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Abstract. Goulden–Rattan polynomials give the exact value of the sub-
dominant part of the normalized characters of the symmetric groups in
terms of certain quantities (Ci) which describe the macroscopic shape
of the Young diagram. The Goulden–Rattan positivity conjecture states
that the coefficients of these polynomials are positive rational numbers
with small denominators. We prove a special case of this conjecture for
the coefficient of the quadratic term C2

2 by applying certain bijections
involving maps (i.e., graphs drawn on surfaces).
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1. Introduction

1.1. Normalized Characters

Characters are a basic tool of representation theory. After normalization, they
are also useful in asymptotic problems.

If k ≤ n are natural numbers, then any permutation π ∈ Sk can also
be treated as an element of the larger symmetric group Sn by adding n − k
additional fixpoints. For any permutation π ∈ Sk and any irreducible represen-
tation ρλ of the symmetric group Sn which corresponds to the Young diagram
λ, we define the normalized character

Σπ(λ) =

{
n(n − 1) · · · (n − k + 1) Tr ρλ(π)

dimension of ρλ for k ≤ n,

0 otherwise.
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Of particular interest are the character values on the cycles, therefore we
will use the shorthand notation

Σk(λ) = Σ(1,2,...,k)(λ).

1.2. Free Cumulants

Free cumulants are an important tool of free probability theory [9] and random
matrix theory [10]. In the context of the representation theory of the symmetric
groups, they can be defined as follows, see [1]. For a Young diagram λ, we define
its free cumulants R2(λ), R3(λ), . . . as

Rk(λ) = lim
s→∞

1
sk

Σk−1(sλ),

where the diagram sλ is created from the diagram λ by dividing each box of
λ into an s × s square.

The free cumulants have been defined in such a way as to be very helpful
for studying asymptotic behaviour of the characters on a cycle of length k
when the size of the Young diagram tends to infinity [2].

1.3. Kerov Character Polynomials

Kerov [6] formulated the following result: for each permutation π and any
Young diagram λ, the normalized character Σπ(λ) is equal to the value of some
polynomial Kπ(R2(λ), R3(λ), . . .) (now called the Kerov character polynomial)
with integer coefficients. The first published proof of this fact was provided by
Biane [1]. The Kerov character polynomial is universal because it does not
depend on the choice of λ. We are interested in the values of the characters on
cycles; therefore, for π = (1, 2, . . . , k), we use the simplified notation

Σk = Kk(R2, R3, . . .) (1.1)

for such Kerov polynomials. The first few Kerov polynomials Kk are as follows:

K1 = R2,

K2 = R3,

K3 = R4 + R2,

K4 = R5 + 5R3,

K5 = R6 + 15R4 + 5R2
2 + 8R2,

K6 = R7 + 35R5 + 35R3R2 + 84R3,

K7 = R8 + 180R2 + 224R2
2 + 14R3

2 + 56R2
3 + 469R4 + 84R2R4 + 70R6.

Kerov conjectured that the coefficients of the polynomial Kk are non-
negative integers. Goulden and Rattan [5] found an explicit formula for the
coefficients of the Kerov polynomial Kk; unfortunately, their formula was com-
plicated and did not give any combinatorial interpretation to the coefficients.
Later, Féray proved positivity [4] and together with Do�lęga and Śniady found
a combinatorial interpretation of the coefficients [3]. In this paper, we will use
the combinatorial interpretation given by them in the special case of linear
and square coefficients.
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1.4. Goulden–Rattan Conjecture

Goulden and Rattan [5] introduced a family of functions C2, C3, . . . on the set
of Young diagrams given by C0 = 1, C1 = 0 and

Cλ
k =

24
k(k + 1)(k + 2)

lim
s→∞

1
sk

(
Σk+1(sλ) − Rk+2(sλ)

)
for k ≥ 2.

Śniady [7] proved the explicit form of Ck (conjectured by Biane [1]) as a
polynomial in the free cumulants R2, R3, . . . given by

Ck =
∑

j2,j3,...≥0
2j2+3j3+···=k

(j2 + j3 + · · · )!
∏
i≥2

(
(i − 1)Ri

)ji

ji!
(1.2)

for k ≥ 2. The aforementioned formula of Goulden and Rattan for the Kerov
polynomials was naturally expressed in terms of these quantities C2, C3, . . .
[5]. More specifically, they constructed an explicit polynomial Lk with rational
coefficients such that

Kk − Rk+1 = Lk(C2, C3, . . .). (1.3)

These polynomials are called the Goulden–Rattan polynomials. They formu-
lated the following conjecture:

Goulden–Rattan conjecture. The coefficients of the Goulden–Rattan polyno-
mials are non-negative numbers with small denominators.

