 4, we know that H has an open ear decomposition. Simi-
larly to the proof of Theorem 3, we will color the graph while adding ears, but,
this time, the order of adding ears will be important. Let ED = (P1, . . . , Ph)
be an open ear decomposition of H in which, in every step, we add the longest
possible ear (see Fig. 4). Let Hi be the subgraph of H consisting of the first
i ears of ED, that is, Hi = P1 ∪ · · · ∪ Pi. For an ear Pi, let si and ti be the
endpoints of Pi.

First, we present some claims concerning the properties of the ears from
ED. Claim 3 shows that we will process ears from the longest to the shortest.

Claim 3. The ears of ED are in the opposite order to the number of their
edges.

Proof. Let us assume the opposite. Let Pi ∈ ED be an ear with the smallest
possible index, such that Pi has more edges than Pi−1. Note that i > 1. From
the definition of ED, we know that both endpoints of Pi are internal vertices
of some ears with smaller indices (maybe two different). We consider three
cases.
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Case 1: None of si and ti are internal vertices of Pi−1. Therefore, both
si and ti belong to some ears with indices smaller than i−1. It means that we
could add a longer ear Pi to the graph Hi−2 instead of Pi−1, which contradicts
the definition of ED.

Case 2: Both si and ti are internal vertices of Pi−1. It means that instead
of Pi−1, we could add to the graph Hi−2 a longer ear composed of the part of
Pi−1 from one endpoint to si, the path Pi, and the part of Pi−1 from ti to the
second endpoint of Pi−1, which again contradicts the definition of ED.

Case 3: Exactly, one endpoint of Pi is an internal vertex of Pi−1. Assume
that it is si. Therefore, ti belongs to some ear with index smaller than i − 1.
It means that to the graph Hi−2, we could add an ear composed of the part
of Pi−1 from one endpoint to si and the path Pi, which has more edges than
Pi−1. It contradicts the definition of ED again.

The proof of the claim is complete. �

Let us recall that H is minimally 2-connected, so every Pi has at least
one internal vertex (no Pi may be a single edge). From the definition of ED,
we know that {si, ti} = Pi ∩ Hi−1. Claim 4 shows that for every ear Pi, its
endpoints cannot be adjacent in the graph Hi−1.

Claim 4. Vertices si and ti are not adjacent in the graph Hi−1.

Proof. Let us assume the opposite. There is an edge e = siti in Hi−1. There-
fore, there is some ear Pj ∈ ED, where j < i, containing e. According to the
ordering of ears in ED, in every step, we added the longest possible ear to
our graph. But instead of Pj , we could add a longer ear (Pj\e) ∪ Pi, which
contradicts the definition of ED. �

Claims 5 and 6 show the relationship between positions of the endpoints
of ears with two or three edges.

Claim 5. Let Pi and Pj be ears from ED, such that both have two edges or
both have three edges, where j < i. Then, no endpoint of Pi can be an internal
vertex of Pj .

Proof. Let us assume the opposite. From Claim 4, we know that the endpoints
of any ear cannot be adjacent in H. Therefore, the only possibility here is
that exactly one endpoint of Pi, say si, is an internal vertex of Pj . Without
loosing the generality of our consideration, we can assume that si is adjacent
to tj in H. Let r be some vertex from Hj−1 different than sj . Let R be the
shortest path between ti and r in the graph Hi−1 which contains edges only
from E(Hi−1)\E(Hj) (see Fig. 5). Notice that R may be an empty path (if
ti ∈ V (Hj−1)); otherwise, it has at least one edge. Now, consider the ear
(Pj\(sitj)) ∪ Pi ∪ R. It has more edges than Pj and has both endpoints in
V (Hj−1), so it could be added to the graph Hj−1. This means that in the jth
step, we did not add the longest possible ear, which contradicts the definition
of ED. �
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Figure 5. An example of an impossible case, where one
endpoint of an ear Pi with 3 edges is an internal vertex of
some other ear Pj with 3 edges (Hj−1 is dashed, thick lines
depict Pj , normal lines depict Pi, and dotted lines depict R)

Claim 6. Let Pi and Pj be ears from ED, such that j < i, Pi has two edges,
Pj has three edges, and one endpoint of Pi, say si, is an internal vertex of Pj .
Then, ti (the second endpoint of Pi) must be an endpoint of Pj not adjacent
to si in Hj .

