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Abstract. In [18], Mendes and Remmel showed how Gessel’s generating function for the
distributions of the number of descents, the major index, and the number of inversions of per-
mutations in the symmetric group could be derived by applying a ring homomorphism defined
on the ring of symmetric functions to a simple symmetric function identity. We show how
similar methods may be used to prove analogues of that generating function for compositions.
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1. Introduction

A permutation statistic is a function mapping permutations to nonnegative integers.
The modern analysis of such objects began in the early twentieth century with the
work of MacMahon [16]. He popularized the “classic” notions of the descents,
rises, inversions, coinversions, major index, and comajor index statistics. Here if
σ = σ1 · · ·σn is an element of the symmetric group Sn written in one line notation,
then

des(σ) =
n−1

∑
i=1

χ(σi > σi+1),

ris = 1+
n−1

∑
i=1

χ(σi < σi+1), inv(σ) = ∑
1≤i< j≤n

χ(σi > σ j), coinv(σ) = ∑
1≤i< j≤n

χ(σi < σ j),

maj(σ) =
n−1

∑
i=1

iχ(σi > σi+1), comaj(σ) =
n−1

∑
i=1

iχ(σi < σi+1),

where for any statement A, χ(A) is 1 if A is true and 0 if A is false. These definitions
make sense if σ = σ1 · · ·σn is any sequence of natural numbers.
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The study of the properties of these statistics and subsequent generalizations of
these statistics to other groups and sequences remains an active area of research today.
In this paper, we shall find analogues of the joint distribution of des(σ), maj(σ), and
inv(σ). That is, Gessel gave a generating function for

∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ), (1.1)

both in his thesis and in a paper coauthored with Garsia [9, 10]. Later, Mendes and
Remmel showed how Gessel’s result could be derived by applying a homomorphism
defined on the ring of symmetric functions Λ in infinitely many variables x1, x2, . . . to
the simple symmetric function identity

H(t) =
1

E(−t)
, (1.2)

where H(t) is the generating function for the homogeneous symmetric functions
hn = hn(x1, x2, . . .) and E(t) is the generating function for the elementary symmet-
ric functions en = en(x1, x2, . . .). That is,

H(t) = ∑
n≥0

hntn = ∏
n≥1

1
1− xit

(1.3)

and
E(t) = ∑

n≥0
entn = ∏

n≥1
(1 + xit). (1.4)

In particular, Mendes and Remmel proved the following formula, which is easily de-
rived from the Garsia-Gessel formula for the generating function of des(σ), maj(σ),
and inv(σ),

∑
n≥0

tn

[n]p,q!(x, y; u, v)n+1
∑

σ∈Sn

xdes(σ)yris(σ)umaj(σ)vcomaj(σ)qinv(σ)pcoinv(σ)

= ∑
k≥0

xk

yk+1e−t(u/v)0
p,q · · ·e−t(u/v)k

p,q

.

Here we use standard notation from hypergeometric function theory. For n ≥ 1 and
λ � n, let

[n]p,q =
pn −qn

p−q
= pn−1q0 + · · ·+ p0qn−1

and
[n]p,q! = [n]p,q · · · [1]p,q

be the p, q-analogues of n and n!. By convention, let [0]p,q = 0 and [0]p,q! = 1. We
let (x; q)0 = 1 and

(x; q)n = (1− x)(1− xq) · · ·
(
1− xqn−1) .
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In addition, let (x, y; p, q)0 = 1 and

(x, y; p, q)n = (x− y)(xp− yq) · · ·
(
xpn−1 − yqn−1) .

Finally, et
p,q is a p, q-analog for the exponential function defined by

et
p,q = ∑

n≥0

tn

[n]p,q!
q(n

2).

Mendes and Remmel also showed how their methods can be used to extend such
results to the hyperoctahedral group Bn and its subgroup Dn.

The main goal of this paper is to show how the methods of Mendes and Remmel
can prove similar results for compositions. Here a composition γ is a sequence of
positive integers γ = (γ1, . . . , γk). We call the γi’s the parts of γ and let �(γ) denote
the number of parts of γ. We let |γ| = γ1 + · · ·+ γk and xγ be the monomial xγ1 · · ·xγk .
Since compositions can have repeated entries, it is natural to have analogues of des
and maj where we replace > by ≥ or = in the definition of des and maj. That is, if
γ = (γ1, . . . , γn) is a composition, then we let

Des(γ) = {i : γi > γi+1},

W Des(γ) = {i : γi ≥ γi+1}, and

Lev(γ) = {i : γi = γi+1}.