The first few Goulden–Rattan polynomials are as follows [5]:

K1 − R2 = 0
K2 − R3 = 0
K3 − R4 = C2,

K4 − R5 =
5
2
C3,

K5 − R6 = 5C4 + 8C2,

K6 − R7 =
35
4

C5 + 42C3,

K7 − R8 = 14C6 +
469
3

C4 +
203
3

C2
2 + 180C2.

Linear coefficients of the Goulden–Rattan polynomials are non-negative,
because they are equal to certain scaled coefficients of the Kerov polynomial:

[Cj ]Lk =
1

j − 1
[Rj ]Kk.

In this paper, we will prove that the coefficient of C2
2 is non-negative. We

hope that edge sliding we will define in this article will also be a useful tool
in proving non-negativity of the square coefficients [CiCj ]Lk. The next step
towards the proof of Goulden–Rattan conjecture would be to understand the
cubic coefficients [CiCjCu]Lk; we hope that our methods will still be applicable
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there, nevertheless, there seem to be some difficulties related to the inclusion–
exclusion principle.

1.5. Graphs on Surfaces, Maps and Expanders

We will consider graphs drawn on an oriented surface. Each face of such a graph
has some number of edges ordered cyclically by going along the boundary of
the face and touching it with the right hand. We will call it the clockwise
boundary direction. If we use the left hand and visit the edges in the opposite
order, we will call it the counterclockwise boundary direction.

By a map we mean a bipartite graph drawn without intersections on
an oriented and connected surface with minimal genus. The maps which we
consider have a fixed choice of colouring of the vertices, i.e., each vertex is
coloured black or white, with the edges connecting the vertices of the opposite
colours. An example of a map is shown in Fig. 1.

An expander [8, Appendix A.1] is a map with the following properties.

• It has a distinguished edge (known as the root) and one face.
• Each black vertex is assigned a natural number, known as a weight, such

that each non-empty proper subset of the set of black vertices has more
white neighbours than the sum of its weights.

• The sum of all weights is equal to the number of white vertices.

The map from Fig. 1 is an expander if each black vertex has weight 1 (any
choice of the root is valid).

Using the Euler characteristic we get

2 − 2g = χ = V − k + 1, (1.4)

where g denotes the genus of the surface, V denotes the number of vertices
and k denotes the number of edges.

Figure 1. a An example of a map with 4 vertices and 5 edges
drawn on a torus. b The same map drawn for simplicity on
the plane (Color figure online)
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1.6. Combinatorial Interpretation of the Kerov Polynomial Coefficients

The following two theorems Theorem 1 and Theorem 3 give a combinato-
rial interpretation to the linear and square coefficients of the Kerov character
polynomials [3, Theorem 1.2, Theorem 1.3]. The first is as follows.

Theorem 1. For all integers l ≥ 2 and k ≥ 1 the coefficient [Rl]Kk is equal
to the number of pairs (σ1, σ2) of permutations σ1, σ2 ∈ S(k) such that
σ1σ2 = (1 2 · · · k) and such that σ2 consists of one cycle and σ1 consists
of l − 1 cycles. (We use the convention σ1σ2 = σ2(σ1) = σ2 ◦ σ1.)

The expanders are a graphical interpretation of these pairs of permuta-
tions. There is a natural bijection between such pairs of permutations (σ1, σ2)
and the expanders with one face, one black vertex, l − 1 white vertices and
k edges. Additionally, one edge is selected as the root and the unique black
vertex has a weight l − 1. More precisely:

• The edges are numbered 1, 2, . . . , k. The edge with number 1 is selected
as the root.

• The counterclockwise angular cyclic order of the edges on a given vertex
(i.e., the order of edges ending at this vertex around it) corresponds to
a cycle of a permutation depending on the colour of this vertex, i.e., σ1

for white and σ2 for black (in this case we have a unique cycle of the
permutation σ2).

• The unique face corresponds to the unique counterclockwise boundary
cycle of the permutation (1 2 · · · k).

Since there is only one face, the root determines the numbering of all edges.
We can reformulate Theorem 1 as follows. (See Fig. 2a for an example.)

Theorem 2. For all integers l ≥ 2 and k ≥ 1 the coefficient [Rl]Kk is equal to
the number of expanders with k edges, l − 1 white vertices and 1 black vertex
with the weight l − 1.

Similarly, we use the second theorem [3, Theorem 1.3] for square coeffi-
cients.

Theorem 3. For all integers l1, l2 ≥ 2 and k ≥ 1 the coefficient [Rl1Rl2 ]Kk is
equal to the number of triples (σ1, σ2, q) with the following properties.