Proof. Without loosing the generality of our consideration, we can assume that
sj is adjacent to si in Hj . Note that if ti is the same as tj , then our assumptions
about the order of the ears in ED are satisfied; see Fig. 6. Therefore, it remains
to show that ti cannot be different from tj . There are two cases to consider. If ti
were a vertex of Pj different from tj , then vertices si and ti would be adjacent
in the graph Hi−1, which contradicts Claim 4. If ti were from Hi−1\Pj , it would
mean that we added the ear Pj to Hj−1 when we could add a longer ear. To
construct this ear, we could take the shortest path between ti and some vertex
from Hj−1 different than tj which contains edges only from E(Hi−1)\E(Hj)
and append to it (Pi ∪ Pj\(sisj))) (the construction is analogous as in the
proof of Claim 5). This contradicts the definition of ED. Therefore, the proof
of the claim is complete. �

Let i∗ be a number defined, such that Pi∗ is the last ear in ED with at
least three edges. Let us define a sequence of oriented graphs D0,D1, . . . , Di∗ ,
such that D0 is empty and for each i > 0, Di is obtained from Di−1 by adding
the path Pi, oriented from si to ti. Take D to be the last oriented graph in
this sequence, i.e., D := Di∗ .

Now, we will color the edges of D with 5 colors, such that for every
two vertices u, v, there is a strongly proper directed path from u to v, which
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Figure 6. Ears Pi, Pj ∈ ED, such that Pi has 2 edges, Pj

has 3 edges (Hj−1 is dashed, thick lines depict Pj , and normal
lines depict Pi)

is a strengthening of the property required from edge coloring of H. In the
following, claim (iii) is the crucial part, while (i), (ii), and (iv) are invariants
needed in an inductive proof.

Claim 7. There exists a coloring C, such that for every i ≤ i∗, the restriction
of Ci to the edges of Di satisfies the following properties:

(i) For every v ∈ V (Di), all edges going out of v have the same color.
(ii) For every v ∈ V (Di), all edges going into v have the same color, other

than the color of edges going out of v.
(iii) For every two vertices u, v ∈ V (Di), there exists a strongly proper path

from u to v and from v to u.
(iv) For every edge uv ∈ E(Di), such that u and v are not internal vertices

of the same ear with 3 edges, and for every two directed edges xu, vy ∈
E(Di), we have Ci(xu) �= Ci(vy).

Proof. We will construct the coloring C by inductively defining Ci for i =
1, 2, . . . i∗.

The base case of the induction is when D1 is a directed cycle. It suffices to
color the edges of D1 greedily, making sure that each edge is colored differently
than the two preceding and the two following edges.

Now, consider any i ≤ i∗ and suppose that we already have the coloring
Ci−1 which satisfies properties (i)–(iv) (for i − 1). For convenience, let us
consider a directed path P ′

i obtained from Pi by directing it from si to ti and
adding two edges wsi and tix from Di−1, where w is any vertex incoming to si
and x is any vertex outgoing from ti in the digraph Di−1 (such vertices must
exist in Di−1 because of property (iii), see Fig. 7).
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Figure 7. Constructing a path P ′
i for a given directed graph

Di−1 and a path Pi

Now, we will construct Ci from Ci−1 by coloring the internal edges of P ′
i ,

such that
(a) the second edge of P ′

i has the same color as the edges going out of si in
Di−1,

(b) the penultimate edge of P ′
i has the same color as the edges going into ti

in Di−1,
(c) the remaining edges of P ′

i are colored with a different color than the two
preceding and the two following edges on P ′

i (note that it is possible, as
we have five colors in use).
We will prove that Ci satisfies properties (i)–(iv).
It is clear that properties (i) and (ii) remain satisfied for vertices from

V (Di)\V (Pi). They are also satisfied for si and ti by (a) and (b), and for the
other vertices of Pi, as they have indegree and outdegree 1 in Di.

Now, consider the property (iii). It remains satisfied if u, v ∈ V (Di−1). If
both u and v are internal vertices of Pi, then (iii) holds by (c).

Now, consider the case when u ∈ V (Di−1) and v is an internal vertex
of Pi. The required u − v path is obtained by composing a strongly proper
path Q from u to si in Di−1 [note that Q exists by (iii) applied for i − 1]
with a fragment of Pi from si to v. We will show that this path is strongly
proper. Since both Q and a fragment of Pi are strongly proper, we only need
to exclude color conflicts between four2 edges around si. First edge of Pi has
different color than the last edge of Q by (a) and (ii). Second edge of Pi is
colored differently than the last edge of Q by (c). For the remaining pair note
that from Claim 5, we know that si is not an internal vertex of any ear Pj

2This statement is technically incorrect if Q has one or zero edges. However, we ignore this
case as it is much easier.
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with 3 edges, where j < i. It follows that (iv) holds for the last edge of Q in
the coloring Ci−1. It follows that last but one edge of Q is colored differently
than edges going out of si in Di−1, and hence, by (a), there is no conflict with
the first edge of Pi.