Then we define

des(γ) = |Des(γ)|,

wdes(γ) = |WDes(γ)|, and

lev(γ) = |Lev(γ)|

and

maj(γ) = ∑
i∈Des(γ)

i,

wmaj(γ) = ∑
i∈WDes(γ)

i, and

levmaj(γ) = ∑
i∈Lev(γ)

i.

Let P denote the set of positive integers. We shall prove the following three theorems.

Theorem 1.1.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ) = ∑

k≥0

yk

∏i≥1(xit; u)k+1
.
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Theorem 1.2.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγywdes(γ)uwmaj(γ) = ∑

k≥0
yk ∏

i≥1
(−xit; u)k+1.

Theorem 1.3.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγylev(γ)ulevmaj(γ) = ∑

k≥0

yk

∏k
j=0

(
∑n≥0 pn (−u jt)n) ,

where pn = pn(x1, x2, . . .) = ∑i≥1 xn
i is the power symmetric function.

It should be noted that there has been considerable work on enumerating com-
positions by the number of occurrences of certain patterns in a compositions. For
example, if γ = (γ1, . . . , γk) is a composition and we define ris(γ) = |{s : γs < γs+1}|,
then Carlitz [7] proved that

∑
γ∈P∗

u�(γ)q|γ|xris(γ)ydes(γ)zlev(γ) =
e(qu(z− y), q)− e(qu(z− x), q)

xe(qu(z− x), q)− ye(qu(z− y), q)
, (1.5)

where

e(x, q) =
∞

∑
n=0

xn

(q)n
=

∞

∏
n=0

1
1−qnx

and (q)0 = 1 and (q)n = (1− q)
(
1−q2) · · · (1−qn) for n ≥ 1. Similarly, Heubach

and Mansour [13] found generating functions compositions according to the number
of occurrences of various 3 letter patterns, and Mansour and Sirhan [17] extended the
work of Heubach and Mansour by finding generating functions compositions accord-
ing to the number of occurrences of various l letter patterns. Enumerating various
types of compositions according to other types of patterns can be found in [12, 14],
and [15]. In each case, one can find such generating functions by applying the transfer
matrix method, see [20, Section 4.7] or [11]. The basic idea is the following. Suppose
you want to find the generating function

C(u, v, x) = ∑
γ∈P∗

u�(γ)v|γ|xdes(γ). (1.6)

Then one can define

C(i; u, v, x) = ∑
γ∈P+,γ1=i

u�(γ)v|γ|xdes(γ),

and we have simple recursions

C(i; u, v, x) = uvi + uvi

(
∑
j<i

xC( j; u, v, x)+ ∑
j≥i

C( j; u, v, x)

)
(1.7)

for all i ≥ 1. Thus, if U and V are the infinite vectors U =
[
uv1, uv2, . . .

]
and V =

[C(1; u, v, x), C(2; u, v, x), . . .], we can write down an invertible matrix M such that

UT = MV T
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and hence, we can solve for V T as

V T = M−1UT .

Then, at least in some cases, one can simplify the expression for 1+ ∑i≥1 C(i; u, v, x)
to obtain nice formulas for the desired generating function. Of course, this method is
more straightforward if we restrict ourselves to finite alphabets, but it can still work
over infinite alphabets, as Carlitz basically showed in [7]. However, when we try the
same thing while adding a variable q recording the major index, we cannot derive
such an equation. That is, define

C(i; u, v, x, q) = ∑
γ∈P+,γ1=i

u�(γ)v|γ|xdes(γ)qmaj(γ). (1.8)

When we consider a composition γ = (γ1, . . . , γk) where γ1 = j and add i to the front
of γ to obtain the composition δ = (i, γ1, . . . , γk), then a descent γs ≥ γs+1 which
contributes s to maj(γ) will contribute 1 + s to maj(δ) since that descent will occur
at position s + 1 in δ. Thus maj(δ) = 1 + des(γ) + maj(γ) if j < i and maj(δ) =
des(γ)+ maj(γ) if i ≤ j. Hence, in this case we obtain the recursion

C(i; u, v, x, q) = uvi + uvi

(
∑
j<i

qxC( j; u, v, qx, q)+ ∑
j≥i

C( j; u, v, qx, q)

)
. (1.9)

The fact that C( j; u, v, qx, q) appears on the right hand side of (1.9) as opposed to
the C( j; u, v, x, q) which appear on the right hand side of (1.7) means that we cannot
solve directly for V T in this case. Instead, if V = V (u, v, x, q) = (C(1; u, v, qx, q),
C(2; u, v, qx, q), C(3; u, v, qx, q), . . .) and A = (uv, uv2, uv3, . . .), then we end up with
an equation of the form

V (u, v, x, q)T = AT + B(u, v, x, q)V (u, v, xq, q)T , (1.10)

where B(u, v, x, q) is a matrix. We can iterate (1.10) to obtain an expression for
V (u, v, x, q)T of the form

AT + B(u, v, x, q)AT + B(u, v, x, q)B(u, v, xq, q)AT

+ B(u, v, x, q)B(u, v, xq, q)B(u, v, xq2, q)AT + · · · .