• The permutations σ1, σ2 ∈ Sk fulfill the equality σ1σ2 = (1 2 · · · k).
• The permutation σ1 consists of two cycles and the permutation σ2 consists

of l1 + l2 − 2 cycles.
• The function q associates the numbers l1 and l2 to the two cycles of σ1.

Furthermore, for each cycle c of σ1 there exist at least q(c) cycles of σ2

which nontrivially intersect c.

Analogously, we can also reformulate Theorem 3. (See Fig. 2b for an
example.)

Theorem 4. For all integers l1, l2 ≥ 2 and k ≥ 1 the coefficient [Rl1Rl2 ]Kk is
equal to the number of expanders with k edges, l1 + l2 − 2 white vertices and 2
black vertices with weights l1 − 1, l2 − 1.
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Figure 2. Examples of expanders with 5 edges and
their corresponding pair of permutations σ1, σ2 such that
σ1σ2 = (1 2 3 4 5). The root is assigned the number 1. a
The expander with one black vertex and three white vertices.
b The expander with two black vertices and two white vertices
(Color figure online)

1.7. Relationship Between Coefficients of Goulden–Rattan Polynomials and
Coefficients of Kerov Polynomials

The formula (1.2) allows us to express (Ci) in terms of free cumulants; we see
that the coefficients of the terms RiRj , Ri+j , R2

j and R2j in the expressions
CiCj , Ci+j , C2

j and C2j are given for i �= j by

CiCj = (i − 1)(j − 1)RiRj + 0Ri+j + (sum of other terms),

Ci+j = 2(i − 1)(j − 1)RiRj + (i + j − 1)Ri+j + (sum of other terms),

C2
j = (j − 1)2R2

j + 0R2j + (sum of other terms),

C2j = (j − 1)2R2
j + (2j − 1)R2j + (sum of other terms).

Moreover, any product Ci1Ci2 · · · Cit
of at least t ≥ 3 factors does not contain

any of the terms CiCj , Ci+j , C
2
j and C2j . It follows that the square coefficients

of the Goulden–Rattan polynomial are related to the coefficients of the Kerov
polynomial via

∂2Lk

∂Ci∂Cj

∣∣∣∣∣
0=C1=C2=···

=
1

(i − 1)(j − 1)
∂2Kk

∂Ri∂Rj

∣∣∣∣∣
0=R1=R2=···

− 2
∂Lk

∂Ci+j

∣∣∣∣∣
0=C1=C2=···

=
1

(i − 1)(j − 1)
∂2Kk

∂Ri∂Rj

∣∣∣∣∣
0=R1=R2=···

− 2
(i + j − 1)

∂Kk

∂Ri+j

∣∣∣∣∣
0=R1=R2=···
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for i �= j. Whereas the quadratic coefficients are related via

∂2Lk

∂C2
j

∣∣∣∣∣
0=C1=C2=···

=
1

(j − 1)2
∂2Kk

∂R2
j

∣∣∣∣∣
0=R1=R2=···

− 2
∂Lk

∂C2j

∣∣∣∣∣
0=C1=C2=···

=
1

(j − 1)2
∂K2

k

∂R2
j

∣∣∣∣∣
0=R1=R2=···

− 2
(2j − 1)

∂Kk

∂R2j

∣∣∣∣∣
0=R1=R2=···

for any natural number j. Thus, we obtain the explicit formula for the square
coefficients of the Goulden–Rattan polynomial:

[C2
j ]Lk =

1
(j − 1)2

[R2
j ]Kk − 1

2j − 1
[R2j ]Kk (1.5)

and

[CiCj ]Lk =
1

(i − 1)(j − 1)
[RiRj ]Kk − 2

i + j − 1
[Ri+j ]Kk for i �= j.

(1.6)

2. The Main Result

Let Yk(u) denote the set of expanders with k edges, u−1 white vertices and one
black vertex. Let Xk(i, j) denote the set of expanders with k edges, i + j − 2
white vertices and two black vertices with weights i − 1 and j − 1. Using
Theorems 2 and 4 we can also reformulate the Goulden–Rattan conjecture for
the square coefficients in terms of expanders, as follows.

Conjecture 1. Let i �= j be natural numbers. Then

(2j − 1) ‖Xk(j, j)‖ ≥ (j − 1)2 ‖Yk(2j)‖
and

(i + j − 1) ‖Xk(i, j)‖ ≥ 2(i − 1)(j − 1) ‖Yk(i + j)‖
for any natural number k.

These inequalities are equivalent to the positivity of the coefficients [C2
j ]

Lk and [CiCj ]Lk respectively. In this text we prove only the first inequality
in the special case j = 2. We hope to present a proof of Conjecture 1 in its
general form in a future paper.