In the remaining case, when u is an internal vertex of Pi and v ∈ V (Di−1),
the argument is analogous (the required path is obtained by composing a
fragment of Pi from u to ti and a strongly proper path from ti to v). Therefore,
the proof of (iii) is complete.

Now, consider the property (iv) that involves three edges xu, uv, and vy.
It remains satisfied if both u and v are in V (Di)\V (Pi). If both u and v are
internal vertices of Pi, we only need to consider the case when Pi has at least
4 edges; in this case, (iv) follows directly from (c). If u = si or v = ti, the
property (iv) follows directly from (c) again. Now, consider the case v = si
or u = ti. Let y′ be an out-neighbor of v in Di−1 and x′ be an in-neighbor
of u in Di−1 (note an easy case when x′ = x and y′ = y). By the induction
assumption (iv), it holds that Ci−1(x′u) �= Ci−1(vy′), and by (a) and (b), it
follows that Ci(vy) = Ci−1(vy′) and Ci(xu) = Ci−1(x′u), which completes the
proof of (iv).

Therefore, the proof of the claim is complete by induction. �
An internal edge of a path is any edge whose endpoints are internal

vertices of the path. Before coloring the edges of H, we need to orient ears
with two edges. Let Pi be an ear with two edges. We pick s′

i and t′i from
{si, ti}, such that no edge going into s′

i is an internal edge of an ear with three
edges and no edge going out of t′i is an internal edge of an ear with three edges.
Such a choice is possible, because by Claim 6 if one of the vertices from {si, ti}
is an internal vertex of some ear Pj with 3 edges, then the other one is an
endpoint of Pj , and hence, by Claim 5, it is not an internal vertex of any other
ear with 3 edges. We will think of the ear Pi as oriented from s′

i to t′i.
Now, let C be a 5-coloring of edges of D given by Claim 7. Define a 5-

coloring C ′ of edges of H, such that C ′(uv) = C(uv) for every edge uv ∈ E(D)
and for every vertex v, such that v is an internal vertex of an ear Pi with two
edges, let C ′(s′

iv) be the color of edges going out of s′
i in C and C ′(vt′i) be the

color of edges going into t′i in C. Note that this definition is correct, since, by
Claim 5, s′

i and t′i are vertices of D, and it is unambiguous by Claim 7 (i) and
(ii). We will show that C ′ is the desired coloring of H.

Consider any two vertices u, v ∈ V (H). We need to find a strongly proper
path between u and v. If both u and v are in V (D), such a path exists by Claim
7 (iii). If u, v /∈ V (D), pick i and j, such that u is an internal vertex of the ear
Pi and v is an internal vertex of Pj (where Pi and Pj have two edges). In this
case, the desired path between u and v is obtained by taking a strongly proper
path from t′i to s′

j in D (which exists by Claim 7 (iii)) and appending to it the
edge ut′i at the start and the edge s′

jv at the end; let us denote the constructed
path by P . We will show that P is strongly proper. If P has less than three
edges, it follows directly from Claim 7 (ii), so we assume otherwise. By Claim
7 (ii) the first and second edge have different colors, and last and last but one
edge on P also have different colors. By the choice of t′i, the second edge of P
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Figure 8. A graph Gd with strong proper connection number
equal to 4

is not an internal edge of any ear with 3 edges, so by Claim 7 (iv) the first and
third edge on P have different colors. Similarly, by the choice of s′

j , the last
but one edge on the constructed path is not an internal edge of any ear with
3 edges, so P is strongly proper by Claim 7 (iv).

Note that the same argument applies when u /∈ V (D) and v ∈ V (D)
or u ∈ V (D) and v /∈ V (D), except that only one end of P needs to be
considered. This proves that H, together with the constructed coloring C ′, is
strongly proper connected, so the proof of Theorem 1 is complete. �

2.3. Proof of the Lower Bound spc(Gd) ≥ 4
Proof of Theorem 2. Let d ≥ 3 and let a, b ≥ max{3, d/3} be fixed integers.
Consider a graph Gd consisting of three edges, x1w1, x2w2, x3w3, and six paths
P1, P2, . . . , P6, such that P1 and P2 go from w1 to x2, P3, and P4 go from w2

to x3, P5 and P6 go from w3 to x1. Moreover, P1, P3, P5 have length 3a + 1
and P2, P4, P6 have length 3b (see Fig. 8).