However, in this case, even when we restrict ourselves to finite alphabets {1, . . . , n}
so that the matrix B(u, v, x, q) is finite, this leads to a complicated expression for
V (u, v, x, q)T . We were unable to see how we could simplify these expressions for
V (u, v, x, q)T or 1 + ∑i=1 C(i; u, v, x, q) to obtain anything as simple as the formula
in Theorem 1.1.

It should be noted, however, that various specializations can easily follow from
Theorems 1.1, 1.2, and 1.3. That is, by setting the variables xi = 0 for certain i, we
can obtain formulas for an arbitrary alphabet A ⊆ P. By setting xi = uvi for all i, we
can also obtain generating functions like

C(u, v, x, q) = ∑
γ∈P∗

u�(γ)v|γ|xdes(γ)qmaj(γ).
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The outline of this paper is as follows. In Section 2, we will provide the necessary
background on symmetric functions and generating functions for partitions that we
will need to prove Theorems 1.1, 1.2, and 1.3. In Section 3, we will give the proofs
of Theorems 1.1, 1.2, and 1.3, as well as some extensions.

2. Preliminaries

To prove Theorems 1.1, 1.2, and 1.3, we will manipulate basic relationships between
the elementary and homogeneous symmetric functions. The idea of extracting in-
formation about permutation statistics through symmetric function theory has been
used for decades, but the methods of this paper — defining a homomorphism on the
elementary symmetric functions and evaluating it on the homogeneous symmetric
functions — was first given by Brenti [5,6]. Beck and the second author reproved his
results combinatorially [2–4]. It is this approach which is closest to our own.

In this section, we shall state the basic results on symmetric functions and gener-
ating functions for partitions that we shall need.

We shall consider the ring of symmetric functions Λ over infinitely many vari-
ables. We let h0 = e0 = p0 = 1 and for any n ≥ 1,

hn = hn(x1, x2, . . .) = ∑
1≤i1≤i2≤···≤in

xi1xi2 · · ·xin ,

en = en(x1, x2, . . .) = ∑
1≤i1<i2<···<in

xi1 xi2 · · ·xin , and

pn = pn(x1, x2, . . .) = ∑
i≥1

xn
i .

A partition of n, written λ � n, is an increasing sequence of positive integers λ =
(λ1, λ2, . . . , λ�) such that n = ∑�

i=1 λi, λ1 ≤ λ2 ≤ ·· · ≤ λ�. In such a situation, we
write |λ| = n and �(λ) = �. For any partition λ = (λ1, . . . , λ�), we define

hλ = hλ1 · · ·hλ�
, (2.1)

eλ = eλ1 · · ·eλ�
, and (2.2)

pλ = pλ1 · · · pλ�
. (2.3)

It is well known that the collections {hλ}, {eλ}, and {pλ} as λ runs over all parti-
tions are bases of Λ. These are referred to as the homogeneous symmetric function
basis, the elementary symmetric function basis, and the power symmetric function
basis, respectively. These definitions of the homogeneous and elementary symmetric
functions give

∑
n≥0

hntn = ∏
i

1
1− xit

=

(
∏

i
(1− xit)

)−1

=

(
∑
n≥0

en(−t)n

)−1

. (2.4)

This trivial restatement of definitions is the key symmetric function identity behind
Theorems 1.1, 1.2, and 1.3.



Major Indices in Compositions 109

A second key ingredient of our proofs is the combinatorial definition of the ex-
pansion of hn in terms of the elementary symmetric function basis. This was given
by Eğecioğlu and Remmel [8]. A rectangle of height 1 and length n chopped into
“bricks” of lengths found in the partition λ is known as a brick tabloid of shape (n)
and type λ. For example, Figure 1 shows one brick tabloid of shape (12) and type
(2, 3, 7).

Figure 1: A brick tabloid of shape (12) and type (2, 3, 7).

