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Abstract. Suppose s and t are coprime positive integers, and let o be an
s-core partition and 7 a t-core partition. In this paper, we consider the
set Ps,r(n) of partitions of n with s-core o and t-core 7. We find the
smallest n for which this set is non-empty, and show that for this value
of n the partitions in P, -(n) (which we call (o, 7)-minimal partitions)
are in bijection with a certain class of (0, 1)-matrices with s rows and ¢
columns. We then use these results in considering conjugate partitions:
we determine exactly when the set P, -(n) consists of a conjugate pair of
partitions, and when P, r(n) contains a unique self-conjugate partition.
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1. Introduction

In recent years there has been considerable interest in the study of core parti-
tions. For any positive integer s, an integer partition is an s-core partition (or
simply an s-core in this paper) if it has no hooks of length s. These partitions
are an important object of study from several points of view. They first arose
in the representation theory of the symmetric groups, where the p-block struc-
ture is determined by p-cores. (This is the Brauer—-Robinson Theorem [3,16];
see the survey by Olsson [14] for more on the combinatorics of representation
theory of symmetric groups.) s-cores are also important in number theory,
where they are used in proving Ramanujan-type congruences [9], and more re-
cently have been studied from the point of view of enumerative combinatorics.
A popular theme (which began with the work of Anderson [1]) is to take a
second positive integer ¢, and study the set of (s, t)-cores, i.e. partitions which
are both s- and ¢-cores. More generally, one can consider the set of partitions
which are s-cores for all s in some given set; if the elements of this set are
coprime, there are only finitely many such partitions, leading to various enu-
merative results. See [2,10,19] for some of these results; there are many more
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results in which further restrictions are placed on the partitions. The survey
by Nath [13] gives a good overview of the applications of core partitions.

Given a partition A which is not an s-core, one can define the s-core
of \ by repeatedly removing rim hooks of length s. The focus in the present
paper is to study the s-core and t-core operations on partitions simultaneously.
This approach has been taken before, in [5,6,12,15]. In particular, in [6] a
family of partitions called [s:t]-cores was introduced. One of the equivalent
characterisations of these partitions is that a partition A is an [s:t]-core if and
only if there is no other partition with the same size, s-core and t-core as A;
this implies also that there is no smaller partition with the same s-core and
t-core as A. In the present paper we pursue this idea further: we take an s-core
o and a t-core 7, and study the set P, -(n) of partitions of n with s-core o
and t-core 7. We determine the smallest n for which P, -(n) is non-empty, and
show that for this value of n the set P, r(n) (whose elements we call (o, 7)-
minimal partitions) is in bijection with a class of (0, 1)-matrices. We use this
to recover the result from [6] determining exactly when |P, -(n)| = 1, and in
addition we determine when |P, -(n)| = 2.

We then use these results in relation to conjugation of partitions. The
conjugate of a partition A is the partition obtained by reflecting the Young
diagram on the diagonal, and conjugation is significant in the representation
theory of the symmetric and alternating groups. We prove two results analo-
gous to our result from [6]: we determine for which n there is a unique partition
of n up to conjugation with s-core o and t-core 7, and we determine for which
n there is a unique self-conjugate partition of n with s-core ¢ and t-core 7.

In proving these results, we concentrate initially on the case where o
and 7 are both (s, t)-cores. We then consider actions of affine symmetric and
hyperoctahedral groups on the set of partitions. If we define a partition to be
(s,t)-minimal if it is (o, 7)-minimal for some o, 7, then these actions preserve
the set of (s,t)-minimal partitions, which allows us to extend our results to
the case where o and 7 are not necessarily (s, t)-cores.

2. Partitions, Cores and Beta-Sets

We begin by introducing various concepts relating to partitions.

Elementary Notation

In this paper, N denotes the set of positive integers, —N the set of negative
integers, and Ny the set of non-negative integers.

If s € N, then Z/sZ is the set of cosets a+sZ for a € Z. (We do not employ
the standard abuse of notation in which Z/sZ is identified with {0,...,s—1}.)
Given any tuple of objects (z; | i € Z/sZ) indexed by Z/sZ, we may write z,
to mean x4 ¢z for any integer a.

If X is any finite set of integers, we write . X for the sum of the elements
of X.
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Partitions

A composition is an infinite sequence A = (A1, Ag, ... ) of non-negative integers
which is eventually zero. We write |A\| = Ay + Ay + - -, and we say that \ is a
composition of |A|. We say that A is a partition if Ay > Ay > ---. We write P
for the set of all partitions, and P(n) for the set of all partitions of n.

When writing a partition, we usually group together equal parts and
omit trailing zeroes, so that the partition (7,7,7,6,6,6,3,0,0...) is written
as (73,6%,3). We write @ for the unique partition of 0. The Young diagram of
a partition X is the set

{(r,0) eN?| c< A},

whose elements we call the nodes of \. We draw Young diagrams using the
English convention, in which the partition (42, 1) is depicted as follows.

If X\ is a partition, the conjugate partition is the partition X' obtained by
reflecting the Young diagram of A on the main diagonal. In other words, the
partition given by

No=H{ceN| A =7}

We say that X is self-conjugate if X = \.

The dominance order is a partial order defined on the set of all partitions
by writing A & p (and saying that A dominates p) if [\ = |p| and A\ +-- -+ A, >
u1 + -+ pp for all r.

Now we define the beta-set of a partition A. This is the set

B\) ={\ —r| reN}.

The next lemma (which is easy to prove by induction) gives some basic infor-
mation about beta-sets.

Lemma 2.1. Suppose A € P. Then Ny N B(\) and (=N) \ B(\) are finite sets
of the same size, and

A= (NonB) =D (=N)\ B(A)).

Conversely, any set B C Z for which No N B and (=N) \ B are finite sets of
the same size is the beta-set of a unique partition.

Conjugation of partitions is also encoded in beta-sets: it is easy to prove
that

BN)=Z\{-1—b]| beB\)}

for any partition .
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Rim Hooks and Cores

The rim of a partition A is the set of nodes (r, ¢) of A such that (r+1,c¢+1) is
not a node of A\. If s € N, a rim s-hook of X is a connected set of s nodes in the
rim which can be removed to leave the Young diagram of a smaller partition.
A partition is an s-core if it has no rim s-hooks. We write Cs for the set of all
s-cores.

If A is any partition, the s-core of \ is the partition obtained by recursively
removing rim s-hooks until none remain. This is defined independently of the
choice of rim s-hook removed at each stage. We write cs() for the s-core of .
We define the s-weight ws(\) of A to be the number of rim s-hooks removed
to reach the s-core. Then |A| = |cs(A)] + sws(N).

Removal of rim hooks is closely related to the beta-set of a partition. It
was first shown by Nakayama [11] that removing a rim s-hook from a partition
corresponds to reducing an element of B(\) by s. In particular, A is an s-core
if and only if b — s € B()\) for all b € B(\).

For example, the 5-core of (62,5,12) is (3, 1), as we see from the following
diagrams, which show the successive removal of rim 5-hooks. We also show the
effect of removing these rim hooks on the beta-sets of these partitions (at each
stage, the underlined entry is reduced by 5).

— | — | — L]

{5,4,2,—3,—4,-6,-7,...}  {42,0-3,—4,—6,—7,...}  {42,-3,—4,...} {2,-1,-3,-4,...}

The connection between rim hooks and beta-sets gives the following state-
ment.

Lemma 2.2. Suppose A, € P. The following are equivalent.
(1) o)) = cs().
(2) There is a bijection ¢ : B(XN) — B(u) such that ¢(b) = b (mod s) for each
b e B(A\), and ¢(b) = b for all but finitely many b € B(\).
(3) There is a bijection ¢ : B(X) \ B(p) — B(p) \ B(X) such that ¢(b) =
b (mods) for each b € B(A) \ B(p).

Proof.

(1&2) Let 0 = cs(N) and 7 = c5(p). Let’s call a bijection ¢ as in (2) a good
bijection for A and p. The fact that B(o) is obtained from B(X) by
successively reducing entries by s means that there is a good bijection
(;AS for A and o. Similarly there is a good bijection ¢ for p and 7, so if
o = 7 then the composition ¢! o c;AS is a good bijection for A and pu.
Conversely, if there is a good bijection ¢ for A and p, then there is
a good bijection ¥ = do ¢ o <571 for o and 7. For any i € Z/sZ the
bijection v restricts to a bijection 1 from B(c)Ni to B(7)Ni such that
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¥(b) = b for all but finitely many elements of B(c) Ni. But the fact
that o and 7 are s-cores means that B(o)Ni = {¢,c—s,c¢—2s,... } and
B(r)Nni={d,d—s,d—2s,...} for some integers ¢, d. The existence
of 1) now implies that ¢ = d, so that B(c) Ni = B(7) Ni. This applies
for all 4, so that B(¢) = B(7), and hence o = 7.

(2¢3) Given a bijection ¢ : B(A\) \ B(n) — B(p) \ B(A) as in (3), we extend
it to a bijection from B(X) to B(u) by defining ¢(b) = b for all b €
B(X) N B(u). This bijection is good, because B(\) \ B(u) is finite.
Conversely, suppose ¢ is a good bijection for A\ and p. Then we claim
we can modify ¢ so that ¢(b) = b for all b € B(\) N B(u): if there
is some b € B(\) N B(u) with ¢(b) # b, then let a = ¢~1(b) and
¢ = ¢(b), and replace a — b and b — ¢ in the definition of ¢ with
a — ¢ and b — b. This reduces the number of b € B(\) N B(u) for
which ¢(b) # b, and so in finitely many steps we can reach a bijection
¢ in which ¢(b) = b for all b € B(A\) N B(n). Now restricting ¢ to
B(A) \ B(u) gives a bijection as in (3).

O

We also need some basic results on rim hooks and conjugation. These are
well known to experts, but it is easier to provide a proof than a reference.

Lemma 2.3. (1) If A € P, then cs(\) = cs(\)'. Hence X is an s-core if and
only if X is.
(2) If o € Cq, then there is at most one self-conjugate partition with s-core o
and s-weight 1.

Proof. (1) If u is a partition obtained from A by removing a rim s-hook, then
by reflecting the diagrams on the diagonal we find that p’ is obtained from
A by removing a rim s-hook. Now the result follows.

(2) This is most easily seen in terms of beta-sets. If we write b = —1 — b for

any integer b, then (as noted above) a partition A is self-conjugate if and
only if B(X) =Z\ B(\).
If o # o’ then by (1) there are no self-conjugate partitions with s-core o.
So assume o = ¢’. If \ is a partition with s-core o and s-weight 1, then
B(\) is obtained from B(c) by replacing some integer b with b+ s. Given

that B(o) = Z \ B(o), the only way we can also have B(\) = Z \ B()) is

if b= (—1— s)/2. So there is only one possibility for .

O

Simultaneous Cores

From now on, we fix coprime natural numbers s and ¢ greater than 1. ‘

A lot of recent literature has been concerned with studying s- and t-cores
simultaneously. Suppose A is both an s-core and a t-core. In this case we say
that A is an (s,t)-core. We write C,; for the set of all (s,t)-cores. In fact Cs,

is finite: Anderson [1, Theorems 1 and 3] showed that |Cs ;| = %H(S:ft)
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Cs+ contains a unique largest partition, denoted x, ;. It can be constructed
as follows. Let
X_{—t—l-‘rs(t—l) —t—1+s(t—3) —t—1+4+s3—1) —t—l-l—s(l—t)}
2 ’ 2 T 2 ’ 2 '

Then X is a set of t integers which are congruent modulo s but pairwise
incongruent modulo ¢, and it is shown in [5, Section 5] that s is the partition
whose beta-set is

U{z,x—t,z—Qt,...}.

reX
Later we shall need the following result concerning x, ¢, which appears to be
new.

Proposition 2.4. Suppose A is a partition with |\| = |ks | +st, and that cs(\) =
ct(A) = kst Then X is obtained by adding a rim st-hook to k.

Proof. In this proof we write x for k5. Let X be the set defined above, and
for any integer b, write x;, for the unique element of X N (b + tZ).

Because ¢;(\) = K, Lemma 2.2 says that there is a bijection ¢ : (B(A) \
B(k)) — (B(k) \ B()\)) such that ¢(b) = b (modt) for each b € B(\) \ B(k).

Then from Lemma 2.1

st=\—lsl= Y (b—0()

bEB(AM\B(x)

- S>ob-m) + D (m—b). (%)

beB(M\B(k) beB(x)\B(N)

The relationship between B(x) and X means that b > x;, for every b € Z\B(k),
while b < x;, for every b € B(k).

Since cs5(A) = &, there is another bijection ¢ : (B(A) \ B(k)) — (B(k) \
B(A)) such that ¥(b) = b (mod s) for all b. Because all the elements of X are
congruent modulo s, this means that the integer

Yo = (b — mp) + (zyp) — ¥(b))
is divisible by s for every b € B()\) \ B(k). By definition y, is also divisible by
t, so it is divisible by st. But b —x > 0 and x4y — 9(b) = 0 for every b, so
yp is a positive multiple of st. But (x) says that

Z Yp = st,
beB(M)\B(k)
and therefore |B(X) \ B(k)| = 1, which means that A is obtained from x by
adding a rim hook. O

When considering s- and t-cores simultaneously, it is useful to depict
beta-sets of partitions using the (s,t)-diagram introduced by Anderson [1].
This diagram consists of the integer lattice Z2, with the position (r, ¢) replaced
by the integer rt + cs. For consistency with Young diagrams, we draw (s, t)-
diagrams so that the coordinate r increases down the page, and the coordinate
¢ increases from left to right.
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The (s,t)-diagram of a partition A is obtained by placing a bead on the
diagram at all positions labelled by elements of B(A). For example, a portion
of the (3,4)-diagram for the partition (2) is as follows.

SR
II2Y
=% -1 2 5 38

0 3 6 9 12

o

[N

Observe that the (s,t)-diagram is periodic: it is unchanged by translations
through multiples of (s, —t). We can easily tell from the (s, ¢)-diagram whether
A s an (s, t)-core: every bead must have a bead immediately above and a bead
immediately to the left.

We end this section by recalling Olsson’s theorem on cores.

Theorem 2.5. [15, Theorem 1] Suppose o is an s-core. Then ci(o) is also an
s-core.

3. Minimal Partitions with Given Cores

Partitions with Prescribed Cores

Suppose 0 € Cs and 7 € C;. It is an easy exercise using the Chinese Remainder
Theorem to show that there exist partitions with s-core ¢ and t-core 7. One
of the main aims of this paper is to find the smallest such partition(s). So let’s
say that a partition with s-core o and t-core 7 is (o, 7)-minimal if there is no
smaller partition with s-core o and t-core 7. In general, we say that a partition
A ds (s,t)-minimal if it is (cs(A), ¢;(A))-minimal; that is, there is no smaller
partition with the same s-core and t-core as .

In this section we will attempt to describe the (o, 7)-minimal partitions
for given ¢ and 7; in particular, to say how big these partitions are, and how
many of them there are. Given o € C,; and 7 € C;, we write M, , for the set
of (o, 7)-minimal partitions, and m, . for the common size of these partitions.
More generally, for any n we write P, -(n) for the set of partitions of n with
s-core o and t-core T.

Determining m, . for given o and 7 allows us to determine for which n the
set P, (n) is non-empty. If P, ,(n) # 0, then by definition n > m, . But also
n=|o| =m,, (mods) and n = |7| = m, , (modt), so that n =m, , (mod st).
And the conditions n > m,, and n = m,, (modst) are sufficient for the
existence of a partition of n with s-core o and t-core 7: taking a partition of
m, r With s-core o and t-core 7, one can add a rim st-hook to get a partition
AT of my - + st. A rim st-hook can be decomposed into s rim ¢-hooks (or ¢ rim
s-hooks) so that AT also has s-core o and t-core 7. Repeating this operation
as many times as needed gives the required partition of n. In fact (since there
are at least st ways to add a rim st-hook to any partition) we deduce the
following.
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Proposition 3.1. Suppose o € Cs, 7 € C; and n € Ny. Then Py, (n) # 0 if
and only if n > myr and n = m,, (mod st). Furthermore, if n > m, . with
n=m,, (modst), then [Py, (n)| > st.

This has the following consequence, which we will need later.

Corollary 3.2. If A € P with either ws(\) < t or we(A) < s, then A is (s,1)-
minimal.

Proof. Let 0 = cs(A) and 7 = ¢,()), and take p € M, .. If X is not (s,t)-
minimal, then |\| > |u| + st by Proposition 3.1, so that ws(\) = wg(u) +t >t
and similarly wi(\) > s. O

In this section we will mainly concentrate on the case where ¢ and 7 are
both (s,t)-cores; in Sect. 5 we will extend some of our results to the general
case using group actions.

Rectangles in the (s, t)-Diagram
It will help us to introduce certain subsets of Z. Given x € Z, define

Uy ={z+as+bt]| a,b>0},

L,={x—as—0bt| a,b>0},

Re={x+as—bt| 1<a<t, 0<b<s—1}.
Call the R, the x-rectangle. Observe that Z is the disjoint union of U,,, £, and
R., and that R, is a transversal of the congruence classes modulo st.

The sets R, U, and L, are most easily visualised in the (s,t)-diagram:

the elements of R, form a rectangle (in fact, a sequence of repetitions of a
rectangle, given the periodicity of the diagram). U, is the region below and to
the right of these rectangles, and L, is the region above and to the left.

For example, in the (3,4)-diagram with © = 1, we have the following
picture (with Ry shaded).

—4-12 5
L4
0 3 6 9
4 7 10 13
—-4-12 5
0 3 6 9
U
4 7 10 13

Now let’s say that x is a pinch-point for a partition \ if
Ly CB(A) C Ly URy;
in other words, B(\) contains all elements of £, but no elements of U,,. So a
partition with pinch-point x can be specified by saying which elements of R,
lie in B(\).
First we show that partitions having a pinch-point are (s, t)-minimal.
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Proposition 3.3. Suppose A\, u € P with c¢s(N) = cs(u) and ct(N) = c(u), and
that © € Z is a pinch-point for . Then |u| > |\|, with equality if and only if
T 1s also a pinch-point for .

Proof. For each r € R, define
gr(N) = |(r + stZ) N (R Uly) N BA)| — |(r + stZ) N L, \ B(N)],

dr(A) =Y ((r+stZ) N (Re Uly) N B(N)) = Y ((r + stZ) N Lo\ B(N)),

and define g, (1) and d,(p) in the same way. First we claim that
> ree(N) =D rae(p). (1)
rER, TER .

From the definition of R, we get

t s—1
Z Tgr(A) - Z Tgr = Z Z T+ as— bt gz+as—bt(>\) - gz+as—bt(ﬂ))
TER TER - a=1b=0

<Z x +as Z rtas—bt(N) — ga-+as—bt(/l))>
a=1 b=0

s—1 t
( btz ngras bt ngrasbt(ﬂ))) .

b=0 a=1

The fact that ¢;(A) = ¢; (1) means (using Lemma 2.2) that >, _ 0(9x+as pt(A)—
Jatas—bt(pt)) = 0 for any a, so that the first summand is zero. Similarly, the

fact that cs(\) = cs(p) means that 3'_ (guras—bt(A\) — Gutas—se(pt)) = 0 for
any b, so that the second summand is also zero and () is proved.
Now we consider d.(A\) and d,(u). It follows from Lemma 2.1 that

= A=~ (de(p) = dr (M) 1)
TER .

But the definitions also give

dr(p) = rgr (1)

with equality if and only if B(p) contains every element of (r + stZ) N L, and
no elements of (r + stZ) NU,. Summing over r, we obtain

S dm = S )
rER4 reRe

with equality if and only if x4 has x as a pinch-point. Doing the same with A
in place of p and using the assumption that = is a pinch-point for A\, we get

S =Y ra.

TERE T'ERT,
So from (),
Z dr(p) = Z dr-(N),
r€R, TERL

and the result follows from (). O
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Corollary 3.4. Suppose 0 € Cs and 7 € C;. If there is a partition with s-core o,
t-core T and a pinch-point x, then M, , is precisely the set of partitions with
s-core o, t-core T and x as a pinch-point.

The Case of (s, t)-Cores

Corollary 3.4 is very helpful in identifying (s, ¢)-minimal partitions. However,
there are (s, t)-minimal partitions without a pinch-point. For a simple example,
take (s,t) = (2,3), and A = (5,3,12). Then A is a 3-core, so must be (2,3)-
minimal. But it has no pinch-point, as we see from (a portion of) its (2, 3)-

diagram.
DIID 4D 0
dIII 1Y
=6 4 =2 0 2 4 6
3 -1.1) 3 5 7 9

02:4)681012

W

But now we restrict to the case where 0,7 € Cs4, in which case we can
show that the partitions in M, » have a common pinch-point.

For the rest of Section 3, we assume that o and 7 are (s, t)-cores. ‘

For any i € Z/sZ, define
1
§; = g(maX(B(U) N i) — max(B(r) Ni)).
Now choose y € Z/sZ for which the sum

0o + 0 + 02p + -+ + 0y

is maximised, and let © = max(B(7) Ny). Call z a peak for (o,7). (Note that
this depends on the order of ¢ and 7: a peak for (o, 7) will not in general be
a peak for (1,0).)

Lemma 3.5. Suppose o and T are (s,t)-cores and x is a peak for (o,7). Then
x is a pinch-point for both o and 7.

Proof. Let y = x+ sZ. By definition 2 € B(7), and the choice of y means that
dy =0, s0 x € B(o) as well. Since o is an (s, t)-core, we get  —as — bt € B(o)
for all a,b > 0, so £, C B(o). Similarly £, C B(7).

The definition of = also means that z + s ¢ B(7), and therefore x + s +
t ¢ B(r). The choice of y implies that 6,1+ < 0, so max(B(o) N (y + 1)) <
max(B(T) N (y+t)) < 4+ s+t and therefore x + s + ¢ ¢ B(o). Again using
the fact that o is an (s,t)-core, we get © + as + bt ¢ B(o) for a,b > 0, so
B(o)NU, = . Similarly B(T) NU, = 0, so x is a pinch-point for o and 7. O

In fact, x is not the only common pinch-point of ¢ and 7: one can easily
show that any two (s, t)-cores must have at least two pinch-points in common.
But we will show that a peak for (o,7) is a pinch-point for every A € M, ..
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To do this, we just have to show (by Corollary 3.4) that there is at least one
partition with s-core o, t-core 7 and = as a pinch-point. We do this using
the theory of (0, 1)-matrices. First we set up a correspondence between (0, 1)-
matrices and partitions.

Lemma 3.6. Suppose x € Z, and let A, denote the set of s x t (0,1)-matrices
with exactly %(st —s—1t—1)—x entries equal to 1. Then there is a bijection
0, between A, and the set of partitions with pinch-point x, given by mapping
a matriz m = (m,;) to the partition with beta-set

LoU{z—st+it+js| m;; =1}.

If m,n € A, then 0,(m) and 0,(n) have the same s-core if and only if m and
n have the same row sums, while 6,(m) and 6, (n) have the same t-core if and
only if m and n have the same column sums.

Proof. If A € P has z as a pinch-point, then by Lemma 2.1,
[BA) NRy| =(-N)N(Ry Uly)| — |No N L],

and it is a straightforward combinatorial exercise to show that the right-hand
side equals 3(st — s —t — 1) — 2. So A is obtained from a matrix m € A as
described. Conversely, if m € A, then the same calculation shows that the set

B=L,U{zx—st+it+js| m;; =1}

is a beta-set; that is, [Ng N B| = |(=N) \ B|. Clearly then the corresponding
partition has z as a pinch-point.
The statements about s- and t-cores follow from Lemma 2.2. O

For any partition A with z as a pinch-point, define a composition A by
setting

Ar = |BA) N Ry N (24 7t + sZ)]|

forr=1,...,s,and A\, = 0 for 7 > s. Then \y,...,\, are just the row sums
of the matrix 6, 1()).

Now return to the situation of two (s,t)-cores o, 7, with = being a peak
for (o,7). In view of Lemma 3.6, to show that z is a pinch-point of some
(and hence every) partition in M, ., we need to show that we can find a
(0, 1)-matrix with the appropriate row and column sums.

Consider the compositions & and 7. Because o is a t-core we have b—t €
B(o) "R, N (z+ (r — 1)t + sZ) for every b € B(o) N R, N (x + rt + sZ) and
every 7 = 2,...,, which means that 6; > --- > &,, so that ¢ is actually a
partition; similarly 7 is a partition, and |6| = || by Lemma 3.6. We claim
that 7 = &. If this is not true, then there is r € {1,...,s — 1} for which
o1+ --+o0, > 7 + -+ 7. But observe that 6; — 7; is the integer 0,
defined above, so that 6,44 + 6z49t + -+ + 0zqpt > 0, which then contradicts
the assumption that x is a peak.

So ¢ and 7 are partitions of the same size, both with first part at most
t and length at most s, with 7 > &. By the Gale-Ryser theorem [8,17], this
means that there is an s x ¢ (0, 1)-matrix [ whose row sums are 1,...,55 and
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whose column sums are 77, ..., 7{. Now set A = 0,,(1). Then Lemma 3.6 implies
that A has x as a pinch-point, and has s-core ¢ and t-core 7.
Now Corollary 3.4 applies, and we conclude the following.

Theorem 3.7. Suppose 0,7 € Csy, and x is a peak for (o,7). Then My is
the set of partitions with s-core o, t-core T and x as a pinch-point. These
partitions are in bijection with the (0,1)-matrices having row sums &1,...,05
and column sums 71,...,7{.

Ezample 3.8. Take s =3,t =4, 0 = (1), 7 = (2). Then
B(o)={...,—4,-3,-2,0},
B(r)=1{...,—4,-3,-2,1}.

With §; defined as above, we obtain
do=1, 6 =-1, =0,

so that the unique peak for (o,7) is —3. The intersections of B(c) and B(7)
with R_3 are illustrated in the following diagrams.

Sh2 1 SI2D
=4 -12 5 4-12 5
03 6 9 0 3 6 9
B(O’)QR,3 B(T)ﬁR,3

We see that 6 = (3,1%) and 7 = (4,1). So M, - is in bijection with the set of
3 x4 (0,1)-matrices with row sums 3, 1,1 and column sums 2,1, 1, 1. There are
seven such matrices; the bijection between these matrices and the partitions
A € M, ; is indicated by the following diagrams.

A BA)NR_3 A B(A)NR_3
JII - JJI D
(10) Do (7,3) D - -
. . . J . . J .
JIJI - J IJ
(6/2112) R (4/3/13) O
AN A A
(33’1) R (25) D -
WD
(22,16) »
J .

Now we determine the t-weight of the partitions in M, ,, which will
enable us to find their size m, ;.

Proposition 3.9. Suppose x is a peak for (o,7). Then the common t-weight of
the partitions in My » is

51:+t + 26z+2t + -4 (S - 1)6x+(s—1)t + 851.
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Proof. Take A € M, ;; because cs(\) = o, we get A\ = 6. As observed above,
Opyit = 03 — T; for i = 1,...,s, so we need to show that the t-weight of A
is Y27, i(\i — 7). In fact we show that this is true for any partition A with
t-core 7 and with x as a pinch-point, and we do this by induction on w;(X). If
wi(A) = 0, then A = 7 and the result is immediate. Otherwise, there is some
b € B(A) with b—t ¢ B()A). Then both b and b—1 lie in R, so b € x+jt+sZ for
some 2 < j < s. So if we let u denote the partition whose beta-set is obtained
by replacing b with b — ¢, then p also has t-core 7 and = as a pinch-point. In
addition w;(p) = we(A\) — 1, and

N+1 ifi=j—-1
fpi={N—1 ifi=j
i otherwise,

so that 27 iji; = S27_, iA; — 1. So the result follows by induction. O

The s-weight of a partition A € M, . can be determined by interchanging
the roles of s and ¢, or from the t-weight, using the fact that |o| + swg(\) =
Al =[]+ twi (A).

Ezample 3.10. We continue Example 3.8, with —3 being the unique peak for
(o,7). According to Proposition 3.9 the 4-weight of the partitions in M, ; is

01 + 209 + 359 = 2.
And indeed the partitions in M, ; have 4-weight 2.

Counting partitions in P, - (n)
Now we consider how many partitions there are in P, -(n); in particular, we

will determine exactly when |P, - (n)| equals 1 or 2. For the case |P, -(n)| = 1,
we have the following (which is also easily derived from the results in [6]).

Proposition 3.11. Suppose 0,7 € C,, and n € Ng. The following are equiva-
lent.

(1) [Por(n)| = 1.
(2) o =71 and n =|o|.
) n=m,, = |o]|

) n=m,,=|T]|.

)

(1=3) If there is a unique partition of n with s-core o and ¢-core 7, then from
Proposition 3.1 we certainly have n = m, . Now by Theorem 3.7,
taking a peak x for (o, 7), there is a unique (0, 1)-matrix with row-
sum given by ¢ and column sums given by 7/. By [4, Theorem 3.2.4],
this implies that & = 7, so that o = 7. Clearly then m, . = |o|.

(3=2) Ifm, , = |o|, then M, , = {o}, because the only partition of |o| with
s-core o is 0. But then ¢;(0) = 7, and the assumption that o is a
t-core means that o = 7.



310 M. Fayers

(2=1) If 0 = 7 and n = |o|, then o is a partition of n with s-core o and
t-core 7. Clearly it is unique, because the only partition of |o| with
s-core o is 0.

Interchanging s and ¢, we also get 1=4=2. O

For later use, we also want to know when there are exactly two partitions
in P, -(n). For this we need the following straightforward result on (0, 1)-
matrices, which the author has been unable to find explicitly in the literature.

Proposition 3.12. Suppose o, € P with ay,81 < t and o}, 3] < s, and
suppose there are exactly two s X t (0,1)-matrices with rows sums i, ..., as
and column sums (y,...,0;. Then there is some a € {1,...,s — 1} for which
Qg = Qgy1 aNd

ﬂ:(Otl,...,Oéa_l,Oéaﬁ“l,Oéa*1,0éa+2,...).

(In fact the condition given on « and 3 is sufficient as well as necessary
for there to be exactly two matrices with the given row- and column-sums, but
we will not need this.)

Proof. Let m = (m;;) and n = (n,;) be the two matrices. By Ryser’s theorem
[17, Theorem 3.1], m and n differ by an interchange; that is, there are 1 < a <
b<sand 1< c<d<tsuch that (up to switching m and n) mg. = mpqg =
Nagd = Npe = 1 and myg = Mpe = Nge = Npg = 0, while m and n agree in all
other positions. This means that all positions except for (a,c), (a,d), (b,c),
(b,d) are invariant positions. It is easy to see that if (¢,7) is an invariant 1-
position (i.e. m;; = n;; = 1) then (because o and (3 are decreasing sequences)
all positions above and/or to the left of (i,j) are invariant 1-positions, while
if (i,7) is an invariant O-position, then all positions below and/or to the right
are also invariant 0-positions. This means that b=a+1 and d = c+ 1.
Furthermore, m;. = myq for all d # a, b, and m,; = my; for all j # c,d,
since otherwise other interchanges from m would be possible, so there would
be more (0, 1)-matrices with the same row- and column-sums as m. This is
enough to show that o and 3 have the desired form. 0

Now we can characterise when there are exactly two partitions with given
size, s-core and t-core.

Proposition 3.13. Suppose 0,7 € Cs, and n € Ny. The following are equiva-
lent.

(1) [Po,r(n)] = 2.

(2) 7 is obtained from o by adding or removing a rim hook, and n = |o|+s =
|| + t.

B) n=my, =|o|+s=|7|+1.
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Proof.

(1=2)

(2=1, 3)

If there are only two partitions of n with s-core o and t-core 7, then
n = m,, by Proposition 3.1. Now let = be a peak for (o,7), and
define the partitions 6 and 7 as above. Then by Theorem 3.7 there
is a bijection from M, » to the set of (0,1)-matrices with row sums
61,...,0s and column sums 77,...,7;. So if M, .| = 2, then by
Proposition 3.12 there is some r € {1,...,s— 1} such that 6, = 6,41
and 7 is obtained from & by replacing 6., 6,41 with 6, +1,6,41 — 1.
If we let b = max(B(o) N (z + rt + sZ)), then B(7) is obtained from
B(o) by replacing b+ t with b+ s. Hence 7 is obtained from o either
by removing a rim (¢ — s)-hook or by adding a rim (s — ¢)-hook. If
we define a partition A by B(A) = B(o) \ {0+ t} U {b+ s+ t}, then
A€ P, (lo|+s),son=m,,=|\=|o|+s=]|7|+t.

Assuming (2), there is an integer b such that B(c) is obtained from
B(7) by replacing b+ s with b+ ¢. Since o and 7 are both (s, t)-cores,
b lies in both B(o) and B(7) while b+ s+ ¢ lies neither in B(o) nor in
B(7). Now define two partitions A and u by

BA) =B(o)\{b+t}U{b+s+t}, B(p) =B(o)\{b}U{db+s}.

(3=2)

Then A and p both have s-core o and t-core 7, so are (o, 7)-minimal
by Corollary 3.2. Hence m, » = |A| = |o|+s = ||+, proving (3). Now
we claim that the only partitions in M, ; are A and p. If v € M, .,
then v has s-weight and ¢t-weight both equal to 1, so B(v) is obtained
from B(o) by replacing some integer ¢ with ¢+ s, and is also obtained
from B(7) by replacing some integer d with d + t. The relationship
between B(co) and B(7) then means that ¢ can only be b or b+ ¢, so
that v = X\ or p. So (1) is proved.

Take A € M, . Condition (3) says that ws(A) = wy(A) = 1, so there
are b, c € Z such that

B\) = Blo)\ {b}y U{b+s}, B(r) = B\ {c+t} U {c}.

Since 7 is an s-core, either b € B(7) or b+ s ¢ B(7). Hence either
¢ ="bor ¢+t ="b+ s. Either way, B(r) is obtained from B(c) by
replacing some integer d with d 4+ s — ¢, which proves (2). |

4. Conjugation

In Sect. 3 we addressed the question of when a partition is determined by its
s-core, its t-core and its size. Now we consider conjugation of partitions, and
address the following two questions.

(1) When is a partition determined up to conjugation by its s-core, its t-core
and its size?

(2) When is a self-conjugate partition determined by its s-core, its t-core and
its size?
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In this section we answer these questions in the case of partitions whose
s-core and t-core are both (s, t)-cores. Then in Sect. 5 we will use group actions
to extend these results to all partitions.

’For the rest of Section 4, we assume that o and 7 are (s, t)-cores. ‘

First question on conjugation

We begin with our first question, for which we have already done most of the
work. So take A € P, let 0 = ¢5(N), 7 = ¢;(A\), and assume o and 7 are both
(s, t)-cores. We want to know whether the partitions with s-core o, t-core 7 and
size |\| are precisely A and X. If A’ = A, then we already know the answer to
this question from Proposition 3.11, so we assume A # X. To have cs(\) = o
and ¢;(\) = 7, we need ¢/ = o and 7’ = 7 from Lemma 2.3(1). Assuming this
is the case, we first need to know when there are exactly two partitions with
s-core o, t-core T and size |A|, and this is answered in Proposition 3.13. We
then need to know whether these two partitions form a conjugate pair or are
self-conjugate. We obtain the following result.

Proposition 4.1. Suppose 0,7 € C5+ and n € Ny. The following are equivalent.

(1) There are exactly two partitions of n with s-core o and t-core T, and they
form a conjugate pair.

(2) ¢’ =0, 7" =71, 0 is obtained from T by adding or removing a rim hook,
andn =|o|+s=|7|+¢.

B) o =0, 7=71,andn=m,, =lo|+s=|1|+1.

Proof.

(1=2) If (1) holds, then ¢’ = ¢ and 7" = 7 from Lemma 2.3(1). The rest of
(2) follows from Proposition 3.13.

(2=-3) This follows from Proposition 3.13.

(3=1) Assuming (3), Proposition 3.13 implies that |P, ,(n)| = 2. Since ¢’ =
o and 7 = 7, the set P, (n) is closed under conjugation, so the
two partitions in P, ,(n) either form a conjugate pair or are both
self-conjugate. But (3) says that these partitions have s-weight 1, and
two partitions with s-weight 1 and the same s-core cannot both be
self-conjugate by Lemma 2.3(2). So these partitions form a conjugate
pair.

O

We remark that the equivalent conditions in Proposition 4.1 can hold only
if s —t is odd: if 0 and 7 are both self-conjugate and differ by the addition or
removal of a rim hook of length |s —¢|, then this rim hook is symmetric about
the diagonal, so must contain an odd number of nodes.

Ezample 4.2. Suppose s =4 and t = 7. If we take o = (22) and 7 = (1), then
the conditions in Proposition 4.1 are satisfied when n = 8. And indeed the

smallest partitions with 4-core (22) and 7-core (1) are the conjugate partitions
(6,2) and (22, 1%) of size 8.
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Second question on conjugation

Now we address our second question on conjugation: given o, 7,n, is there a

unique self-conjugate partition of n with s-core o and t-core 77 Again, this

can only happen if ¢ and 7 are both self-conjugate. But the answer to this

question is considerably more complicated than for the previous question.
Recall that we define b = —1 — b for b € Z, and that a partition \ is

self-conjugate if and only if B(\) = Z \ B(\). We now introduce two more

items of notation.

& We write o 27 7 if there is an integer b € B(r) \ B(o) with b — b =

t (mod 2s), and B(c) = B(7) \ {b} U {b}. This means that o is obtained
from 7 either by adding a rim hook whose length is congruent to ¢ modulo
2s, or by removing a rim hook whose length is congruent to —¢ modulo
2s. Observe that (assuming o and 7 are both self-conjugate) this can only
happen if ¢ is odd.

¢ We write o 22 7 if there are distinct integers b, c € B(7) \ B(o) such that
b—b =t (mod 2s) and ¢—c = —s (mod 2t), and B(o) = B(7)\{b, c}U{b,c}.
In this case we define another (s, t)-core ox7 by B(o = 1) = B(7)\{c}U{c}.
Note that we can have o S:t, 7 only if s and ¢ are both odd.

Now we can answer our question about self-conjugate partitions in the
case where o and 7 are both (s, t)-cores.

Theorem 4.3. Suppose 0,7 € Cs; andn € Ng. Then P, -(n) contains a unique
self-conjugate partition if and only if o' = o, 7/ = 7 and one of the following
conditions holds.
Cl) o =71 andn=|o|.
C2) t is odd, o7 andn = || +t.
C3) s is odd, T2 5 and n = lo| + s.
t
4) s and t are both odd, o Zrandn = |o*7|+s+t.
5) s and t are both odd, 0 = T = ks and n = |ks4| + st.

C
C

o~~~ o~ o~

Proof of the “if” part. We show that each of the five given conditions (together

with the assumption that ¢’ = o and 7 = 7) implies that there is a unique

self-conjugate partition in M, ..

(C1) In this case P, -(n) = {o}, and by assumption o is self-conjugate.

(C2) If o 2 7, then B(o) is obtained from B(7) by replacing b with b
b+t — 2ks, for some integers b, k. So if we define a partition A by B()\)
B(r) U{b+t —ks}\ {b— ks}, then A € P, (|7] +t). In addition A is
self-conjugate, because b+t — 2ks = b and b+t — ks = b — ks. Because
A has t-weight 1 it is the unique self-conjugate partition of |7| + ¢ with
t-core 7, by Lemma 2.3(2).

(C3) This is the same as the previous case, with the roles of s,¢ and of 0,7
reversed.

s,t
(C4) If o = 7, then B(o) is obtained from B(7) by replacing two integers b, ¢
with b,¢, where b — b =t — 2ks and ¢ — ¢ = —s + 2It for some integers
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k,l. Then ¢ = 551 —lIltand b= %‘1 + kt. Let v = 0 x 7. We will show
that m, , = |v| + s + ¢, and that M, , contains a unique self-conjugate
partition.
Claim. 1 <[ < 552,
Proof. It I < 0, then because 7 is a t-core and ¢ € B(1), we get
¢+ 2t € B(7), and then (because T is an s-core) ¢+ 2t — s € B(7),
i.e. ¢ € B(1), a contradiction. So > 1, as claimed.
To see that | < 853, suppose first that [ > 542-1. Then the fact that
¢ ¢ B(o) and o is a t-core gives 551 — 511t ¢ (o). But then the
fact that o is an s-core yields =51 ¢ B(o). Using the fact that o is
a t-core again, we get ‘51 ¢ B(c), but this contradicts the fact that
t—1

o =o.
So we can deduce that [ < . Symmetrically, we have k < 5=,

2

ie b > W If in fact [ = 51, then B(0) & ¢ = W,
and so (since o is an s-core)

5— 1— — T

Blo)# B2+ (5 —0) =B,

a contradiction. So I < £33,

Similarly we get 1 < k < % Now to show that M, . contains a unique
self-conjugate partition, we completely classify the partitions in M, ..
Take an arbitrary partition p € M, ,, and use the set-up from Sect. 3
using peaks. Recalling the integers J; defined there, we get

s—1

0p = 0c = —1, Oyt = Ocqaue = 1,
while all other §; equal 0. So the sum
00 + 0 + 02 - - - + dy
is maximised for
y=b+t+sZ, b+2t+sZ, b+3t+sZ, ..., c—t+ sZ
and also for
y=c+2t+8Z, c+ 2+ 1)t+$Z, c+ 2 +2)t+$Z, ..., b—t+ sZ.

This provides a large number of peaks for (o,7), namely the values
max(B(7)Ny) for the y listed above. By Theorem 3.7, each of these peaks
is a pinch-point for p. This means that B(p) Ny = B(o) Ny = B(r) Ny
for all y € Z/sZ except

b+ sZ, b+t+ s, c+sZ, c+t+sk, ..., c+ 2t + sZ.
Symmetrically, B(u) Nz = B(o) Nz = B(r) Nz for all z € Z/tZ except
c— s+, c+tZ, b—2ks+1tZ, b— (2k—1)s+tZ, ..., b+1Z.
So B(u) agrees with B(o) and B(r) except in the two disjoint sets
S=1{b—2ks,b—(2k—1)s,...,b} U{b+1t—2ks,b+t— (2k —1)s,...,b+t},
T={c—s,c—s+t,...,c—s+2t}U{c,c+t,...,c+2lt}.
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These sets appear in the (s,t)-diagram as a 2 x (2k + 1) rectangle and a
(20 + 1) x 2 rectangle as shown in the following diagram.

_ S b

The fact (shown above) that 1 <1 < % and 1 < k < % means
that there is no congruence class modulo s or ¢ which intersects both S
and 7. Given this, it is quite easy to find all © € M, .. We consider
B(u) NS first. Since ¢s(n) = o, the upper row of S contains 2k elements
of B(y), while the lower row contains one; since c¢;(u) = 7, each column

of § contains one element of B(u). So
B(p)NS ={b—2kt,b+s—2kt,...,b} \ {b—is} U{b—is—+1t}

for some 0 < 7 < 2k. Similarly,

Bp)NT ={c—s,c—s+t,...,c—s+2lt}\ {c—s+jt}U{c+jt}

for some 0 < j < 21. So M, » contains exactly (2k+1)(20+1) partitions,
corresponding to the possible choices of ¢ and j. Only the choice i = k,
j =1 gives a self-conjugate partition. Call this partition A; then B(\) =
Bw)\ {=5=1, =51 u {55, 51), so that my - = [A] = [u] + s + ¢

By Proposition 2.4, any partition of |k, |+ st with s-core and ¢-core both
equal to ks is obtained by adding a rim st-hook to k¢, i.e. by replacing
an element b € B(ks) with b+ st. Since kg, is self-conjugate, only the
choice b = 7‘9;’1 will yield a self-conjugate partition.

Proof of the “only if” part. Suppose A is the unique self-conjugate partition
of n with s-core o and t-core 7. Then o/ = c5(A) = ¢s(N) = cs(\) = o, and
similarly 7/ = 7, so we need to show that one of conditions (C1-5) holds.

that:

Let’s define a tetrad (for ) to be a quadruple (w, x,y, z) of integers such

S w<r <z
Swtz=z+y;

& w
O w

z (mod s);
y (modt);

& BA) Nn{w,z,y, 2z} equals either {w, z} or {z,y}.
Let’s say that this tetrad is positive if w,z € B()), or negative if z,y € B(\).
Observe that if (w,x,y, z) is a positive tetrad, then (Z,7,Z,w) is a negative
tetrad.
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Claim 1. Suppose o > 0. In any congruence class modulo s, there are
at least as many u for which v € B(\) Z u + ht as there are u for which
u ¢ B(\) D u+ ht.

Proof. Since o is a t-core, there is no u such that u ¢ B(o) 3 u + ht, so
the claim is certainly true with A replaced by o. Now the claim for A follows
from the fact that cs(\) = o, using Lemma 2.2.

The same statement holds with s and ¢ interchanged.

Claim 2. If (w,z,y, 2) is a positive tetrad, then z equals either T or 7.

Proof. Suppose first that {w,z,y,z} N {z,y,7,w} = 0. If © # y, then
we can form a new self-conjugate partition by replacing the elements w, 2,7, ¥
in B(A) with z,y,w,z. This new partition will have the same size, s-core and
t-core as A, contradicting our assumption that A is unique. On the other hand,
if x =y, then w, x,y, z are congruent modulo st and we construct a partition
1 by replacing z, T with x,Z in B(\). Then p is self-conjugate, and is obtained
from A by removing an even number of st-hooks (so in particular has the same
s-core and t-core as A). Now there are several ways we can add these st-hooks
back on to u to create self-conjugate partitions, which will all have the same
size, s-core and t-core as A. Again, we have a contradiction.

So instead we must have {w, z,y, 2} N{Z,%,Z,w} # 0. Given the relation-
ships between w,z,y, z and the fact that w,T,7,2z € B(\) Z w,z,y,Z, there
are four possibilities: z =%, 2 =7, w =T or w =7.

Suppose w = g. Then Z,w, z are congruent modulo s, with T = Z + ht,
W = w + ht and z = x + ht for some positive integer h. Moreover, T, w, z €
B(\) # z,w,z. By Claim 1 there must be some a # w with ¢ = w (mod s)
and a € B(A\) Z a + ht. In fact (by replacing a with —a — ht if necessary) we
can assume a < w. But now we have another positive tetrad (a,x,a + ht, 2)
which is disjoint from (Z,a + ht, T, @), and we get a contradiction as in the last
paragraph. So w cannot equal 7, and symmetrically w cannot equal Z. So our
claim that z € {Z,y} for any positive tetrad (w, z,y, z) is proved.
Correspondingly, in any negative tetrad (w,x,y,z), we have w € {Z,7}. We
split the remainder of the proof into two cases.

Case A: B()) does not contain 51 + kst for any non-negative integer &

Under this assumption, we make the following claim.

Claim 3. If (w,x,y, z) is a positive tetrad with z = T, then z = %

Proof. To see this, first observe that because z = Z, * = 2 (modt) and
x < z, we have z = % + ht for some h > 0. (In particular, ¢ is odd.)
Assume for a contradiction that A > 0. Because A is self-conjugate, one of
the integers 151 and =41 (call it 2’) does not lie in B(\). Now we have a
pair ' < z with 2’ = z (modt) and a’ ¢ B(A) 3 z. Now Claim 1 implies
that 2’ and z belong to a tetrad: either a positive tetrad (w’,z’,y’, z) or
a negative tetrad (a/,w’, z,9’). The assumption that & > 0 means that
z # 2/, so from Claim 2 (and the statement immediately following it) we

get either z = 3/ or 2/ = w’. If 2’ = w/, then 2’ = %51 (mod s); but this

2
is not true for either of the two possible values of z’. So instead z = ¥/,

which gives z = 31 (mods). But then z has the form 1 + kst with

k > 0, contrary to our current assumption.
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Symmetrically, if (w, z,y, 2) is a positive tetrad with z = 7, then z = *5=.
Combining what we have seen so far, we can deduce the following: if u < v
with « = v (modt) and u ¢ B(A) > v, then either u = =51 and v = 52, or
752*1, or v = 521 statement holds with s and ¢ interchanged
throughout. So we can extract a lot of information about the sets B(X) N4, for
i€ Z/tZ.

¢ If tis odd and 51 € B()), then
B\ N (5 1+tZ {5t —nt| h>1}u {5}
¢ If s is odd and *51 € B()\), then
B(A)N (521 +1iZ) =
BN (=2 +tz)={=L+ht | h<a}\{=51}

for some a > 0. (The same variable a appears in both equations because
A is self-conjugate.)
¢ In all other cases, and for all other i € Z/tZ, B(\) N i has the form
{r —ht | h >0} for some integer r.
The same statement holds with s and t interchanged.
We can now determine which of cases (C1-5) holds, depending on whether
s=L and 1 lie in B(A).
If neither 5% nor 5 lies in B()), then the statements above about B(\)
show that A is an (s, t)-core, so that 0 = 7 = A and (C1) holds.
If 51 lies in B(A) 5+ does not, then certainly ¢ is odd, and the
statements above show that wt( ) =1,80 A € M, .. B(T) is obtained from
B(\) by replacing 51 with =4=1. So if we let b denote the largest element of

B(A)N (=42 +SZ) then b= _t ! +as with a > 0, and B( ) is obtained from

B(X) (C2) holds.
By 1nterchang1ng s and t in the prev1ous paragraph, we see that if £t
lies in B(A) but 5t does not then (C3) holds
Finally suppose bot (M\). Then s and ¢ are both
odd. Let b denote the largest element of B(t) N (=5= + sZ), and let ¢ denote
the largest element of B( ) (25 + tZ). Then B(r) is obtained from B(\)
by replacing 5+ el B(o) is

2 p—
obtained from B (A) by replacm and 51 with b.

u =

==L with =51

Hence we have o = 7, and |A| = |v| + s + . So (C4) holds.
Case B: B()\) contains -1 + kst for some non-negative integer &

Take k > 0 such that st=1 + kst lies in B(A). Because X is self-conjugate,
the integer _55_1 — kst does not lie in B(A). Let p be the partition defined
by B(p) = B(A) \ {252 + kst} U {=2=1 — kst}. Then p is self-conjugate, and
is obtained from A by removing a rim (2k + 1)st-hook. If k& > 0, then there
are several ways to add 2k + 1 rim st-hooks to pu to obtain a self-conjugate
partition of n with s-core o and t-core 7, contradicting the uniqueness of .
So instead we must have k = 0. We claim then p must be the unique self-
conjugate partition of n — st with s-core o and t-core 7. If not, then let v be
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st

another such partition. If -1 ¢ B(v), then we can define a new self-conjugate
partition £ of n by B(§) = ( ) U {523\ {=2L=1}. Then ¢ has s-core o and
t-core 7, contradicting the uniqueness of A. If 1 € B(v), then the partition
7 of n — 2st defined by B(w) = B(v) \ {#51} U {=2L=1} is self-conjugate with
s-core ¢ and t-core T; there are several ways to add two rim st-hooks to 7 to
obtain another self-conjugate partition of n which contradicts the uniqueness
of \.

So p is the unique self-conjugate partition of n — st with s-core o and
t-core 7, and B(u) does not contain 1 + kst for any k > 0. So from Case A
applied to p, the triple (o, 7,n — st) satisfies one of the conditions (C1-4). By
the proof of the “if” part of the theorem, we know in each case exactly what
1 is. We consider these cases one by one.

(C1) In this case 0 = 7 = p. If 0 = Ky, then o, 7, n satisfy condition (C5). If
not, then we claim that w € B(o). To see this, recall the set X
from the proof of Proposition 2.4. This set defines s, ¢, in the sense that

B(kst) U {z,2 — 2t,...}.
zEX
Since o # ks, B(o) contains an integer not in B(ks ), so contains = + at
for some € X and a > 0. Since o is a t-core, B(o) then contains x + ¢.
Since the elements of X are congruent modulo s and ¢ is an s-core,
B(o) then contains min(Xx’) +¢ %, as claimed. But now there

%, L sod sl for A which contradicts Claim 2

is a tetrad (
above.

(C2) In this case B(\) is obtained from B(r) by replacing =5~ and == with
% and Stgl. We certainly have M € B(r ) 1f T = K, then this
comes from the proof of Proposition 2.4, and otherwise it comes from
the fact that M € B(7) (as shown in the case just above) and 7
is a t-core. But now we have a tetrad (=stEs=t=1 =t=l s-1 st=1) for )
which contradicts Claim 2.

(C3) This is the same as the preceding case, with s and ¢ interchanged.

(C4) This is similar to (C2), but now using the tetrad (=st=5=t=1 =1 s=1

) 0

Example 4.4. Take s =5,t =9, 0 = (7,3%,1%), 7 = (6,3%,1%). Then o ;t T,
with =5 and ¢ = —7, giving v = o x 7 = (7%,4%,2%). Then m, , = |v| + 14 =
42, and XA = (73,6%,3) is the unique self-conjugate partition in M, .. The
integer = 1 is a peak for (o, 7), and we illustrate the intersection of R1 with
the beta-set of each of the partitions o, 7, 0 x 7 and A, with the sets S and 7
from the proof outlined.
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5. Group actions

In this section we extend the results of Sects. 3 and 4 to the case where o and 7
are not necessarily (s, t)-cores, using actions of affine symmetric groups. These
actions were introduced in [5], and studied further in [6,7], and we recall the
essential details here, taking the exposition from [6]. Throughout, we write sot

. s—1)(t—1
for the integer %

The affine symmetric group
Let W, denote the Coxeter group of type 1215_1. This has generators w; for
i € Z/sZ, and relations
wi=1 for each 1,
W;Ww; = wW;w; lf]#l:l:l,
We define the level t action of Wy on Z by
n+t ifne(i—1)t— sot
win=n—t ifne€it— sot for each i € Z/sZ.

n otherwise
This naturally yields an action of Wy on the set of all subsets of Z. This action
sends beta-sets to beta-sets, so we get a level ¢t action of W, on the set of all
partitions, defined by

B(wA) = wB(\)

for w € Ws and A € P. From now on we will refer to this simply as “the
action” of W, on P, and whenever we write wA for w € W, and A € P, we will
be referring to this action. The action has several nice properties, summarised
in the following lemma.

Lemma 5.1. [6, Lemma 3.1] Suppose A € P and w € W.
(1) ci(w) = ci(N).
(2) ws(wA) = wg(A).
(3) cs(wA) = w(cs(N))-
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A consequence of part 2 of the lemma is that the action of W, restricts
to an action on Cgs. By interchanging s and ¢ in the definitions, we get a level
s action of W; on P. This commutes with the level ¢ action of W;, so we have
an action of W, x W;.

(8, t)-minimal partitions
We want to show that the set of (s,t)-minimal partitions is preserved under

the action of W;. First we observe a useful result about the sizes of partitions.
For A € P, define |A|s = |A| — [cs(A)] — |ce(A)].

Proposition 5.2. Suppose A € P and w € Wy x W,. Then |wA|s i = |A|s,¢-

Proof. Assume first that w € Ws. Then
[wAls,t = [wA] = fes(wA)] = Jee(wA)]
= sws(w) — |ce(w)|
= sws(A) — |ce(A)] by Lemma 5.1
= Al = [es (M) = [ee(A)]

as required. The case where w € W, is proved in the same way, with s and ¢
interchanged, and the general case follows by combining these two cases. [

s,ty

Corollary 5.3. The set of (s,t)-minimal partitions is preserved under the ac-
tion of Ws x Wy on P.

Proof. To see this, take w € W, x W, and partitions A and p with wA = p.
If X\ is not an (s, ¢)-minimal partition, let A~ be a smaller partition with the
same s-core and t-core as A\. Let u= = wA~. Then we claim that g~ has the
same s-core and t-core as i, but is smaller, so that u is not (s, t)-minimal. We
assume first that w € W,. Then by Lemma 5.1

s (1) = wey (A7) = we, () = (1),
ce(p™) =c(A7) = cr(A) = (),
and so by Proposition 5.2
™ =l = AT+ AT < ul,

as claimed. The case where w € W; is the same, but with s and ¢ interchanged,
and the general case follows by combining these two cases. ([

We obtain the following corollary on the sizes of (s, t)-minimal partitions.

Corollary 5.4. Suppose o € Cs, 7 € Cy, u € W, and v € Wy. Then
Myo,wr = Mo, 7 — |U| - |T‘ + |ua| + ‘UT"

Proof. Take A € M, ;, and let u = wvX. Then c,(1) = uo and ¢;(p) = vr by
Lemma 5.1, so that i € My 4, by Corollary 5.3. Hence

Nyo,or — Wo,7 = |:U| - ‘)‘|
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= (lls.e + luol + o)) = ([Mls.e + lo] +[7])
= |uo| + |vr| — |o| = || by Proposition 5.2.

To use these results, we need the following lemma.

Lemma 5.5. Suppose O is an orbit for the action of Ws on Cs. Then O contains
exactly one (s,t)-core.

Proof. Take A € O. Then O contains c;(A\) by [6, Proposition 4.6], and by

Theorem 2.5 this is an (s, t)-core. By [6, Corollary 4.7] the orbit for Wy x W,

containing O contains only one (s, t)-core, so O certainly contains only one.
]

This provides a method for working out m, , for any o € C5 and 7 € Cy:
find u € W, and v € W, such that uo and vt are both (s,t)-cores, calculate
My »r Using Proposition 3.9, and apply Corollary 5.4. We can find | M, ;| in
the same way: by Lemma 5.1 and Corollary 5.3, the action of the element uv €
W, x W, restricts to a bijection from M, - to Mys vr. S0 (Mg 2| = [Muye,vrls
which (modulo the difficult theory of (0, 1)-matrices!) can be worked out using
Theorem 3.7.

Orbits and stabilisers

Corollary 5.3 implies that W x W, acts on the set of (s, ¢)-minimal partitions,
and it is interesting to ask about orbits and stabilisers for this action. First we
consider the stabiliser Stabyy, xw, (M, ), for given o, 7.

Proposition 5.6. Suppose 0 € Cs and 7 € Cp. Then Stabyy_ xw, (Mg ) =
Staby\;S (0’) X Stabwt (7’)

Proof. Take A € My, -, w € W, and v € W;. By Corollary 5.3, the partition
uvA lies in M, if and only if it has s-core o and t-core 7. By Lemma 5.1

cs(uvd) = uo, ci(uvd) = vr,
50 uwv\ € M, ; if and only if u € Stabyy, (¢) and v € Stabyy, (7). O

When o € Cs, the stabiliser Stabyy, (o) is found in [7, Proposition 3.7].
To describe this, it is helpful to recall the s-set of o introduced in [5]: for each
i € Z/sZ we define a; to be the smallest element of ¢ not contained in B(o),
and then set Q(o) = {a; | i € Z/sZ}. Then [7, Proposition 3.7] says that
|Staby, (0)| = [L;cz/4zli N Q(0)]!. If we restrict attention to the case where o
is an (s,t)-core (which is not unduly restrictive, in view of Lemma 5.5), then
for each i € Z/tZ the set i N Q(o) is an arithmetic progression with common
difference t, so that Stabyy_(0) is actually a parabolic subgroup of W: it is gen-
erated by the elements w; for those i € Z/sZ satisfying a1 sot = @(i—1)t—sot +1
This can be seen in terms of the (s,t)-diagram: the generators of Stabyy_ (o)
correspond to pairs of consecutive equal rows in the (s, t)-diagram of o. A corre-
sponding statement holds for Stabyy, (7) and the columns of the (s, t)-diagram.
Now applying the correspondence between M, . and the set of (0, 1)-matrices
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described in Theorem 3.7, we find that the action of Stabyy_ xw, (Mg ) on
M, » corresponds precisely to the action on (0, 1)-matrices by row and col-
umn permutations.

Ezample 5.7. We continue Example 3.8. In this case the 3-set of o is {—1, 1, 3},
so that Stabyy, (¢) is a copy of the symmetric group &3, generated by wy. The
4-set of 7 is {—1,0,2,5}, so that Stabyy,(7) is a copy of &3, generated by
wo and ws. The stabiliser Stabyy, (o) then acts on M, . by permuting the
last two rows in each of the diagrams in Example 3.8, while Stabyy, (7) acts
by permuting the last three columns. In particular, we see that the action of
Stabyy, xw, (My.+) on M, » has two orbits.

Now we can consider the orbits of Wy x W; on the set of (s,t)-minimal
partitions. For this, we can reduce to the case of (s, t)-cores using the following
lemma.

Lemma 5.8. Suppose A and p are (s,t)-minimal partitions. Then A and p lie
in the same orbit under the action of Wy x W, if and only if there are 0,7 € Cq4
and w,x € Ws X Wy such that w\,xp € My and wA and xp lie in the same
orbit under the action of Stabyy, xw, (Mo 7).

Proof. The “if” part is trivial, so we prove the “only if” part. Let o = c¢;(cs(N))
and 7 = ¢g(ct(N)). If A and p lie in the same orbit under W, x W, then
o = cics(p)) and 7 = cs(ce(p)), by Lemma 5.1. In addition, c¢s(\) and o lie
in the same orbit under the action of W;, by [6, Proposition 4.6], so we can
find u € Ws such that o = wucg(\). Similarly we can find v € W, such that
veg(A) = 7. Letting w = wv and applying Lemma 5.1, we have cs(w\) = o and
ci(wA) = 7, so that w\ € M, ,, by Corollary 5.3. In the same way we can find
x € Ws x W, with xzp € M, . If we also take y € W, x W, such that yA = p,
then we claim that zyw ™" € Stabyy, xw, (M, +), which is all we need. Writing
zyw~! in the form ab, where a € W, and b € W;, Lemma 5.1 gives aoc = o
and br = 7, so that ab € Stabyy, (o) x Stabw, (1) = Stabw, xw, (M4 -). O

As a consequence, counting the orbits of W, x W, on the set of (s,1)-
minimal partitions amounts to counting the orbits of Stabyy, xw, (M, ;) on
M, -, for each pair o, 7 of (s,t)-cores. This in turn amounts to counting (0, 1)-
matrices up to row- and column-equivalence. However, experiments suggest
that the number of orbits of Wy x W, on the set of (s,t)-minimal partitions
cannot be given by a simple formula.

Counting partitions in P, - (n)
Now we use our group action to generalise the results from Sects. 3 and 4. We
begin with Proposition 3.11.

Theorem 5.9. Suppose o € Cs, T € C¢, and n € Ny. The following are equiva-
lent.

(1) [Por(n)| = 1.

(2) culo) = cs(r) and n = |o] + 7| - Jer(0)].

(3) n=my, = |T| + twy(0).
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4) n=my, = |o| + sw,(T).
We remark that the equivalence of (1) and (2) is shown in [6, Section 5].

Proof. Take u € Wy and v € Wy, and let n' = n — |o| — |7| 4 |uo| + |vT]|. First
we show that each of conditions 1—4 holds for the triple (o, 7, n) if and only if
it holds for the triple (uo, v, n’).

(1) If X is a partition of n with s-core ¢ and t-core 7, then uv is a partition of
n/ with s-core uo and t-core v, by Lemma 5.1 and Proposition 5.2. The
converse is also true, so the action of uv gives a bijection from P, .(n)
t0 Puo vr(n').

(2) Lemma 5.1 implies that ¢;(uo) = c;(0) and cs(vT) = cs(7), so ci(ur) =
cs(v7) if and only if ¢;(0) = ¢s(7). By the definition of n’ we get

n' —Juo| = [o7] + |er(uo)| = n — o] = 7] + |ce(o)],

so that the second condition in (2) holds for (n, o, ) if and only if it holds
for (n/, uc,vr).
(3) Corollary 5.4 implies that ' = m,, »r if and only if it = m, . As in part
(2), ' = |uo| + |vr| — |ct(uo)] if and only if n = |o| + |7] — |c¢(o)|, which
is the same as saying n’ = |vr| + tws(uo) if and only if n = |7| + twi (o).
(4) This is similar to (3).
By Lemma 5.5 we can find u € W such that uo is an (s, t)-core. Similarly we
can find v € W, such that v7 is an (s, t)-core. By Proposition 3.11 the theorem
holds for (uo,vr,n’), and so it holds for (o, 7,n). O

Remark. It may be more helpful to have a version of Theorem 5.9 in terms of
A rather than o, 7 and n: given a partition A, is it the unique partition with
its size, s-core and t-core? In fact, this is answered in [6]: A is unique if and
only if wsA = wg(ct(A)), or equivalently wi(A) = we(cs(A)). This can also be
deduced from Theorem 5.9.

The hyperoctahedral group

Now we extend the results from Sect. 4 involving conjugation. With conjuga-
tion of partitions in mind we need to look at a subgroup of Wy x W;. The
following definitions are taken from [7, Section 4.1].

Recall that W, has generators w; for ¢ € Z/sZ. We define elements v,
fora =0,1,...,[s/2] as follows:

wo ifa=0
_ Jwaw_q ifl<a<(s—2)/2
Yo = Wew_qw, ifa=(s—1)/2
Wq ifa=s/2.

Let Hs be the subgroup of W generated by wo,...,v|s/2). Then H is iso-
morphic to the affine hyperoctahedral group, i.e. the Coxeter group of type
éLs /2 By restricting the action of Wy on P, we obtain an action (which we
also refer to simply as “the action”) of Hs on P. Doing the same with s and
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t interchanged, we obtain an action of H;, and hence an action of Hs x H,,
on P.

The next result follows easily from the definition of the level ¢ action of
W; (and explains why we need the term —sot in the definition of this action).

Lemma 5.10. [7, Lemma 4.3] If v € Hs and X € P, then (vA) = v(\).
We will also need the following.

Proposition 5.11. [7, Proposition 4.7] Suppose o is a self-conjugate s-core.
Then ci(o) lies in the same orbit as o under the action of Hs.

Now we can generalise Proposition 4.1.

Theorem 5.12. Suppose 0 € Cs, 7 € C; and n € Ny. The following are equiva-
lent.

(1) There are exactly two partitions of n with s-core o and t-core T, and they
form a conjugate pair.

(2) o' =0, 7" =7, ct(0) is obtained from cs(T) by adding or removing a rim
hook, and

n=|o|+s(ws(r) +1) = |7| + t(wi(0) + 1).
3) o/ =0,7 =7, and
n=m,,=|o|+s(we(r)+1) = |7| + t(w (o) + 1).

Proof. The proof strategy is the same as for Theorem 5.9. Take u € H, and
v € Hy, and let 0’ = n — |o| — |7| + |uo| + |vr|. We show first that each of
conditions 1-3 holds for (o, 7, n) if and only if it holds for (uc,vr,n’).

(1) As in the proof of Theorem 5.9, the action of uv gives a bijection from
Por(n) t0 Pysur(n'). Moreover, if a conjugate pair A, A" of partitions
belong to P, - (n), then by Lemma 5.10 the partitions uvA and uv(\') in
Puowr(n') form a conjugate pair.

(2) Lemma 5.10 implies that uo is self-conjugate if and only if o is, and
similarly for 7. Lemma 5.1 gives ct(uo) = c:(0) and cs(vr) = c5(7), so
the remaining statements in (2) are true for o, 7 if and only if they are
true for uo, vr.

(3) Corollary 5.4 implies that n = m, , if and only if n = my, 4. The rest of
(3) works in the same way as (2).

By Proposition 5.11 we can choose u so that uoc = ¢;(¢), and in particular uo
is an (s,t)-core. Similarly we choose v such that v7 is an (s,t)-core. Now by
Proposition 4.1 the theorem holds for (n', uo,v7), so it holds for (n,o,7). O

As with Theorem 5.9, we would like a version of Theorem 5.12 in terms of
a partition A: given a non-self-conjugate partition A, is it the unique partition
up to conjugation with its size, s-core and t-core?

Theorem 5.13. Suppose A € P. The following are equivalent.
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(1) X # XN, and the only partitions with the same size, s-core and t-core as
A are X and N.
(2) cs(A) and ct(N) are both self-conjugate, and

ws(A) = ws(cr(A) = wi(A) = wi(es(A) = 1.

Proof. Let n = |\|, 0 = cs(A\) and 7 = ¢;(\). First we prove the theorem under
the assumption that o and 7 are both (s, t)-cores.

(1=2) If (1) holds in this case, then n, o, T satisfy the equivalent conditions
in Proposition 4.1. Hence ¢/ = 0 and 7’ = 7, and n = |o|+s = |7|+t.
But then

ws(A) — ws(ce ()

and similarly for w;(A) — wy(cs(N)).

(2=1) If (2) holds, then A has s-weight and ¢t-weight both equal to 1, so is
(s,t)-minimal by Corollary 3.2. So |A| = m, , = |o| + s = |7| + ¢, so
again the equivalent conditions in Proposition 4.1 hold.

Ml

J(r)=1-0=1,
. ws(T)

The general case is derived from this special case using the action of Hy x H,
as in the proof of Theorem 5.12. O

In the same way, we can generalise Theorem 4.3. We obtain the following.

Theorem 5.14. Suppose 0 € Cs, T € C; and n € Ng. Then P, (n) contains a
unique self-conjugate partition if and only if 0 = o', 7 = 7' and one of the
following occurs.

(1) ci(o) =cs(r) and n = |o| + |7| — |ce(o)].

(2) t is odd, ci(o) =7 cs(T) and n = |7| + t(we(o) + 1).

(3) s is odd, cs(T) s ct(o) and n = |o| + s(ws(1) + 1).

(4) s and t are both odd, ci(o) s cs(7) and

n = |ct(o) xcs(7)| + s(ws(7) + 1) + t(we(o) + 1).

(5) s and t are both odd, ci(0) = cs(T) = ks and n = |o| + |7| — |Ks| + st.
Example 5.15. Take s = 3, t = 4 and n = 20. There are seven self-conjugate
partitions of 20. These partitions have two different 3-cores between them,

namely (4,2,12) and (3,1%), and two different 4-cores, namely (4%, 2%) and
(2%). We consider each pair (o, 7) in turn.

O If o = (4,2,12) and 7 = (4%,22), then c4(0) = @ = c3(7), and 20 =

lo| + |7] — |ca(0)|, so we are in case (1) of the theorem, and there is a
unique self-conjugate partition of 20 with 3-core ¢ and 4-core 7, namely
(7,5,23,12).

O If o = (3,12) and 7 = (42,2?), then c4(0) = o while c3(1) = @ and

ws(7) = 4. We can check that @ E (3,12), and 20 = |o| + 3(w3(7) + 1),
so we are in case (3) of the theorem, and there is a unique self-conjugate
partition of 20 with 3-core o and 4-core 7, namely (8, 4,22 14).
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O If o = (4,2,1%2) and 7 = (22), then c4(0) = @ and c3(7) = (1), while
ws(7) = 1. So ¢ (o) # cs(7) and n # |o| + s(ws(7) + 1), so that none of
conditions 1-5 holds. And there are two self-conjugate partitions of 20
with 3-core o and 4-core 7, namely (10,2,18) and (52,42, 2).

O If o = (3,1%) and 7 = (22), then c4(0) = o and c3(r) = (1), while
ws(7) = 1. Again, none of conditions 1-5 holds, and there are three self-
conjugate partitions of 20 with 3-core o and 4-core 7, namely (9, 3,2, 15),
(62,,2%) and (6,43,12).
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