Suppose for the contrary that spc(Gd) ≤ 3 and fix an edge coloring of
Gd with colors 1, 2 and 3 that makes it strongly proper connected. Choose
vertices v1, v2, . . . , v6 such that for each i, vi is a vertex from Pi at distance
at least 2 from both ends of Pi, and the path with four edges closest to vi
is strongly proper. Note that such a choice is possible, since the edge-colored
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graph is strongly proper connected, e.g., for each i choose a vertex zi that is
at distance at least 4 from both ends of Pi and take vi to be the third vertex
on a strongly proper path from zi to x1.

Now define a directed graph D on vertices v1, . . . , v6, such that there is
an arc vivj if and only if there exists a strongly proper path from vi to vj in Gd

with the canonical color pattern (a block of the sequence (1, 2, 3, 1, 2, 3, . . .)).
Note that each strongly proper path that uses three colors must exhibit this
canonical pattern in one of two possible directions. Since the edge-colored
graph G is strongly proper, it follows that D contains a tournament as a
directed subgraph. Now, consider two cases.

Case 1: (D is acyclic) Note that, in this case, the vertices of D can be
reordered as u1, u2, . . . , u6, so that for i ∈ {1, 2, . . . , 5}, there exists a strongly
proper path from ui to ui+1 with the canonical color pattern. Let W be the
walk obtained by joining all those paths (in order from u1 to u6). Note that no
edge on W appears two times in a row, because if the last edge on the path from
ui−1 to ui was the same as the first edge on the path from ui to ui+1, then by
the choice of vi’s the last but one and the second edge of those paths would also
be the same, which contradicts the fact that both those paths have canonical
color pattern; it also follows that W is strongly edge-colored. Moreover, each
vertex from {v1, v2, . . . , v6} appears on W exactly once, as, otherwise, there
would be a cycle in D. This is a contradiction with the structure of Gd, i.e.,
there is no walk in Gd that visits each vertex from {v1, v2, . . . , v6} exactly once
and does not contain two consecutive occurrences of some edge.

Case 2: (D contains a directed cycle u1u2 . . . uk). Consider a closed walk
W obtained by joining strongly proper paths with the canonical color pattern
that go from u1 to u2, from u2 to u3, and so on, up to a path from uk to u1.
Note that, like in the previous case, W is strongly edge-colored and no edge
of Gd appears on W two times in a row.

Let S = {x1, w1, x2, w2, x3, w3} and consider consecutive occurrences of
vertices from S on W . Note that up to natural symmetries (i.e., renaming xi

to wi and vice versa or rotating names, so that xi, wi become xi+1 and wi+1)
there are two cases: either (2a) at some point w1 is followed by x2, followed
again by w1 or (2b) xi is always followed by wi, and w1 is followed by x2, w2

by x3 and w3 by x1.
In case (2a), note that the first occurrence of w1 must be preceded by x1

and the second occurrence of w1—followed by x1 (because otherwise P1 and
P2 would form a cycle with the canonical color pattern, which is impossible as
their total length is not divisible by 3). However, it implies that the edge x1w1

occurs on W twice at distance exactly 3a + 3b + 2, which is a contradiction,
because colors on W must repeat every three edges.

In the remaining case (2b) a part of W from the first occurrence of the
edge x1w1 to its second occurrence must be a strongly edge-colored cycle; de-
note it by C. Since the length of C must be divisible by 3, it contains either ver-
tices {v1, v3, v5} or {v2, v4, v6}. Let u1, u2, u3 be vertices from {v1, v2, . . . , v6}
outside C.
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Note that ui may not be incident to both incoming and outgoing arcs in
D. Indeed, if that was the case, then a part of C, together with paths from C to
ui and from ui to C with canonical color pattern, would form a strongly 3-edge-
colored cycle with length not divisible by 3, which is a contradiction. However,
this implies that D does not contain an arc between two of the vertices from
{u1, u2, u3} (i.e., there can be no arc between two vertices with outdegree 0),
which contradicts the fact that D contains a tournament. Therefore, the proof
is complete. �
2.4. Nonrepetitive Connected Coloring of Graphs

In this subsection, we prove that 4-connected graphs satisfy nrc(G) ≤ 6 and
2-connected graphs satisfy nrc(G) ≤ 15. Actually, we will derive these bounds
as simple consequences of more general results.