Let Bλ,n be the number of such objects. Through simple recursions, Eğecioğlu
and Remmel proved that

hn = ∑
λ�n

(−1)n−�(λ)Bλ,neλ.

Next, we state several well-known generating functions for partitions, see [1]:

1 + ∑
n≥1

∑
λ�n

q|λ|t�(λ) = ∏
i≥1

1
1− tqi ,

and
1 + ∑

n≥1
∑

λ�n,
λ has distinct parts

q|λ|t�(λ) = ∏
i≥1

(
1 + tqi) .

More generally, for any set S ⊆ P, let Ptnn(S) denote the set of partitions of n with
parts from S. Then,

1 + ∑
n≥1

∑
λ∈Ptnn(S)

q|λ|t�(λ) = ∏
i∈S

1
1− tqi

and
1 + ∑

n≥1
∑

λ∈Ptnn(S),
λ has distinct parts

q|λ|t�(λ) = ∏
i∈S

(
1 + tqi) .

3. The Generating Functions for Compositions

In this section, we shall give our proofs of Theorems 1.1, 1.2, and 1.3.
To prove Theorem 1.1, define a ring homomorphism Θ(k) by defining it on the

elementary symmetric function en so that

Θ(k)(en) = ∑
i0,..., ik≥0

i0+···+ik=n

u0i0+···+kik

[
k

∏
j=0

∏
i≥1

(1 + xiz j)

]∣∣∣∣∣
z
i0
0 ···z

ik
k

,
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where expression|tk means to take the coefficient of tk in expression.
First we apply Θ(k) to hn. We have

Θ(k)(hn) = ∑
λ�n

(−1)n−�(λ)Bλ,nΘ(k)(eλ)

= ∑
λ�n

(−1)n−�(λ)Bλ,n

�(λ)

∏
m=1

∑
i0,..., ik≥0

i0+···+ik=λm

u0i0+···+kik

[
k

∏
j=0

∏
i≥1

(1 + xiz j)

]∣∣∣∣∣
z
i0
0 ···z

ik
k

.

(3.1)

Our goal is to interpret Θ(k)(hn) as a sum of weighted combinatorial objects. We
interpret the sum ∑λ�n Bλ,n as all ways of picking a brick tabloid T of shape (n). Then
the factor (−1)n−�(λ) allows us to place a −1 in each non-terminal cell of a brick in
T and place a 1 at the terminal cell of each brick in T . Next, for each brick in T ,
choose nonnegative integers i0, . . . , ik that sum to the total length of the brick. This
accounts for the product and second sum in (3.1). Using powers of u, these choices
for i0, . . . , ik can be recorded in T . In each brick, place a power of u in each cell such
that the powers weakly increase from left to right and the number of occurrences of
u j is i j. At this point, we have constructed an object which may look something like
Figure 2 below.

111

u

−1
330222000311 uuuuuuuuuuu

−1−1−1−1−1−1−1−1

Figure 2: One possible object when k = 3 and n = 12.

Now, the term
[
∏k

j=0 ∏i≥1 (1 + xiz j)
]∣∣∣

z
i0
0 ···z

ik
k

let us choose k + 1 partitions with

distinct parts, π(0), . . . , π(k) where �
(
π( j)

)
= i j for j = 0, . . . , k, which we write in

strictly decreasing order. Each i that occurs in such a configuration is weighted with
xi, so that we write these factors in the bottom row of each configuration. Figure
3 gives one example of such an object created in this manner. The weight of such
a composite object is the product of the signs at the top of the configuration times
the product of the xi’s that appear in the bottom row of the configuration times the
products of the u j’s in the second row of the configuration. Thus, the weight of the
object in Figure 3 is −x1x3

2x4
3x2

4x5x6u17.
These decorated brick tabloids of shape (n) and type λ for some λ � n have the

following properties:

(1) the cells in each brick contain −1 except for the final cell, which contains 1,
(2) each cell contains a power of u such that the powers weakly increase within each

brick and the largest possible power of u is uk, and



Major Indices in Compositions 111

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

5 23 4 2 2 4 3

5 23 4 2 4 3

Figure 3: An object coming from (3.1) when k = 3 and n = 12.

(3) T contains a composition of n which must strictly decrease between consecutive
cells within a brick if the cells are marked with the same power of u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ(k)(hn) is
the weighted sum over all possible decorated brick tabloids of shape (n).