Using Eq. (1.5), we can calculate several examples of the coefficient of
C2

2 of the Goulden–Rattan polynomials

[C2
2 ]L4 = 0 − 0 = 0,

[C2
2 ]L5 = 5 − 1

3
· 15 = 0,

[C2
2 ]L6 = 0 − 0 = 0,

[C2
2 ]L7 = 224 − 1

3
· 469 =

203
3

,

[C2
2 ]L8 = 0 − 0 = 0.
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Note that if k is even then [C2
2 ]Lk = 0 because there does not exist an expander

with 4 vertices and an even number of edges, since 2 − 2g = 2j − k + 1 by Eq.
(1.4). Additionally, [C2

2 ]L1 = 0 and [C2
2 ]L3 = 0. Thus, we can assume that the

number of edges k is odd and k ≥ 5.
Let

Xk = Xk(2, 2), (2.1)

Yk = Yk(4). (2.2)

The set Xk consists of expanders with 2 black vertices and 2 white vertices
such that each black vertex is connected with both white vertices; each black
vertex necessarily has weight equal to 1. The set Yk consists of expanders with
one black vertex (which necessarily has weight 3) connected with all 3 white
vertices. From now on we will omit the weights of the black vertices.

The main goal of this paper is to prove the following:

Theorem 5. The inequality

3
∥∥Xk

∥∥ ≥ ∥∥Yk

∥∥
is true for any natural number k.

3. Edge Sliding

In this section, we provide some necessary background details for the proof of
Theorem 5. We will denote a transposition exchanging a and h by (a h). For
any set H ⊂ {1, 2, . . . } such that a, h ∈ H, we can treat the transposition (a h)
as a permutation of the set H. (By adding fixed points to the transposition.)
Therefore, for any permutation π of the set H, the products π ◦ (a h) and
(a h) ◦ π are also permutations of the set H.

Let G be a graph with edges numbered 1, . . . , k drawn without intersec-
tions on an oriented and connected surface with minimal genus. There is a
natural bijection between the graph G and a multiset of cycles MG (cyclic

Figure 3. a The graph with the multiset of cycles{
(2)(1)(5 6 4)(2 3 4 5 6)(3 1)

}
. b The graph with the multiset

of cycles
{
(2)(1)(5 6 4)(2 3)(4 5 6 3 1)

}
(Color figure online)
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permutations of a subset of {1, . . . , k}) such that each number j belongs to
exactly two cycles. More precisely, the counterclockwise angular cyclic order
of edges at a given vertex of the graph G (i.e., the order of edges ending at
this vertex around it) corresponds to a single cycle of MG. Two examples of a
graph with its multiset of cycles are shown in Fig. 3.

In this section, each end of every edge (or equivalently, each element of
every cycle) will have one of three values assigned to it: clockwise direction,
counterclockwise direction, or no direction. Note that the two ends of the
same edge can be assigned different values. By default, we assume that a cycle
element to which we have not assigned a direction has an assigned the value
no direction.

3.1. Edge Sliding for a Single Number

Let MG be the multiset of cycles of a graph G. Let a belonging to a cycle
c ∈ MG be a number with assigned the clockwise direction. (The number “a”
from a cycle different from “c” and any number different from “a” from any
cycle do not have a direction assigned to them.) Let c′ �= c be the second cycle
of the multiset MG containing the number h = c−1(a). We assume that the
number a does not belong to the cycle c′. We define the single edge sliding for
the number a in the clockwise boundary direction from the cycle c to the cycle
c′ along the number h as the replacement of the cycles c, c′ in the multiset MG

by two new cycles s(c), s′(c′) given by

s(c) = [c ◦ (a h)] \ (a) ,

s′(c′) = (a h) ◦ [(a) c′] .

Note that the product c ◦ (a h) consists of two cycles: the cycle (a) and the
cycle formed from the cycle c by removing the number a. Therefore, the above

Figure 4. An example of the single edge sliding for
the number a = 4 in the clockwise boundary direction
from the cycle c = (2 3 4) to the cycle c′ = (1 3) along
the number h = 3. a The initial graph G. The edge
labelled a is dashed and coloured red. b Visualization
of the single edge sliding. c The resulting graph with
two updated cycles: s(c) = [(2 3 4) ◦ (3 4)] \ (4) = (2 3) and
s′(c′) = (3 4) ◦ [(1 3) (4)] = (1 4 3) (Color figure online)
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transformation removes the number a from the cycle c and adds it to the cycle
c′ before the number h. Finally, we change the direction of the number a to
the counterclockwise direction. We can naturally think of such operations as
sliding of edges in a graph. An example of the single edge sliding is shown in
Fig. 4.

Analogously, we define the single edge sliding for the number a in the
counterclockwise boundary direction from the cycle c to the cycle c′ along the
number h = c(a) as the replacement of the cycles c, c′ in the multiset MG by
two new cycles s(c), s′(c′) given by

s(c) = [(a h) ◦ c] \ (a) ,

s′(c′) = [(a) c′] ◦ (a h).

3.2. Edge Sliding for a Sequence of Numbers

Let MG be the multiset of cycles of a graph G. Let a1, . . . , al be a sequence
of successive but not all numbers belonging to a cycle c ∈ MG, i.e. such that
aj = cj−1(a1) for each index j ≤ l. Moreover, to each of the numbers a1, . . . , al

is assigned the clockwise direction. Let c′ �= c be the second cycle of the multiset
of MG containing the number h = c−1(a1). We assume that the numbers
a1, . . . , al do not belong to the cycle c′. We define the package edge sliding for
the sequence of the numbers a1, . . . , al in the clockwise boundary direction from
the cycle c to the cycle c′ along the number h as the replacement of the cycles
c, c′ in the multiset MG by two new cycles sl(c), s′

l(c
′) obtained by recursion

with initial conditions s0(c) = c, s′
0(c

′) = c′ and a recursive step given for each

Figure 5. An example of the package edge sliding for
the numbers a1 = 4, a2 = 5, a3 = 6 in the clockwise
boundary direction from the cycle c = (2 3 4 5 6) to the
cycle c′ = (1 3) along the number h = 3. a The initial
graph G. Edges numbered a1, a2, a3 are dashed and
coloured red. b Visualization of the package edge slid-
ing. c The resulting graph with two updated cycles:
s3(c) = [(2 3 4 5 6) ◦ (3 4) ◦ (3 5) ◦ (3 6)] \ [(4) (5) (6)] = (2 3)
and s′

3(c
′) = (3 6) ◦ (3 5) ◦ (3 4) ◦ [(1 3) (4)] = (1 4 5 6 3)

(Color figure online)
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1 < j ≤ l by

sj(c) = [sj−1(c) ◦ (aj h)] \ (aj) ,

s′
j(c

′) = (aj h) ◦ [
(aj) s′

j−1(c
′)

]
.

Note that the package edge sliding for a sequence of numbers a1, . . . , al is ac-
tually equivalent to the sequential single edge sliding for numbers a1, . . . , al.
Therefore, the above transformation removes the numbers a1, . . . al from the
cycle c and adds them in the same order to the cycle c′ before the number h.
Finally, we change the directions of the numbers a1, . . . , al to the counterclock-
wise boundary direction. Note that the single edge sliding is a special case of
the package edge sliding. An example of the package edge sliding is shown in
Fig. 5.

Analogously, we define the package edge sliding for the numbers a1, . . . , al

in the counterclockwise boundary direction from the cycle c to the cycle c′ along
the number h = c(a) as the replacement of the cycles c, c′ in the multiset MG

by two new cycles sl(c), sl(c′) obtained by recursion with initial conditions
s0(c) = c, s′

0(c
′) = c′ and a recursive step given for each 0 < j ≤ l by

sj(c) = [(aj h) ◦ sj−1(c)] \ (aj) ,

s′
j(c

′) =
[
(aj) s′

j−1(c
′)

] ◦ (aj h).

In other words, if we would like to slide a number a in the clockwise
boundary direction from a cycle c along a number h, then c−1(a) = h or
before that, a number c−1(a) must be slid in the same direction. (Similarly for
the counterclockwise boundary direction and number c(a).) For each number
a in a cycle c with a fixed direction, the number h along which it will be slid
is uniquely determined. Therefore, for simplicity, we will say that each of the
numbers a1, . . . , al from the cycle c is slid in a fixed direction. Of course, we
assume that at least one number in the cycle c has no direction assigned.

3.3. Edge Sliding in the General Case

We define the edge sliding on a graph as follows. We start from the graph G in
which some ends of certain edges are assigned a clockwise or counterclockwise
boundary direction. We assume that:

• At each vertex at least one edge has no direction assigned.
• Two consecutive edges do not have conflicting directions, i.e., there is

no situation in which a number a from a cycle c has assigned the coun-
terclockwise boundary direction and the number c(a) has assigned the
clockwise boundary direction.

Any such set of directions can be decomposed into an package edge sliding
system for sequences of numbers:⎧⎪⎪⎨
⎪⎪⎩
a1,1, . . . , a1,l1 in a direction d1 from the cycle c1 to the cycle c′

1 along the number h1,

...

at,1, . . . , at,lt
in a direction dt from the cycle ct to the cycle c′

t along the number ht.

Furthermore, we require that:
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• The numbers, along which other numbers are sliding, are not themselves
sliding, i.e.,

{a1,1, . . . , at,lt} ∩ {h1, . . . , ht} = ∅.

• Two ends of the same edge will not appear in the same vertex, i.e., if
ai1,j1 = ai2,j2 , then

{ci1 , c
′
i1} ∩ {ci2 , c

′
i2} = ∅.

(This condition can be weakened to c′
i1 �= c′

i2 , but it is not necessary in
this paper.)

• On one side of the edge along which we slide, the numbers do not slide
in opposite directions, i.e., for each number hj belonging to the cycles
c �= c′, there is no situation in which a number c(hj) has assigned the
clockwise direction and the number c′−1(hj) has assigned the counter-
clockwise direction.

We will call the selection of directions that satisfy the above conditions as
correct.

We define the edge sliding as applying sequentially the package edge slid-
ing for all sequences in any order. Such an action is well-defined, since permu-
tation multiplication is associative and for any distinct numbers a1, a2, h1, h2

holds

(a1 h1) ◦ (a2 h2) = (a2 h2) ◦ (a1 h1).

An example of the edge sliding is shown in Fig. 6.
The edge sliding is an involution on the set of graphs drawn on an oriented

and connected surface with a correct selection of directions. Edge sliding is an
invertible transformation, with the inverse also given by edge sliding.

In addition, it is easy to see that the edge sliding on a graph does not
change the number of faces of this graph.

Figure 6. An example of edge sliding. a A graph with the
slid edges dashed and coloured red. The directions of the edge
ends are indicated by arrows. b The graph during the edge
sliding in the clockwise boundary direction. c The graph after
the edge sliding. Directions have already been reversed (Color
figure online)
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In the rest of this article, we will treat the edge sliding as transformation
on a graph.

3.4. The Set Xk of Maps

We consider any map from the set Xk. This map has one face and an odd
number of edges k ≥ 5. We denote the black vertices by b1, b2 and the white
vertices by w1, w2. There is at least one edge between each pair of the ver-
tices of different colours. Of course, deg(b1) + deg(b2) = k is an odd number.
Without loss of generality we may assume that deg(b1) > 0 is an odd number
and deg(b2) > 0 is an even number. Let k1, k2 > 0 denote the numbers of
edges which connect the vertex b1 with the vertices w1, w2, respectively. As
deg(b1) = k1 +k2 is an odd number, without loss of generality we may assume
that k1 is even and k2 is odd. For example, the unique (up to choice of the
root) map from the set X5 is shown in Fig. 7a.

3.5. The Set Yk of Maps

Let σ be the cycle that encodes the clockwise boundary cyclic order of the
corners on the unique face of G. We will say that the vertex wj is a descendant
of the vertex wi (we denote it by wi → wj) if using the clockwise boundary
order of the corners on the unique face of the map we can move (by walking
along the edges and holding them with the right hand) in two steps from a
certain corner ci of the vertex wi to a certain corner cj of the vertex wj , i.e.,
σ2(ci) = cj .

We consider any map from the set Yk. Any such map has one face and
an odd number of edges k ≥ 5. We denote the black vertex by b and the white
vertices by w1, w2, w3. We will write the set Yk as a union of three sets which
will be defined below.

Let Y odd
k ⊆ Yk be the set of maps for which there exists an odd degree

white vertex (let us say it is w3) which has the other two white vertices as

Figure 7. Examples of maps from a the set X5, b the set
T odd

5 , c the set T even
5 , d the set T rest

5 . Slid edges are dashed
and coloured. The directions are indicated by arrows, and the
root is not marked (Color figure online)
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descendants, i.e., w3 → w1 and w3 → w2. Let T odd
k be the set of all maps from

the set Y odd
k with a distinguished vertex w3 with this property. Moreover,

each edge between the vertex w3 and the vertex b, has a clockwise boundary
direction assigned at the vertex b. The unique (up to choice of the root) map
from the set T odd

5 is shown in Fig. 7b. Clearly

|T odd
k | ≥ |Y odd

k |. (3.1)

Let Y even
k ⊆ Yk be the set of maps such that there exists an even degree

white vertex (let us say it is w3) which has the other two white vertices as
descendants, i.e., w3 → w1 and w3 → w2. Let T even

k be the set of all the maps
from the set Y even

k with a distinguished vertex w3 with this property. Moreover,
each edge between the vertex w3 and the vertex b, has a clockwise boundary
direction assigned at the vertex b. The unique (up to choice of the root) map
from the set T even

5 is shown in Fig. 7c. Clearly

|T even
k | ≥ |Y even

k |. (3.2)

Let Y rest
k ⊆ Yk be the set of maps not included in the sets Y odd

k and
Y even

k , i.e.,

Y rest
k = Yk\(Y odd

k ∪ Y even
k ). (3.3)

Consider some map m ∈ Y rest
k . Obviously w1 → w2 → w3 → w1

or the other way around. Without loss of generality we may assume that
w1 → w2 → w3 → w1 and as a consequence w1 � w2 � w3 � w1.

Lemma. The map m has a white vertex of odd degree, greater than 1.

Proof. By contradiction, suppose this is not the case. The map m has at least
one odd degree white vertex, because deg(w1)+deg(w2)+deg(w3) = k is odd.
Without loss of generality we may assume that deg(w1) is odd. Since

deg(w1) + deg(w2) + deg(w3) = k > 3 = 1 + 1 + 1,

it follows that deg(w1) = 1 and deg(w2),deg(w3) are even, because m does
not have a white vertex with odd degree greater than 1. The vertex w1 is a
leaf and thus has a unique corner which we denote by c1.

Naturally σ2(c1) is a corner of the vertex w2. Note that σ2 is a permuta-
tion of the corners of the white vertices which has only one cycle, because the
map m has only one face. The corners of the white vertices can be labelled 1,
2, 3 according to the names of the vertices they are in. If a corner c has the
label a, its descendant σ2(c) has either the label a or 1 + amod 3. There is
only one corner which has the label 1, so the corner labels of m (arranged in
the cyclic order according to the unique cycle of σ2) are (1, 2, . . . , 2, 3, . . . , 3).
Since there exists only one corner c2 of the white vertex w2 such that σ2(c2)
is a corner of the vertex w3, then there exists a unique corner c0 = σ(c2) of
the vertex b such that σ(c0) is the corner of the vertex w3 and σ−1(c0) is the
corner of the vertex w2. Thus the clockwise angular cyclic order of the edges
around the black vertex b is as follows: one edge connected to the vertex w1, a
certain number of edges connected to the vertex w2, a certain number of edges
connected to the vertex w3. Figure 8a visualizes this situation.
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Figure 8. a The map m before replacement including the
marked corner c0. b A non-existent hypothetical map with
four vertices and an even number of edges (Color figure online)

Let k′ = k − (deg(w2) − 1). The number k′ is even because k is odd
and deg(w2) is even. We remove all edges except one of the white vertex w2

obtaining a new graph m′ with k′ edges. Obviously, the clockwise angular cyclic
order of the edges around the black vertex b is as follows: one edge connected to
the vertex w1, one edge connected to the vertex w2, a certain number of edges
connected to the vertex w3. Whereas the corner labels of m′ are (1, 2, 3, . . . , 3).
Therefore, m′ has one face. Figure 8b visualizes this situation. If m′ does not
have selected a root, we choose any edge of m′ as the root. If the genus of
the surface on which the map m′ is drawn is not minimal, we draw the map
m′ on a surface with minimal genus. As a result, we obtain an expander from
the set Yk′ with 4 vertices, one face and an even number of edges k′. We get
a contradiction because such a map does not exist (see Eq. (1.4)). Therefore,
the map m has a white vertex with an odd degree greater than 1. �

Now, we fix the directions. To all ends in the vertex b of the edges between
the vertex w3 and b, we assign the direction in such way that among them there
is an even number with the clockwise boundary direction and an odd number
with the counterclockwise boundary direction. This is always possible, e.g. for
a single edge with the counterclockwise boundary direction.

Let T rest
k be the set of all the maps from the set Y rest

k with a distin-
guished white vertex denoted by w3 with a fixed choice of the set of special
edges together with the directions of their ends satisfying the conditions just
mentioned above. The unique (up to choice of the root) example of the map
from the set T rest

5 is shown in Fig. 7d. Clearly

|T rest
k | ≥ |Y rest

k |. (3.4)
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Figure 9. The example of the first bijection for the 5-edged
map. a The map from the set X5. b The map during the edge
sliding. c The map after the edge sliding. (d) The map from
the set Y odd

5 (Color figure online)

4. Proof of Main Result

In this section, we will construct three bijections which show the cardinalities
of the corresponding sets are equal. Using these equalities and the definitions
of these sets we will prove Theorem 5.

4.1. Three Bijections

The first bijection between Xk and T odd
k . We start from a map m ∈ Xk. Recall

that we have assumed that deg(b1) is odd. All edges connecting a vertex b1

to white vertices, have the counterclockwise boundary direction assigned at
the vertices w1, w2. The choice of directions is correct because m is a bipartite
graph. We apply the edge sliding to the map m. Then we change the colour of
the black vertex b1 to white and its name to w3, and the name of the vertex
b2 to b. Of course, the degree of the vertex w3 does not change and is odd. In
addition, w3 → w1 and w3 → w2, because any map from the set Xk has at
least one edge between each pair of the vertices of different colours. We obtain
a map from the set T odd

k . (At all times one of the edges is selected as the root.)
Moreover, each map from the set T odd

k can be produced in this way. Such a
transformation is a bijection between the set Xk and the set T odd

k , since the
edge sliding is reversible. Figure 9 shows an example of this bijection for k = 5.
Thus,

|Xk| = |T odd
k |. (4.1)

The second bijection between Xk and T even
k . We start from a map m ∈ Xk.

Recall that we have assumed that deg(b2) is even. All edges connecting a vertex
b1 to white vertices, have the counterclockwise boundary direction assigned at
the vertices w1, w2. The choice of directions is correct because m is a bipartite
graph. We apply the edge sliding to the map m. Then we change the colour of
the black vertex b2 to white and its name to w3, and the name of the vertex
b1 to b. Of course, the degree of the vertex w3 does not change and is even.
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Figure 10. a–d The example of the second bijection for the
5-edged map (Color figure online)

In addition, w3 → w1 and w3 → w2, because any map from the set Xk has
at least one edge between each pair of the vertices of different colours. We
obtain a map from the set T even

k . (At all times one of the edges is selected
as the root.) Moreover, each map from the set T even

k can be produced. Such
a transformation is a bijection between the set Xk and the set T even

k , since
the edge sliding is reversible. Figure 10 shows an example of this bijection for
k = 5. Thus,

|Xk| = |T even
k |. (4.2)

The third bijection. We start from a map m ∈ Xk. Recall that we have as-
sumed that deg(b1) is odd. All edges connecting a vertex b1 to white vertices,
have the counterclockwise boundary direction assigned at the vertex w1 and
the clockwise boundary direction assigned at the vertex w2. The choice of di-
rections is correct because m is a bipartite graph. We apply the edge sliding to
the map m. Then we change the colour of the black vertex b1 to white and its
name to w3, and the name of the vertex b2 to b. Of course, the degree of the
vertex w3 does not change and is odd. In addition, w3 → w1 and w2 → w3 (and
w1 → w2), because any map from the set Xk has at least one edge between
each pair of the vertices of different colours. We do not necessarily obtain a
map from the set T rest

k (it may be that we obtain a map from set T odd
k ), but it

can be seen that each map from the set T rest
k can be produced. (At all times

one of the edges is selected as the root.) Such a transformation is a bijection
between the set Xk and some superset of the set T odd

k , since the edge sliding
is reversible. Figure 11 shows an example of this bijection for k = 5. Thus

|Xk| ≥ |T rest
k |. (4.3)
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Figure 11. a–d The example of the third bijection for the
5-edged map (Color figure online)

4.2. The Conclusion of the Proof

We can now proceed to the proof of Theorem 5, we have:

3[C2
2 ]Lk = 3[R2

2]Kk − [R4]Kk by (1.5)

= 3|Xk| − |Yk| by (2.1), (2.2)

≥ |T odd
k | + |T even

k | + |T rest
k | − |Yk| by (4.1), (4.2), (4.3)

≥ |Y odd
k | + |Y even

k | + |Y rest
k | − |Yk| by (3.1), (3.2), (3.4)

= |Y odd
k ∩ Y even

k | by (3.3)
≥ 0.
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Poland
e-mail: marciniak@mat.umk.pl

Communicated by Jang Soo Kim

Received: 29 September 2021.

Accepted: 29 September 2022.


	Quadratic Coefficients of Goulden–Rattan Character Polynomials
	Abstract
	1. Introduction
	1.1. Normalized Characters
	1.2. Free Cumulants
	1.3. Kerov Character Polynomials
	1.4. Goulden–Rattan Conjecture
	1.5. Graphs on Surfaces, Maps and Expanders
	1.6. Combinatorial Interpretation of the Kerov Polynomial Coefficients
	1.7. Relationship Between Coefficients of Goulden–Rattan Polynomials and Coefficients of Kerov Polynomials

	2. The Main Result
	3. Edge Sliding
	3.1. Edge Sliding for a Single Number
	3.2. Edge Sliding for a Sequence of Numbers
	3.3. Edge Sliding in the General Case
	3.4. The Set Xk of Maps
	3.5. The Set Yk of Maps

	4. Proof of Main Result
	4.1. Three Bijections
	4.2. The Conclusion of the Proof

	Acknowledgements
	References