Theorem 6. Let G be a graph containing two edge-disjoint spanning trees.
Then, nrc(G) ≤ 6.

Proof. Let T1 and T2 be two spanning trees of G, such that E(T1)∩E(T2) = ∅.
Let r be a common root of these trees. Let Ei(T1) be the set of edges at distance
i from the root r. Therefore, E0(T1) consists of the edges of T1 incident to r,
E1(T1) contains the edges of T1 incident to the neighbors of r, and so on. By
the theorem of Thue [18], there exists a nonrepetitive sequence a0a1a2 · · · of
arbitrary length, such that ai ∈ {1, 2, 3}. We may color the edges of the tree T1

using this sequence, so that each edge in the set Ei(T1) gets color ai. The same
construction may be applied to the tree T2, with similarly defined sets Ei(T2),
and sufficiently long nonrepetitive sequence b0b1b2 · · · , with bi ∈ {4, 5, 6}. All
other edges of G may be colored arbitrarily.

We claim that this coloring satisfies the desired property. Indeed, let u, v
be any two vertices of G. Denote by Pj(x, y), j = 1, 2, the unique path from
x to y in the tree Tj . Consider the path P1(u, r). Clearly, it is nonrepetitive
by the construction of the coloring. If v lies on P1(u, r), then the sub-path
P1(u, v) is nonrepetitive, too, and we are done. Therefore, assume that v lies
outside P1(u, r) and consider the path P2(r, v). If the only common vertex
of these two paths is r, then we may glue them together into a longer path
P1(u, r)P2(r, v), which is clearly nonrepetitive, as the sets of colors on both
fragments are disjoint.

Finally, suppose that the two paths, P1(u, r) and P2(r, v), have some
common vertices other than the root r and let x be the one with the largest
distance from r (in the tree T1, say). Then, the two sub-paths P1(u, x) and
P2(x, v) intersect in only one vertex x and, as before, we may glue them
together to get the nonrepetitive path P1(u, x)P2(x, v). This completes the
proof. �

To get the second assertion of Theorem 5, it suffices to apply the following
simple fact following easily from the celebrated theorem of Nash–Williams [16]
(see Corollary 44 in [17]).

Theorem 7 (Nash–Williams [16]). Every 2k-edge-connected graph contains k
edge-disjoint spanning trees.
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Indeed, it is enough to take k = 2 and notice that a 4-edge-connected
graph is all the more 4-(vertex)-connected.

For the second bound for 2-connected graphs, we apply a similar approach
with a slightly weaker property based on edge-independent trees. Recall that
two spanning trees in a graph G, T1 and T2, having the same root r, are edge-
independent if, for every vertex v, the unique paths P1(v, r) in T1 and P2(v, r)
in T2 are edge disjoint.

Theorem 8. Let G be a graph containing two edge-independent spanning trees.
Then, nrc(G) ≤ 15.

Proof. Let T1 and T2 be two edge-independent spanning trees of G. We will
construct a similar coloring as in the proof of Theorem 6, but notice that this
time the sets of edges E(T1) and E(T2) need not be disjoint. Therefore, we
will color the edges of G by ordered pairs of colors whose first coordinates
are controlled by an appropriate coloring of T1, while second coordinates are
determined by an analogous coloring of T2.

Therefore, let r be a common root of trees T1 and T2. Let Ei(T1) be the set
of edges at distance i from the root r. Therefore, E0(T1) consists of the edges
of T1 incident to r, E1(T1) contains the edges of T1 incident to the neighbors
of r, and so on. By Thue’s theorem [18], there exist nonrepetitive sequences,
a0a1a2 · · · and b0b1b2 · · · , of arbitrary length, such that ai ∈ {1, 2, 3} and
bi ∈ {4, 5, 6}. We may color the edges of trees T1 and T2 using these sequences,
so that each edge in the set Ei(T1) gets color ai and each edge in Ei(T2) gets
color bi. Now, if an edge e belongs to both trees, then its final color is an
ordered pair of colors (ai, bj). In this way, we get a partial coloring of G using
at most 9 + 6 = 15 colors. The rest of the edges of G, not belonging to trees
Ti, may be colored by these colors arbitrarily.

We claim that this coloring satisfies the desired property. Indeed, let u, v
be any two vertices of G. Denote by Pj(x, y), j = 1, 2, the unique path from
x to y in the tree Tj . Consider the path P1(u, r). Clearly, it is nonrepetitive
by the construction of the coloring. If v lies on P1(u, r), then the sub-path
P1(u, v) is nonrepetitive, too, and we are done. Therefore, assume that v lies
outside P1(u, r) and consider the path P2(v, r). Let x1 be the first vertex on
the path P1(u, r) traversed from u to r belonging to P2(v, r). Let eu = yx1 be
the last edge on the sub-path P1(u, x1). Similarly, let x2 be the first vertex on
the path P2(v, r) traversed from v to r belonging to P1(u, r). Let ev = zx2 be
the last edge on the sub-path P2(v, x2). Now, it is not hard to verify that, by
the assumption of the edge-independence of trees Tj , each of these two edges
belong to only one tree, namely, eu to T1 and ev to T2. Consequently, the color
of eu, which is some ai, cannot occur on the path P2(v, x2). It follows that the
path P1(u, x2)P2(x2, v) is nonrepetitive. This completes the proof. �

It is conjectured that every k-edge-connected graph contains k edge-
independent spanning trees with an arbitrarily choosen common root r (see
[17]). To get the first part of Theorem 5, it suffices to invoke the results of Itai
and Rodeh [12] and Khuller and Scheiber [13] confirming this conjecture for
k = 2 (see [17]).
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3. Final Remarks

Let us conclude the paper with some natural open problems. The first one is
very concrete and asks for the optimum value of the strongly proper connection
number spc(G) in the class of 2-connected graphs.

Problem 9. Determine the least possible number k, such that every 2-connected
graph G satisfies spc(G) ≤ k.

We know that k = 4 or 5, but which is the correct value? It would be also
nice to know what happens for graphs with higher connectivity. For instance,
it is known (see [3,14]) that pc(G) = 2 holds already for 3-connected graphs.
Also, our graphs Gd from the proof of Theorem 2 are not 3-connected. This
prompts us to formulate the following conjecture.

Conjecture 10. Every 3-connected graph G satisfies spc(G) ≤ 3.

Let us stress, however, that we do not even know if the above inequality
holds for graphs with any sufficiently high connectivity.

It would be also nice to know more on nonrepetitive connected coloring
and the corresponding parameter nrc(G).

Problem 11. Determine the least possible number t, such that every 2-connected
graph G satisfies nrc(G) ≤ t.

By Theorem 8, we know that t ∈ {3, 4, . . . , 15}. The problem seems chal-
lenging even if restricted to some classes of graphs. Consider, for instance,
nonrepetitive connected coloring of planar graphs. Barnette [2] proved that
every 3-connected planar graph contains a spanning tree of maximum degree
at most three (see [17]). Using a general upper bound form [1], one gets that
for such graphs, we have nrc(G) ≤ 8. Also, since 4-connected planar graphs
are Hamiltonian, as proved by Tutte [19], they satisfy the best possible bound
nrc(G) ≤ 3.

As mentioned in the introduction, one may consider fairly general P-
connected colorings, where P is any property of sequences. The minimum
number of colors needed for such a coloring of G, with fixed property P, is
denoted by P-c(G). A property P is called honest if it possess the following
basic features:

(i) If a sequence S has property P, then each nonempty block of S also
satisfies P.

(ii) If S and T are two sequences over disjoint alphabets (color sets) satisfying
P, then their concatenation ST also satisfies P.

(iii) There exist arbitrarily long sequences over some finite alphabet satisfying
property P.
Let us denote by m(P) the least possible constant in condition (iii). For

instance, if P corresponds to strong coloring or nonrepetitive coloring, then
m(P) = 3, while if P stems from the usual proper coloring, then m(P) = 2.

It is now easy to see that repeating the proof of Theorem 5 gives the
following general result.
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Theorem 12. Let P be any honest property of sequences. If G is a graph con-
taining two edges disjoint spanning trees, then P-c(G) ≤ 2m(P). In particular,
every 4-connected graph G satisfies P-c(G) ≤ 2m(P).

One naturally wonders if the above statement could be true for 2-connected
graphs (or at least for 3-connected graphs), possibly with some larger upper
bound.

Conjecture 13. Let P be any honest property of sequences. Then, there exists
a constant t(P), such that every 2-connected graph G satisfies P-c(G) ≤ t(P).

One also naturally wonders if the minimum possible number of colors in a
P-connected coloring can be achieved at the expense of increasing connectivity.

Conjecture 14. Let P be any honest property of sequences. Then, there exists
a constant c(P), such that every c(P)-connected graph G satisfies P-c(G) ≤
m(P).
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