Next, we define a sign-reversing involution I which will allow us to cancel all the
terms T with a negative weight. To define I, scan the cells from left to right looking
for either a cell containing −1 or two consecutive bricks which may be combined to
preserve the properties of this collection of objects. If a −1 is scanned first, break the
brick containing the −1 into two immediately after the violation and change the −1
to 1. If the second situation is scanned first, glue the brick together and change the 1
in the first brick to −1. For example, the image of Figure 3 is displayed in Figure 4.

−1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

5 23 4 2 2 4 3

5 23 4 2 4 3

1

Figure 4: The image under I of Figure 3.

It is easy to see that I is a sign-reversing, weight-preserving involution. Thus, I
shows that Θ(k)(hn) is equal to the sum of the weights of all the fixed points of I.

Let’s consider the fixed points of I. First, there can be no −1’s, so every brick
must be of size 1. Next, it cannot be the case that the power of u strictly increases as
we move from brick i to brick i+1, since then we could combine these two bricks and
still satisfy properties (1), (2), and (3). Thus, the powers of u must weakly decrease
as we read from left to right. Let γ = (γ1, . . . , γn) denote the underlying composition.
We note that if the power of u is the same on brick i and i+1, then it must be the case
that γi ≤ γi+1; otherwise, we could combine brick i and brick i+1. One example of a
fixed point may be found in Figure 5.

We now turn our attention to counting fixed points.
Suppose that the powers of u in a fixed point are r1, . . . , rn when read from left

to right. It must be the case that k ≥ r1 ≥ ·· · ≥ rn. Define nonnegative integers ai
by ai = ri − ri+1 for i = 1, . . . , n− 1 and let an = rn. It follows that r1 + · · ·+ rn =
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u u u u u u u u u u u u3

3

x x x x x x x x x x x3 2

1 1

x

2 2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

1 2 3 5 3 3 6 43

1 2 3 5 3 3 6 2 3 4

Figure 5: A fixed point when k = 3 and n = 12.

a1 +2a2 + · · ·+nan, a1 + · · ·+an = r1 ≤ k. Now suppose that γ is the composition in
a fixed point. Then if γi > γi+1, it cannot be that ri = ri+1 because that would violate
our conditions for fixed points. Thus, it must be the case that ai ≥ χ(γi > γi+1). Let
xγ denote ∏n

i=1 xγi . In this way, the sum of the weights of all fixed points of I equals

∑
γ∈Pn

xγ ∑
a1+···+an≤k

ai≥χ(i∈Des(γ))

ua1+2a2+···+nan

= ∑
γ∈Pn

xγ ∑
a1≥χ(1∈Des(γ))

· · · ∑
an≥χ(n∈Des(γ))

ya1+...+anua1+2a2+···+nan

∣∣∣∣∣
y≤k

,

where expression|t≤k means to sum the coefficients of t j for j = 0, . . . , k in expression.
Rewriting the above equation, we have

∑
γ∈Pn

xγ ∑
a1≥χ(1∈Des(γ))

(yu)a1 · · · ∑
an≥χ(n∈Des(γ))(yun)an

∣∣∣∣∣
y≤k

= ∑
γ∈Pn

xγ(yu)χ(1∈Des(γ)) (yu2)χ(2∈Des(γ))
· · ·(yun)χ(n∈Des(γ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

= ∑
γ∈Pn

xγydes(γ)umaj(γ)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

.

Dividing by (1− y) allows the above expression to be rewritten as

∑
γ∈Pn

xγydes(γ)umaj(γ)

(1− y)(1− yu) · · ·(1− yun)

∣∣∣∣∣
yk

.
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Therefore, we have

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ)

= ∑
k≥0

ykΘ(k)

(
∑
n≥0

tnhn

)

= ∑
k≥0

yk(
∑n≥0(−t)nΘ(k)(en)

)

= ∑
k≥0

yk(
∑n≥0(−t)n ∑ i0,..., ik≥0

i0+···+ik=n
u0i0+···+kik ∏k

j=0 ∏i≥1 (1 + xiz j)
∣∣
zi0 ···zi j

) .

However,

∑
n≥0

(−t)n ∑
i0,..., ik≥0

i0+···+ik=n

u0i0+···+kik
k

∏
j=0

∏
i≥1

(1 + xiz j)
∣∣
zi0 ···zi j

= ∑
n≥0

(−t)n
k

∏
j=0

∏
i≥1

(
1 + u jxiz

)
|zn

=
k

∏
j=0

∏
i≥1

(
1− xiu jt

)

= ∏
i≥1

(xit; u)k+1.

Thus, we have shown that

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ) = ∑

k≥0

yk

∏i≥1(xit; u)k+1
,

which proves Theorem 1.1.

To prove Theorem 1.2, we define a homomorphism Θ(k)
w on Λ by defining

Θ(k)
w (en) = ∑

i0,..., ik≥0
i0+···+ik=n

u0i0+···+kik

[
k

∏
j=0

∏
i≥1

1
1− xiz j

]∣∣∣∣∣
z
i0
0 ···z

ik
k

.
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Again we apply Θ(k)
w to hn. We have

Θ(k)
w (hn)

= ∑
λ�n

(−1)n−�(λ)Bλ,nΘ(k)
w (eλ)

= ∑
λ�n

(−1)n−�(λ)Bλ,n

�(λ)

∏
m=1

∑
i0,..., ik≥0

i0+···+ik=λm

u0i0+···+kik

[
k

∏
j=0

∏
i≥1

1
1− xiz j

]∣∣∣∣∣
z
i0
0 ···z

ik
k

. (3.2)

Again we interpret Θ(k)
w (hn) as a sum of weighted combinatorial objects. Ev-

erything is the same as before except that the term
[
∏k

j=0 ∏i≥1
1

1−xiz j

]∣∣∣
z
i0
0 ···z

ik
k

lets

us choose k + 1 partitions, π(0), . . . , π(k) where �
(
π( j)

)
= i j for j = 0, . . . , k, which

we write in weakly decreasing order. Each i that occurs in such a configuration is
weighted with xi, so we write these factors in the bottom row of each configuration.
Figure 6 gives one example of such an object created in this manner. The weight
of such a composite object is the product of the signs at the top of the configuration
times the product of the xi’s that appear in the bottom row of the configuration times
the products of the u j’s in the second row of the configuration. Thus, the weight of
the object in Figure 6 is −x1x3

2x4
3x3

4x6u17.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

23 4 2 2 4

23 4 2 4

3

3

4

4

Figure 6: An object coming from (3.2) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type λ for some λ � n have the
following properties:

(1) the cells in each brick contain −1 except for the final cell, which contains 1,
(2) each cell contains a power of u such that the powers weakly increase within each

brick and the largest possible power of u is uk, and
(3) T contains a composition of n which must weakly decrease between consecutive

cells within a brick if the cells are marked with the same power of u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ(k)
w (hn) is

the weighted sum over all possible decorated brick tabloids.
We define a sign-reversing involution I exactly as before. That is, we scan the

cells from left to right looking for either a cell containing −1 or two consecutive
bricks which may be combined to preserve the properties of this collection of objects.
If a −1 is scanned first, break the brick containing the −1 into two immediately after
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the violation and change the −1 to 1. If the second situation is scanned first, glue the

brick together and change the 1 in the first brick to −1. Thus, I shows that Θ(k)
w (hn)

is equal to the sum of the weights of all the fixed points of I.
Again, let us consider the fixed points of I. First, there can be no −1’s, so ev-

ery brick must be of size 1. Next, it cannot be the case that the power of u strictly
increases as we move from brick i to brick i+ 1, since then we could combine these
two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must
weakly decrease as we read from left to right. Let γ = (γ1, . . . , γn) denote the under-
lying composition. We note that if the power of u is the same on bricks i and i + 1,
then it must be the case that γi < γi+1: Otherwise, we could combine brick i and brick
i+ 1. One example of a fixed point may be found in Figure 7.

u u u u u u u u u u u u3

3

x x x x x x x x x x x3

1 1

x

2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

1 2 3 6 43

1 2 3 6 2 3 4

4

4

6

6

5

5

5

5

Figure 7: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers of
u in a fixed point are r1, . . . , rn when read from left to right. It must be the case that
k ≥ r1 ≥ ·· · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for i = 1, . . . , n−1
and let an = rn. It follows that r1 + · · ·+ rn = a1 + 2a2 + · · ·+ nan, a1 + · · ·+ an =
r1 ≤ k. Now, suppose γ is the composition in a fixed point. Then if γi ≥ γi+1, it cannot
be that ri = ri+1 because that would violate our conditions for fixed points. Thus, it
must be the case that ai ≥ χ(γi ≥ γi+1). Let xγ denote ∏n

i=1 xγi . In this way, the sum
the weights of all fixed points of I equals

∑
γ∈Pn

xγ ∑
a1+···+an≤k

ai≥χ(i∈WDes(γ))

ua1+2a2+···+nan

= ∑
γ∈Pn

xγ ∑
a1≥χ(1∈WDes(γ))

· · · ∑
an≥χ(n∈WDes(γ))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣
y≤k

.

Rewriting the above equation, we have

∑
γ∈Pn

xγ ∑
a1≥χ(1∈WDes(γ))

(yu)a1 · · · ∑
an≥χ(n∈WDes(γ))

(yun)an

∣∣∣∣∣
y≤k

= ∑
γ∈Pn

xγ(yu)χ(1∈WDes(γ)) (yu2)χ(2∈WDes(γ))
· · ·(yun)χ(n∈WDes(σ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k
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= ∑
γ∈Pn

xγywdes(γ)uwmaj(γ)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

.

Dividing by (1− y) allows the above expression to be rewritten as

∑
γ∈Pn

xγywdes(γ)uwmaj(γ)

(1− y)(1− yu) · · ·(1− yun)

∣∣∣∣∣
yk

.

Therefore, we have

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγywdes(γ)qwmaj(γ)

= ∑
k≥0

ykΘ(k)
w

(
∑
n≥0

tnhn

)

= ∑
k≥0

yk(
∑n≥0(−t)nΘ(k)

w (en)
)

= ∑
k≥0

yk(
∑n≥0(−t)n ∑ i0,..., ik≥0

i0+···+ik=n
u0i0+···+kik ∏k

j=0 ∏i≥1
1

1−xiz j

∣∣∣
z
i0
0 ···z

ik
k

) .

However,

∑
n≥0

(−t)n ∑
i0,..., ik≥0

i0+···+ik=n

u0i0+···+kik
k

∏
j=0

∏
i≥1

1
1− xiz j

∣∣∣
z
i0
0 ···z

ik
k

= ∑
n≥0

(−t)n
k

∏
j=0

∏
i≥1

1
1−u jxiz

|zn

=
k

∏
j=0

∏
i≥1

1
1 + xiu jt

= ∏
i≥1

1
(−xit; u)k+1

.

Thus, we have shown that

∑
n≥0

tn

(y; n)n+1
∑

γ∈Pn
xγywdes(γ)uwmaj(γ) = ∑

k≥0
yk ∏

i≥1
(−xit; u)k+1,

which proves Theorem 1.2.

To prove Theorem 1.3, we define a homomorphism Θ(k)
� (en) on Λ by setting

Θ(k)
� (en) = ∑

i0,..., ik≥0
i0+···+ik=n

u0i0+···+kik
k

∏
j=0

pi j ,
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where pn is the n-th power symmetric function.

As before, apply Θ(k)
� to hn we have

Θ(k)
� (hn) = ∑

λ�n
(−1)n−�(λ)Bλ,nΘ(k)(eλ)

= ∑
λ�n

(−1)n−�(λ)Bλ,n

�(λ)

∏
m=1

∑
i0,..., ik≥0

i0+···+ik=λm

u0i0+···+kik pi0 · · · pik . (3.3)

Again we interpret Θ(k)
� (hn) as a sum of weighted combinatorial objects. Ev-

erything is the same as before except that the term pi0 · · · pik lets us choose k + 1

partitions, π(0), . . . , π(k) where π( j) =
(
n

i j
j
)

for some n j for j = 0, . . . , k. Each i that
occurs in such a configuration is weighted with xi so that we write these factors in
the bottom row of each configuration. Figure 8 gives one example of such an object
created in this manner. The weight of such a composite object is the product of the
signs at the top of the configuration times the product of the xi’s that appear in the
bottom row of the configuration times the products of the u j’s in the second row of
the configuration. Thus, the weight of the object in Figure 8 is −x2x6

3x3
4x2

6u17.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u1 1 3 0 0 0 2 2 2 0 3 3

3

x x x x x x x x x x x3 2

1 1 1

x

6

6

3 4 2 3

3 4 3

6

6

3 3

33

4 4

4 4

3

3

Figure 8: An object coming from (3.3) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type λ for some λ � n have the
following properties:

(1) the cells in each brick contain −1 except for the final cell, which contains 1,

(2) each cell contains a power of u such that the powers weakly increase within each
brick and the largest possible power of u is uk, and

(3) T contains a composition of n whose entries must be equal for any two consecu-
tive cells within a brick if the cells are marked with the same power of u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ(k)
� (hn) is

the weighted sum over all possible decorated brick tabloids.
We define a sign-reversing involution I exactly as before. That is, we scan the

cells from left to right looking for either a cell containing −1 or two consecutive
bricks which may be combined to preserve the properties of this collection of objects.
If a −1 is scanned first, break the brick containing the −1 into two immediately after
the violation and change the −1 to 1. If the second situation is scanned first, glue the
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brick together and change the 1 in the first brick to −1. Thus, I shows that Θ(k)
� (hn)

is equal to the sum of the weights of all the fixed points of I.
Again, let us consider the fixed points of I. First, there can be no −1’s, so ev-

ery brick must be of size 1. Next, it cannot be the case that the power of u strictly
increases as we move from brick i to brick i+ 1, since then we could combine these
two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must
weakly decrease as we read from left to right. Let γ = (γ1, . . . , γn) denote the under-
lying composition. We note that if the power of u is the same on brick i and i + 1,
then it must be the case that γi �= γi+1; otherwise, we could combine brick i and brick
i+ 1. One example of a fixed point may be found in Figure 9.

u u u u u u u u u u u u3

x x x x x x x x x x x2

1 1

x

2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

2 3 5 3 6 43

2 3 5 3 6 3 4

3

3

1

1

2

2

6

6

Figure 9: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers of
u in a fixed point are r1, . . . , rn when read from left to right. It must be the case that
k ≥ r1 ≥ ·· · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for i = 1, . . . , n−1
and let an = rn. It follows that r1 + · · ·+ rn = a1 + 2a2 + · · ·+ nan, a1 + · · ·+ an =
r1 ≤ k. Now suppose that γ is the composition in a fixed point. Then if γi = γi+1, then
it cannot be that ri = ri+1 because that would violate our conditions for fixed points.
Thus, it must be the case that ai ≥ χ(γi = γi+1). Let xγ denote ∏n

i=1 xγi . In this way,
the sum of the weights of all fixed points of I equals

∑
γ∈Pn

xγ ∑
a1+···+an≤k

ai≥χ(i∈Lev(γ))

ua1+2a2+···+nan

= ∑
γ∈Pn

xγ ∑
a1≥χ(1∈Lev(γ))

· · · ∑
an≥χ(n∈Lev(γ))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣
y≤k

.

Rewriting the above equation, we have

∑
γ∈Pn

xγ ∑
a1≥χ(1∈Lev(γ))

(yu)a1 · · · ∑
an≥χ(n∈Lev(γ))

(yun)an

∣∣∣∣∣
y≤k

= ∑
γ∈Pn

xγ(yu)χ(1∈Lev(γ)) (yu2)χ(2∈Lev(γ))
· · · (yun)χ(n∈Lev(γ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

= ∑
γ∈Pn

xγylev(γ)ulevmaj(γ)

(1− yu)(1− yu2) · · ·(1− yun)

∣∣∣∣∣
y≤k

.
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Dividing by (1− y) allows the above expression to be rewritten as

∑
γ∈Pn

xγylev(γ)ulevmaj(γ)

(1− y)(1− yu) · · ·(1− yun)

∣∣∣∣∣
yk

.

Therefore, we have

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγylev(γ)ulevmaj(γ)

= ∑
k≥0

ykΘ(k)
�

(
∑
n≥0

tnhn

)

= ∑
k≥0

yk(
∑n≥0(−t)nΘ(k)

� (en)
)

= ∑
k≥0

yk(
∑n≥0(−t)n ∑ i0,..., ik≥0

i0+···+ik=n
u0i0+···+kik pi0 · · · pi j

) .

However,

∑
n≥0

(−t)n ∑
i0,..., ik≥0

i0+···+ik=n

u0i0+···+kik pi0 · · · pi j = ∑
n≥0

(−t)n
k

∏
j=0

(
∑

m≥0
pm

(
u jz

)m

)∣∣zn

=
k

∏
j=0

(
∑

m≥0
pm

(
−u jt

)m

)
.

Thus, we have shown that

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγylev(γ)ulevmaj(γ) = ∑

k≥0

yk

∏k
j=0

(
∑0≥1 pm (−u jt)m) ,

which proves Theorem 1.3.
Now suppose that S is a subset of P. Then we can restrict to compositions with

parts from S by simply setting xi = 0 for all i /∈ S. Thus, we immediately have the
following three corollaries:

Corollary 3.1.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Sn
xγydes(γ)umaj(γ) = ∑

k≥0

yk

∏i∈S(xit; u)k+1
.

Corollary 3.2.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Sn
xγywdes(γ)uwmaj(γ) = ∑

k≥0
yk ∏

i∈S
(−xit; u)k+1.
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Corollary 3.3.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Sn
xγylev(γ)ulevmaj(γ) = ∑

k≥0

yk

∏k
j=0

(
∑n≥0 pn,S (−u jt)n) ,

where pn,S = ