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Properties of Non-symmetric Macdonald
Polynomials at q = 1 and q = 0

Per Alexandersson and Mehtaab Sawhney

Abstract. We examine the non-symmetric Macdonald polynomials Eλ at
q = 1, as well as the more general permuted-basement Macdonald polyno-
mials. When q = 1, we show that Eλ(x; 1, t) is symmetric and independent
of t whenever λ is a partition. Furthermore, we show that, in general
λ, this expression factors into a symmetric and a non-symmetric part,
where the symmetric part is independent of t, and the non-symmetric
part only depends on x, t, and the relative order of the entries in λ. We
also examine the case q = 0, which gives rise to the so-called permuted-
basement t-atoms. We prove expansion properties of these t-atoms, and,
as a corollary, prove that Demazure characters (key polynomials) expand
positively into permuted-basement atoms. This complements the result
that permuted-basement atoms are atom-positive. Finally, we show that
the product of a permuted-basement atom and a Schur polynomial is
again positive in the same permuted-basement atom basis. Haglund, Lu-
oto, Mason, and van Willigenburg previously proved this property for
the identity basement and the reverse identity basement, so our result
can be seen as an interpolation (in the Bruhat order) between these two
results. The common theme in this project is the application of basement-
permuting operators as well as combinatorics on fillings, by applying re-
sults in a previous article by Per Alexandersson.
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1. Introduction

The non-symmetric Macdonald polynomials Eλ(x; q, t) were introduced by
Macdonald and Opdam in [19,22]. They can be defined for arbitrary root sys-
tems. We only consider the type A for which there is a combinatorial rule, dis-
covered by Haglund et al. [11]. These non-symmetric Macdonald polynomials
specialize to the Demazure characters, Kλ, (or key polynomials) at q = t = 0
(or at t = 0), they are affine Demazure characters, see [14]. Furthermore, at
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q = t = ∞, Eλ(x;∞,∞) reduces to the so-called Demazure atoms, Aλ (also
known as standard bases), see [16,21]. The stable limit of Eλ(x; q, t) gives the
classical symmetric Macdonald polynomials (up to a rational function in q and
t, depending on λ), denoted Pλ(x; q, t), see [18]. For a quick overview, see the
diagram (1.1) below, where ∗ denotes this stable limit:

Aλ(x)
�
⏐
⏐

q=∞
t=∞

Kλ(x)
q=t=0←−−−− Eλ(x; q, t) ∗−−−−→ Pλ(x; q, t)

⏐
⏐
�

λ partition
q=1
t=0

⏐
⏐
�

q=1
t=0

eλ′(x) mλ(x).

(1.1)

The topic of this paper is a generalization that arises naturally from the
Haglund–Haiman–Loehr (HHL) combinatorial formula, namely the permuted-
basement Macdonald polynomials, see [1,9]. Recently, an alcove walk model
was given for these, as well, see [7,8]. This generalizes the alcove walk model
by Ram and Yip [24] for general type non-symmetric Macdonald polynomials.

The permuted-basement Macdonald polynomials are indexed with an ex-
tra parameter, σ, which is a permutation. For each fixed σ ∈ Sn, the set
{Eσ

λ(x; q, t)}λ is a basis for the polynomial ring C[x1, . . . , xn], as λ ranges over
weak compositions of length n.

The current paper is the only one (to our knowledge) that studies this
property in the permuted-basement setting. There has been previous research
regarding various factorization properties of Macdonald polynomials; for ex-
ample, [5,6] concern symmetric Macdonald polynomials and the modified Mac-
donald polynomials when t is taken to be a root of unity. In [4], various fac-
torization properties of non-symmetric Macdonald polynomials are observed
experimentally (in particular, the specialization q = u−2, t = u) in the last
section of the article.

1.1. Main Results

The first part of the paper concerns properties of the specialization Eσ
λ(x; 1, t).

We show that, for any fixed basement σ and composition λ:

Eσ
λ(x; 1, t) = (eλ′(x)/eμ′(x)) Eσ

μ(x; 1, t),

where μ is the weak standardization (defined below) of λ. Observe that eλ′(x)/
eμ′(x) is an elementary symmetric polynomial independent of t. We also show
that, in the case, λ is a partition, we have the following:

Eσ
λ(x; 1, t) = eλ′(x),

which is independent of σ and t. This property is rather surprising and not
evident from the HHL combinatorial formula [10]. Our proofs mainly use prop-
erties of Demazure–Lusztig operators, see (2.5) below for the definition.

In the second half of the paper, we study properties of the specialization
Eσ

λ(x; 0, t). At σ = id, these are t-deformations of the so-called Demazure
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atoms, so it is natural to introduce the notation Aσ
λ(x; t):=Eσ

λ(x; 0, t), which
are referred to as t-atoms. The t-atoms for σ = id were initially considered in
[12], where they proved a close connection with Hall–Littlewood polynomials.
The Hall–Littlewood polynomials Pλ(x; t) are obtained as the specialization
q = 0 of the classical Macdonald polynomial Pλ(x; q, t). In fact, it was proven in
[12] that the ordinary Hall–Littlewood polynomials Pμ(x; t) can be expressed
as follows:

Pμ(x; t) =
∑

γ : par(γ)=μ

Aγ(x; t),

whenever μ is a partition, and par(γ) denotes the unique partition with the
parts of γ rearranged in decreasing order.

Our main result regarding the t-atoms is as follows: If τ ≥ σ in Bruhat
order, then Aτ

γ(x; t) admits the expansion:

Aτ
γ(x; t) =

∑

λ : par(λ)=par(γ)

cτσ
γλ(t)Aσ

λ(x; t), (1.2)

with the sum being over all compositions λ whose parts rearrange to the parts
of γ and the cτσ

γλ(t) are polynomials in t with the property that cτσ
γλ(t) ≥ 0

whenever 0 ≤ t ≤ 1.
Equation (1.2) is a generalization of the fact that key polynomials and

permuted-basement atoms expand positively into Demazure atoms, see e.g.
[20,23]. Letting t = 0, we obtain the general result that whenever τ ≥ σ in
Bruhat order:

Aτ
γ(x) =

∑

λ:par(λ)=par(γ)

cτσ
γλAσ

λ(x), where cτσ
γλ ∈ {0, 1}. (1.3)

Figure 1 illustrates how various bases of polynomials are related under expan-
sion. We prove the dashed relations (1.2) and (1.3) in this paper. In the figure,
we have the permuted-basement atoms, Aτ

γ(x):=Aτ
γ(x; 0), the key polynomials

Kγ(x):=Aω0
γ (x), and the Demazure atoms Aγ(x):=Aid

γ (x). Finally, ω0 denotes
the longest permutation (in Sn).

As a final corollary, by taking τ = ω0, we see that key polynomials expand
positively into permuted-basement Demazure atoms:

Kγ(x) =
∑

α : par(α)=par(γ)

cσ
γαAσ

α(x), where cσ
γα ∈ {0, 1}.

2. Preliminaries

We now give the necessary background on the combinatorial model for the
permuted-basement Macdonald polynomials. The notation and some of the
preliminaries is taken from [1].

Let σ = (σ1, . . . , σn) be a list of n different positive integers and let λ =
(λ1, . . . , λn) be a weak integer composition, that is, a vector with non-negative
integer entries. An augmented filling of shape λ and basement σ is a filling of
a Young diagram of shape (λ1, . . . , λn) with positive integers, augmented with
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Figure 1. This graph shows various families of polynomials.
The arrows indicate “expands positively in” which means that
the coefficients are either non-negative numbers or polynomi-
als in t with non-negative coefficients. Here, τ ≥ σ in Bruhat
order, and Schur polynomials should be interpreted as poly-
nomials in n variables or symmetric functions depending on
context

a zeroth column filled from top to bottom with σ1, . . . , σn. Note that we use
English notation rather than the skyline fillings used in [10,21]. We motivate
this choice with the fact that row operations are easier to work with compared
with column operations.

Definition 2.1. Let F be an augmented filling. Two boxes a and b are attacking
if F (a) = F (b) and the boxes are either in the same column, or they are in
adjacent columns with the rightmost box in a row strictly below the other
box:

a
...

b

or a
...

b

A filling is non-attacking if there are no attacking pairs of boxes.

Definition 2.2. A triple of type A is an arrangement of boxes, a, b, c, located,
such that a is immediately to the left of b, and c is somewhere below b, and
the row containing a and b is at least as long as the row containing c.

Similarly, a triple of type B is an arrangement of boxes, a, b, c, located,
such that a is immediately to the left of b, and c is somewhere above a, and
the row containing a and b is strictly longer than the row containing c.

A type A triple is an inversion triple if the entries ordered increasingly
form a counter-clockwise orientation. Similarly, a type B triple is an inversion
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triple if the entries ordered increasingly form a clockwise orientation. If two
entries are equal, the one with the largest subscript in Eq. (2.1) is considered
to be largest:

Type A:
a3 b1...

c2

Type B:
c2...
a3 b1

. (2.1)

If u = (i, j) let d(u) denote (i, j − 1), i.e., the box to the left of u. A
descent in F is a non-basement box u, such that F (d(u)) < F (u). The set of
descents in F is denoted by Des(F ).

Example 2.3. Below is a non-attacking filling of shape (4, 1, 3, 0, 1) with base-
ment (4, 5, 3, 2, 1). The bold entries are descents and the underlined entries
form a type A inversion triple. There are 7 inversion triples (of type A and B)
in total:

4 2 1 2 4
5 5
3 3 4 3
2
1 1

.

The leg of a box, denoted by leg(u), in an augmented diagram is the
number of boxes to the right of u in the diagram. The arm of a box u = (r, c),
denoted by arm(u), in an augmented diagram λ is defined as the cardinality
of the union of the sets:

{(r′, c) ∈ λ : r < r′ and λr′ ≤ λr} and {(r′, c − 1) ∈ λ : r′ < r and λr′ < λr}.

We illustrate the boxes x and y (in the first and second set in the union,
respectively) contributing to arm(u) below. The boxes marked l contribute to
leg(u). The arm values for all boxes in the diagram are shown in the diagram
on the right.

y
y

u l l l
x

x

4 2 2 1
1

6 4 3 2 1
3 1 0
1
4 3 1 1

.

The major index, maj(F ), of an augmented filling F is given by the following:

maj(F ) =
∑

u∈Des(F )

leg(u) + 1.

The number of inversions, denoted by inv(F ), of a filling is the number of
inversion triples of either type. The number of coinversions, coinv(F ), is the
number of type A and type B triples which are not inversion triples.

Let NAFσ(λ) denote all non-attacking fillings of shape λ with basement
σ ∈ Sn and entries in {1, . . . , n}.
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Example 2.4. The set NAF3124(1, 1, 0, 2) consists of the following augmented
fillings:

3 1
1 2
2
4 4 3
coinv:1
maj:1

3 1
1 2
2
4 4 4
coinv:1
maj:1

3 2
1 1
2
4 4 3
coinv:0
maj:0

3 2
1 1
2
4 4 4
coinv:0
maj:0

3 3
1 1
2
4 4 2
coinv:1
maj:0

3 3
1 1
2
4 4 4
coinv:0
maj:0

3 3
1 2
2
4 4 1
coinv:2
maj:1

3 3
1 2
2
4 4 4
coinv:0
maj:1

.

Recall that the length of a permutation, �(σ), is the number of inversions
in σ. We let ω0 denote the unique longest permutation in Sn. Furthermore,
given an augmented filling F , the weight of F is the composition μ1, μ2, . . . ,
such that μi is the number of non-basement entries in F that are equal to i.
We then let xF be a shorthand for the product

∏

i xμi

i .

Definition 2.5. (Combinatorial formula) Let σ ∈ Sn and let λ be a weak com-
position with n parts. The non-symmetric permuted-basement Macdonald poly-
nomial Eσ

λ(x; q, t) is defined as follows:

Eσ
λ(x; q, t):=

∑

F∈NAFσ(λ)

xF qmajF tcoinv F
∏

u∈F
u is in the basement or

F (d(u)) �=F (u)

1 − t

1 − q1+leg ut1+armu
.

(2.2)

The product is over all boxes u in F , such that either u is in the basement or
F (d(u)) 	= F (u).

When σ = ω0, we recover the non-symmetric Macdonald polynomials
Eλ(x; q, t) defined in [10].

Note that the number of variables which we work over is always finite
and implicit from the context. For example, if σ ∈ Sn, then x:=(x1, . . . , xn) in
Eσ

λ(x; q, t), and it is understood that λ has n parts.

2.1. Bruhat Order, Compositions, and Operators

If ω ∈ Sn is a permutation, we can decompose ω as a product ω = si1si2 · · · sik

of elementary transpositions, si = (i, i+1). When k is minimized, si1si2 · · · sik

is a reduced word of ω, and k is the length of ω, which we denote by �(ω).
The strong order on permutations in Sn is a partial order defined via

the cover relations that u covers v if (a, b)u = v and �(u) + 1 = �(v) for
some transposition (a, b). The Bruhat order is defined in a similar fashion,
where only elementary transpositions are allowed in the covering relations. We
illustrate these partial orders in Fig. 2.
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1234

1243 1324

1342 1423

1432

2134

2143 2314

2341 2413

2431

3124

3142 3214

3241 3412

3421

4123

4132 4213

4231 4312

4321

Figure 2. The Bruhat order and strong order on S4. Per-
mutations expressed in one-line notation and solid lines cor-
respond to elementary transposition

Given a composition α, let par(α) be the unique integer partition where
the parts of α have been rearranged in decreasing order. For example,
par(2, 0, 1, 4, 9) is equal to (9, 4, 2, 1, 0). We can act with permutations on com-
positions (and partitions) by permutation of the entries:

ω(λ) = (3, 0, 1, 5) if ω = (2, 4, 3, 1) and λ = (5, 3, 1, 0),

where ω is given in one-line notation.
To prove the main result of this paper, we rely heavily on the Knop–Sahi

recurrence, basement-permuting operators, and shape-permuting operators. The
Knop–Sahi recurrence relation for Macdonald polynomials [15,25] is given by
the relation:

Eλ̂(x; q, t) = qλ1x1Eλ(x2, . . . , xn, q−1x1; q, t), (2.3)

where λ̂ = (λ2, . . . , λn, λ1 + 1). Furthermore, note that the combinatorial for-
mula implies that

Eσ
(λ1+1,...,λn+1)(x; q, t) = (x1 · · · xn)Eσ

(λ1,...,λn)(x; q, t). (2.4)
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We need some brief background on certain t-deformations of divided dif-
ference operators. Let si be a simple transposition on indices of variables and
define

∂i =
1 − si

xi − xi+1
, πi = ∂ixi, θi = πi − 1.

The operators πi and θi are used to define the key polynomials and Demazure
atoms, respectively. Now, define the following t-deformations of the above op-
erators:

π̃i(f) = (1 − t)πi(f) + tsi(f), θ̃i(f) = (1 − t)θi(f) + tsi(f). (2.5)

The θ̃i are called the Demazure–Lusztig operators. They generate the affine
Hecke algebra, see e.g. [10] (where θ̃i correspond to Ti). Note that these oper-
ators satisfy the braid relations, and that θ̃iπ̃i = π̃iθ̃i = t.

Example 2.6. As an example, θ̃1(x2
1x2) = (1 − t)x1x

2
2 + tx1x

2
2.

With these definitions, we can now state the following two propositions
which were proved in [1]:

Proposition 2.7 (Basement-permuting operators). Let λ be a composition and
let σ be a permutation. Furthermore, let γi be the length of the row with base-
ment label i, that is, γi = λσ−1

i
.

If �(σsi) < �(σ), then

θ̃iEσ
λ(x; q, t) = Eσsi

λ (x; q, t) ×
{

t, if γi ≤ γi+1,

1, otherwise.

Similarly, if �(σsi) > �(σ), then

π̃iEσ
λ(x; q, t) = Eσsi

λ (x; q, t) ×
{

t, if γi < γi+1,

1, otherwise.

Consequently, we see that π̃i and θ̃i move the basement up and down,
respectively, in the Bruhat order.

Proposition 2.8 (Shape-permuting operators). If λj < λj+1, σj = i + 1 and
σj+1 = i for some i and j, then

Eσ
sjλ(x; q, t) =

(

θ̃i +
1 − t

1 − q1+leg utarmu

)

Eσ
λ(x; q, t),

where u = (j + 1, λj + 1) in the diagram of shape λ.

Note that these formulas together with the Knop–Sahi recurrence uniquely
define the Macdonald polynomials recursively, with the initial condition that
for the empty composition: E(0,...,0)(x; q, t) = 1.
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Finally, we will need the following result from [1]:

Theorem 2.9 (Partial symmetry). Suppose λj = λj+1 and {σj , σj+1} take the
values {i, i + 1} for some j, i, then Eσ

λ(x; q, t) is symmetric in xi, xi+1.

3. A Basement Invariance

Recall that the elementary symmetric function eμ(x) with the partition μ
having � parts is defined as follows:

eμ(x):=eμ1(x) · · · eμ�
(x), where ek(x):=

∑

i1<i2<···<ik

xi1xi2 · · · xik
.

In this section, we use a bijective construction to prove that whenever λ is a
partition, we have Eσ

λ(x; 1, 0) = eλ′(x). Note that this is independent of the
basement σ, which, at a first glance, might be surprising.

Lemma 3.1. Let D be a diagram of shape 2m1n, where the first column has
fixed distinct entries in N. If S ⊆ N is a set of m integers, then there is a
unique way of placing the entries in S into the second column of D, such that
the resulting non-attacking filling has no coinversions.

Proof. We provide an algorithm for filling in the second column of the diagram.
Begin by letting C be the topmost box in the second column and let L(C) be
the box to the left of C. To pick an entry for C, we do the following:

If there is an element in S which is less than or equal to L(C), remove it
from S and let it be the value of C.

Otherwise, remove the maximal element in S and let this be the value of
C.

Iterate this procedure for the remaining entries in the second column
while moving C downwards. It is straightforward to verify that the result is
coinversion-free and that every choice for the element in the second column is
forced. �

Corollary 3.2. If λ is a partition with at most n parts and σ ∈ Sn, then

Eσ
λ(x; 1, 0) = eλ′(x).

Proof. Fix a basement σ and choose sets of elements for each of the remaining
columns. Note that all such choices are in natural correspondence with the
monomials whose sum is eλ′(x). By applying the previous lemma inductively
column by column, it follows that there is a unique filling with the specified
column sets. The combinatorial formula now implies that Eσ

λ(x; 1, 0) = eλ′(x)
as desired. �

We use a similar approach to give bijections among families of coinversion-
free fillings of general composition shapes in [2].
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Example 3.3. Here are the nine fillings associated with E132
210(x; 1, 0). In other

words, it is the set of non-attacking, coinversion-free fillings of shape (2, 1, 0)
and basement 132:

1 1 1
3 2
2

1 1 1
3 3
2

1 1 2
3 2
2

1 1 2
3 3
2

1 1 3
3 2
2

1 1 3
3 3
2

1 3 1
3 2
2

1 3 2
3 2
2

1 3 3
3 2
2

.

The sum of the weights is x2
1x2 + x2

1x3 + · · · + x2x
2
3 = e210(x).

4. The Factorization Property

Let λ be a composition. The weak standardization of λ, denoted by λ̃, is the
lex-smallest composition, such that, for all i, j, we have the following:

λi ≤ λj ⇒ λ̃i ≤ λ̃j .

For example, λ = (6, 2, 5, 2, 3, 3) gives λ̃ = (3, 0, 2, 0, 1, 1).

Lemma 4.1. If λ = 1m0n, then Eσ
λ(x; 1, t) = em(x).

Proof. We begin by showing this statement for σ = id.
Using Theorem 2.9, we have that Eid

λ (x; 1, t) is symmetric in x1, . . . ,
xm and symmetric in xm+1, . . . , xm+n. Furthermore, using the combinatorial
formula, we can easily see that there is exactly one non-attacking filling of
weight λ. This filling has major index 0. In other words:

[

xλ
]

Eid
λ (x; 1, t) = 1.

It is, therefore, enough to show that the polynomial is symmetric in xm and
xm+1. A result in [10] implies that a polynomial f is symmetric in xm, xm+1

if and only if π̃m(f) = f . Hence, it suffices to show that

π̃mEid
λ (x; 1, t) = Eid

λ (x; 1, t).

Proposition 2.7 gives that

π̃mEid
λ (x; 1, t) = Esm

λ (x; 1, t).

Hence, it remains to show that Eid
λ (x; 1, t) = Esm

λ (x; 1, t). We do this by ex-
hibiting a weight-preserving bijection between fillings of shape λ with identity
basement, and those with sm as basement. The bijection is given by simply
permuting the basement labels in row m and m + 1, since both coinversions
and the non-attacking condition are preserved, so the result is a valid filling.
Finally, since arm(u) = 0 for the box in position (m, 1), it is straightforward
to verify that the weight is preserved under this map.

The statement for general σ now follows by applying the basement-
permuting operators π̃i repeatedly on both sides of the identity Eσ

λ(x; 1, t) =
em(x). The right-hand side is unchanged, since these operators preserve sym-
metric functions. �
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We say that λ ≤ μ in the Bruhat order if there is a sequence of trans-
positions, si1 · · · sik

, such that si1 · · · sik
λ = μ and where each application of a

transposition increases the number of inversions.

Lemma 4.2. If λ and μ are compositions, such that λ ≤ μ in the Bruhat order,
then the following implication holds:

Ew0
λ (x; 1, t)

Ew0

λ̃
(x; 1, t)

= Fλ(x) =⇒ Ew0
μ (x; 1, t)

Ew0
μ̃ (x; 1, t)

= Fλ(x),

where Fλ(x) is any function symmetric in x1, . . . , xn.

Proof. It suffices to show the implication for any simple transposition, siλ = μ
that increases the number of inversions. Suppose that

Ew0
λ (x; 1, t) = Fλ(x)Ew0

λ̃
(x; 1, t)

for some composition λ. By Proposition 2.8, we note that the shape-permuting
operator is the same on both sides for q = 1. That is, for any composition λ
with λi < λi+1, we have the following:

(

θ̃i +
1 − t

1 − tarmu

)

Ew0
λ (x; 1, t) = Ew0

siλ
(x; 1, t)

and
(

θ̃i +
1 − t

1 − tarmu

)

Fλ(x)Ew0

λ̃
(x; 1, t) = Fλ(x)Ew0

siλ̃
(x; 1, t),

where arm(u) ≥ 1 has the same value in both diagrams λ and λ̃. �

To simplify typesetting of the upcoming proofs, we will sometimes use
the notation:

E
[

(a1)b1 , . . . , (ak)bk
]

:=Ew0
λ (x; 1, t),

where λ is the composition:

(a1, . . . , a1
︸ ︷︷ ︸

b1

, a2, . . . , a2
︸ ︷︷ ︸

b2

, . . . , ak, . . . , ak
︸ ︷︷ ︸

bk

).

Lemma 4.3. We have the identity:

E
[

(1)b1 , (2)b2 , . . . , (k)bk , (0)b0
]

E [(0)b1 , (1)b2 , . . . , (k − 1)bk , (0)b0 ]
= eb1+···+bk

(x).

Proof. We prove this lemma by induction on k, where the base case k = 1 is
given by Lemma 4.1. For k > 1, by Proposition 2.8 and a similar reasoning as
in Lemma 4.2, it is enough to prove that

E
[

(1)b1 , (0)b0 , (2)b2 , . . . , (k)bk
]

E [(0)b0+b1 , (1)b2 , . . . , (k − 1)bk ]
= eb1+···+bk

(x).

Furthermore, through repeated application of the Knop–Sahi recurrence [Eq.
(2.3)], it suffices to prove that

E
[

(1)b2 , . . . , (k − 1)bk , (1)b1 , (0)b0
]

E [(0)b2 , . . . , (k − 2)bk , (0)b0+b1 ]
= eb1+···+bk

(x).
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Again using Proposition 2.8, we reduce the above to the k − 1 case:

E
[

(1)b1+b2 , . . . , (k − 1)bk , (0)b0
]

E [(0)b1+b2 , . . . , (k − 2)bk , (0)b0 ]
= eb1+···+bk

(x),

which is true by induction. �

Proposition 4.4. If λ is a composition, then

Ew0
λ (x; 1, t)

Ew0

λ̃
(x; 1, t)

= Fλ(x),

where Fλ(x) is an elementary symmetric polynomial.

Proof. We prove the proposition by induction on |λ| and the number of inver-
sions of λ. Note that the result is trivial if |λ| ≤ 1.

Given λ, there are several cases to consider:

Case 1: mini λi ≥ 1. The result follows by inductive hypothesis on the size of
the composition using Eq. (2.4) in the numerator.

Case 2: λ is not weakly increasing. We can reduce this case to a composition
with fewer inversions using Lemma 4.2.

Case 3: λ is weakly increasing. It is enough to prove that

E
[

(a0)b0 , . . . , (ak)bk
]

E [(0)b0 , . . . , (k)bk ]

is an elementary symmetric polynomial where 0 = a0 < a1 < a2 < · · · . Using
the cyclic shift relation (2.3) in the numerator and denominator, it suffices to
show that

E
[

(a1 − 1)b1 , (a2 − 1)b2 , . . . , (ak − 1)bk , (0)b0
]

E [(0)b1 , (1)b2 , . . . , (k − 1)bk , (0)b0 ]
(4.1)

is an elementary symmetric polynomial. If a1 = 1, the result follows by the
inductive hypothesis on the size of the composition. Otherwise, by rewriting
Eq. (4.1), it is enough to prove that

E
[

(a1 − 1)b1 , . . . , (ak − 1)bk , (0)b0
]

E [(1)b1 , (2)b2 , . . . , (k)bk , (0)b0 ]
· E

[

(1)b1 , (2)b2 , . . . , (k)bk , (0)b0
]

E [(0)b1 , (1)b2 , . . . , (k − 1)bk , (0)b0 ]

is an elementary symmetric polynomial. The first fraction is an elementary
symmetric polynomial by induction, since it is of the right form with a smaller
size. According to Lemma 4.2, the second fraction is also an elementary sym-
metric polynomial. �

Theorem 4.5. If λ is a composition and σ ∈ Sn, then

Eσ
λ(x; 1, t)

Eσ
λ̃
(x; 1, t)

= Fλ(x),

where Fλ(x) is an elementary symmetric polynomial independent of t.
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Proof. From Proposition 4.4, we have that

Ew0
λ (x; 1, t) = Fλ(x)Ew0

λ̃
(x; 1, t),

where Fλ is an elementary symmetric polynomial. Applying basement-perm-
uting operators from Proposition 2.7 on both sides, then gives

Eσ
λ(x; 1, t) = Fλ(x)Eσ

λ̃
(x; 1, t).

Note that applying a basement-permuting operator might give an extra factor
of t, but, since λi ≤ λj if and only if λ̃i ≤ λ̃j , these extra factors cancel. �

We are now ready to prove the following surprising identity, which was
first observed through computational evidence by J. Haglund and the first
author.

Theorem 4.6. If λ is a partition and σ ∈ Sn, then

Eσ
λ(x; 1, t) = Eσ

λ(x; 1, 0) = eλ′(x).

Proof. It is enough to prove that Ew0
λ (x; 1, t) = eλ′(x) as the more general

statement follows from using Proposition 2.7.
Using the previous theorem, it is enough to prove that

E
[

(k)b0 , . . . , (0)bk
]

E [(k − 1)b0 , . . . , (0)bk−1+bk ]
= E

[

(1)b0+···+bk−1 , (0)bk
]

.

We show this via induction on k. The base case k = 1 is trivial, so assume
k > 1 and note that repeated use of Proposition 2.8 implies that it is enough
to prove that

E
[

(k − 1)b1 , . . . , (0)bk , (k)b0
]

E [(k − 2)b1 , . . . , (0)bk−1+bk , (k − 1)b0 ]
= E

[

(1)b0+···+bk−1 , (0)bk
]

.

Using the Knop–Sahi recurrence (2.3), it suffices to show that

E
[

(k − 1)b0+b1 , . . . , (0)bk
]

E [(k − 2)b0+b1 , . . . , (0)bk−1+bk ]
= E

[

(1)b0+···+bk−1 , (0)bk
]

,

which now follows from induction. �

Corollary 4.7. The previous proof can be extended to show that

Fλ(x) =
eλ′(x)
e(λ̃)′(x)

for partition λ.

Note that the parts of λ′ are a superset of the parts of (λ̃)′, so the above
expression is, indeed, some elementary symmetric polynomials.

Our results are in some sense optimal: for general compositions λ, it hap-
pens that Eσ

λ̃
(x; 1, t) cannot be factorized further. For example, Mathematica

computations suggest that

E(3,1,5,2,4)
(0,2,3,1,0)(x; 1, t) and E(3,1,5,2,4)

(0,1,1,1,0)(x; 1, 0)

are irreducible.
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4.1. Discussion

It is natural to ask whether or not there are bijective proofs of the identities
which we consider.

Question 4.8. Is there a bijective proof of the case σ = ω0 of Theorem 4.5 that
establishes

Eλ(x; 1, t) =
eλ′(x)
e(λ̃)′(x)

Eλ̃(x; 1, t)?

Since a priori Eσ
λ(x; 1, t) is only a rational function in t, this seems like a

difficult challenge. We, therefore, pose a more conservative question:

Question 4.9. Is there a combinatorial explanation of the identity Eσ
λ(x; 1, t) =

eλ′(x) whenever λ is a partition?

We finish this section by discussing properties of the family {Eλ(x; 1, 0)}
as λ ranges over compositions with n parts. It is a basis for C[x1, . . . , xn] and
is a natural generalization of the elementary symmetric functions in the same
manner the key polynomials extend the family of Schur polynomials. For ex-
ample, in a recent paper [3], it is proved that Eλ(x; 1, 0) expands positively
into key polynomials, where the coefficients are given by the classical Kostka
coefficients. This generalizes the classical result that elementary symmetric
functions expand positively into Schur polynomials. Furthermore, {Eλ(x; q, 0)}
exhibit properties very similar to those of modified Hall–Littlewood polynomi-
als. In particular, these expand positively into key polynomials with Kostka–
Foulkes polynomials (in q) as coefficients. There are representation–theoretical
explanations for these expansions, as well, see [2,3] and references therein for
details.

It is known that the product of a Schur polynomial and a key polynomial
is key-positive (see e.g. Proposition 5.8 below), and thus, the product of an
elementary symmetric polynomial and a key polynomial is key-positive. It
is, therefore, natural to ask if this extends to the non-symmetric elementary
polynomials. However, a quick computer search reveals that

E030(x; 1, 0)K201(x)

does not expand positively into key polynomials.

5. Positive Expansions at q = 0

By specializing the combinatorial formula [Eq. (2.2)] with q = 0, we obtain a
combinatorial formula for the permuted-basement Demazure t-atoms.

Example 5.1. As an example, A1423
2301(x1, x2, x3, x4; t) is equal to

(1 − t)t · x2
1x

3
2x3 + (1 − t) · x2

1x
2
2x3x4 + (1 − t)2 · x2

1x2x
2
3x4 + (1 − t) · x2

1x
3
3x4

+ (1 − t) · x2
1x2x3x

2
4 + (1 − t) · x2

1x
2
3x

2
4 + x2

1x3x
3
4,
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where the corresponding fillings are as follows:

1 1 1
4 2 2 2
2
3 3

,

1 1 1
4 4 2 2
2
3 3

,

1 1 1
4 4 3 2
2
3 3

,

1 1 1
4 4 3 3
2
3 3

,

1 1 1
4 4 4 2
2
3 3

,

1 1 1
4 4 4 3
2
3 3

,

1 1 1
4 4 4 4
2
3 3

.

In this section, we show how to construct permuted-basement Demazure
t-atoms via Demazure–Lusztig operators. First, consider Proposition 2.7 and
Proposition 2.8 at q = 0. Note that Proposition 2.8 simplifies, where we use
the fact that θ̃i + (1 − t) = π̃i. Hence, the shape-permuting operator reduces
to a basement-permuting operator. This “duality” between shape and base-
ment was first observed at t = 0 in [21], where S. Mason gave an alternative
combinatorial description of key polynomials which is not immediate from
the combinatorial formula for the non-symmetric Macdonald polynomials. A
similar duality holds for general values of t, see [1].

To get a better overview of Propositions 2.7 and 2.8, we present the
statements as actions on the basement and shape as follows:

Example 5.2. The operators π̃i and θ̃i act as follows on diagram shapes and
basements. Note that we only care about the relative order of row lengths.
A box with a dot might either be present or not, indicating weak or strict
difference between row lengths:

θ̃i ◦
i+1...
i

=
i...

i+1

, θ̃i ◦
i+1...
i ·

= t ×
i...

i+1 ·
. (5.1)

π̃i ◦
i...

i+1 ·
=

i+1...
i ·

, π̃i ◦
i...

i+1

= t ×
i+1...
i

. (5.2)

The operators acting on the shape can be described pictorially as follows:

π̃i ◦ i+1 ·
i

=
i+1

i · , θ̃i ◦ i
i+1

=
i

i+1
,

(5.3)

which are easily obtained from Proposition 2.8 at q = 0, together with the
fact that θ̃iπ̃i = t.

The following proposition also appeared in [1]; however, the proof that
we present here is different and more constructive.
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Proposition 5.3. Given a composition λ with n parts and a permutation σ ∈
Sn, there is a sequence of operators ρ̃i1 , . . . , ρ̃i�

, such that

Aσ
λ(x; t) = ρ̃i1 · · · ρ̃i�

xpar(λ), (5.4)

where par(λ) is the partition with the parts of λ in decreasing order and each
operator ρ̃ij

is in the set
{

θ̃1, . . . , θ̃n−1, π̃1, . . . , π̃n−1

}

.

Proof. Given (σ, λ), let the number of monotone pairs be the number of pairs
(i, j), such that

σi < σj and λi < λj or σi > σj and λi ≥ λj .

We do induction over the number of monotone pairs. First note that if there
are no monotone pairs in (σ, λ), then the longest row has basement label 1, the
second longest row has basement label 2 and so on. It then follows that every
row in a filling with basement σ and shape λ has to be constant, implying that
Aσ

λ(x; t) = xλ.
Assume that there are some monotone pairs determined by (σ, λ). A

permutation with at least one inversion must have a descent, and for a similar
reason, there is at least one monotone pair of the form:

i+1...
i ·

or
i...

i+1

.

These match the right-hand sides of (5.2) and (5.1). By induction, Aσ
λ(x; t)

can, therefore, be obtained from some Aσsi

λ (x; t) by applying either
π̃i or θ̃i. �

Example 5.4. We illustrate the above proposition by expressing A3142
3102(x; t) in

terms of operators. The shape and basement associated with this atom is given
in the first augmented diagram in (5.5):

3
1
4
2

π̃2←−−
2
1
4
3

π̃1←−−
1
2
4
3

θ̃2←−−
1
3
4
2

. (5.5)

The rows with labels 2 and 3 constitute a monotone pair and can be obtained
using (5.2), which explains the π̃2-arrow. Continuing on with π̃1 followed by θ̃2
leads to an augmented diagram without any monotone pairs, so A1342

3102(x; t) =
x(3,2,1,0). Finally, following the arrows yields the operator expression:

A3142
3102(x; t) = π̃2π̃1θ̃2x(3,2,1,0).

Proposition 5.5. If σ = siτ with �(σ) > �(τ), then

Aσ
λ(x; t) =

{

Aτ
siλ

(x; t) + tstat(λ,σ,i)(1 − t)Aτ
λ(x; t), if λi > λi+1,

Aτ
siλ

(x; t), otherwise,
(5.6)

where stat(λ, σ, i) is a non-negative integer depending on λ, σ, and i.
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Proof. We prove this statement via induction over �(τ).

Case τ = id and λi ≤ λi+1: We need to show that Asi

λ (x; t) = Aid
siλ

(x; t). Since
π̃i is invertible, it suffices to show that

π̃iAsi

λ (x; t) = π̃iAid
siλ(x; t).

This equality now follows from using (5.3) on the left-hand side and (5.2) on
the right-hand side.
Case τ = id and λi > λi+1: It suffices to prove that

Asi

λ (x; t) = Aid
siλ(x; t) + (1 − t)Aid

λ (x; t).

Note that the left-hand side is equal to π̃iAid
λ (x; t) using (5.2), while the left-

hand side is equal to [θ̃i + (1 − t)]Aid
λ (x; t) where we use (5.3). Since π̃i =

[θ̃i + (1 − t)], this proves the identity.
This proves the base case. The general case now follows from applying π̃j

on both sides, thus, increasing the lengths of the basements. We examine the
details in the following two cases.
Case τ ∈ Sn and λi ≤ λi+1: suppose Aσ

λ(x; t) = Aτ
siλ

(x; t). As diagrams, we
have the equality:

b ·
a = a

b ·
for rows i and i+1, b > a, while the remaining rows are identical. If �(σsj) >
�(σ), we can conclude that if a = j, then b 	= j + 1. We now compare the row
lengths of the rows with basement label j and j + 1 and apply the basement-
permuting π̃j from (5.2) on both sides. Note that the row lengths that are
compared are the same on both sides, meaning that if we need (5.2) to increase
the basement on the left-hand side, the same relation acts the same way on
the right-hand side. In other words, we have the implication:

Aσ
λ(x; t) = Aτ

siλ(x; t) =⇒ Aσsj

λ (x; t) = Aτsj

siλ
(x; t),

whenever �(σsj) > �(σ) and λi ≤ λi+1.
Case τ ∈ Sn and λi > λi+1: Again, suppose that we have the diagram identity:

b
a = a

b + tstat(λ,σ,i)(1 − t) ab

for some λ, σ, and that �(σsj) > �(σ). As in the previous case, if a = j,
then b 	= j + 1. If j /∈ {a − 1, a, b − 1, b}, applying π̃j on both sides yields the
implication:

Aσ
λ(x; t) = Aτ

siλ(x; t) + tstat(λ,σ,i)(1 − t)Aτ
λ(x; t)

=⇒
Aσsj

λ (x; t) = Aτsj

siλ
(x; t) + tstat(λ,σ,i)(1 − t)Aτsj

λ (x; t),

because—depending on the relative row lengths of the rows with basement
labels j, j + 1—we either multiply each of the three terms by t or not at all.
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It remains to verify the cases j ∈ {a − 1, a, b − 1, b}. Case-by-case study
after applying π̃j on both sides shows that

Aσsj

λ (x; t) = Aτsj

siλ
(x; t) + tε+stat(λ,σ,i)(1 − t)Aτsj

λ (x; t),

where (using the same notation as in Proposition 2.7, γi being the length of
the row with basement label i):

• ε = −1 if j = a − 1 and γa > γa−1 ≥ γb,
• ε = 1 if j = a and γa ≥ γa+1 > γb,
• ε = 1 if j = b − 1 and γa > γb−1 ≥ γb,
• ε = −1 if j = b and γa ≥ γb+1 > γb,

and ε = 0 otherwise. Thus, we have that

Aσsj

λ (x; t) − Aτsj

siλ
(x; t) = tε+stat(λ,σ,i)(1 − t)Aτsj

λ (x; t),

where the left-hand side is a polynomial. Furthermore, Aτsj

λ (x; t) is not a
multiple of t—this follows from the combinatorial formula (2.2). Hence, ε +
stat(λ, σ, i) must be non-negative. �

Corollary 5.6. If τ ≥ σ in Bruhat order, then Aτ
γ(x; t) admits the expansion:

Aτ
γ(x; t) =

∑

λ : par(λ)=par(γ)

cτσ
γλ(t)Aσ

λ(x; t),

where the cτσ
γλ(t) are polynomials in t, with the property that cτσ

γλ(t) ≥ 0 when-
ever 0 ≤ t ≤ 1.

Corollary 5.7. If τ ≥ σ in Bruhat order, then Aτ
γ(x) admits the expansion:

Aτ
γ(x) =

∑

λ : par(λ)=par(γ)

cτσ
λγAσ

λ(x), where cσ
λγ ∈ {0, 1}.

Proof. Let t = 0 in (5.6). It is then clear that all coefficients are non-negative
integers. Furthermore, since key polynomials (τ = ω0) expand into Demazure
atoms (σ = id) with coefficients in {0, 1} (see e.g., [16,21]), the statement
follows. �

In [13], the cases σ = id and σ = ω0 of the following proposition were
proved. We give an interpolation (in the Bruhat order) between these results.
Recall that x = (x1, . . . , xn), so we evaluate sμ(x) in a finite alphabet.

Proposition 5.8. The coefficients dμσ
λγ in the expansion

sμ(x) × Aσ
λ(x) =

∑

γ

dμσ
λγAσ

γ (x)

are non-negative integers.

Proof. With the case σ = id as a starting point (proved in [13]), we can apply πi

on both sides, (πi commutes with any symmetric function, in particular sλ(x)),
and thus, we may walk upwards in the Bruhat order and obtain the statement
for any basement σ. Note that Proposition 2.7 implies that πi applied to Aσ

γ (x)
either increases σ in Bruhat order, or kills that term. �
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Note that the above result implies that the products eμ × Aσ
λ(x) and

hμ × Aσ
λ(x) also expand non-negatively into σ-atoms. It would be interesting

to give a precise rule for this expansion, as well as a Murnaghan–Nakayama
rule for the permuted-basement Demazure atoms.

Remark 5.9. We need to mention the paper [17], which also concerns a differ-
ent type of general Demazure atoms. These objects are also studied in [13],
but are, in general, different from ours when σ 	= id. In particular, the poly-
nomial families which they study are not bases for C[x1, . . . , xn], and they are
not compatible with the Demazure operators. The authors of [13,17] construct
these families by imposing an additional restriction1 on Haglund’s combinato-
rial model, which enables them to perform a type of RSK.

The introductions of both the papers [13,17] mention the permuted-
basement Macdonald polynomials Eσ

μ(x; q, t). However, the additional restric-
tion imposed further on breaks this connection whenever σ 	= id. This fact is
unfortunately hidden, since the same notation, Êγ , is used for two different
families of polynomials.
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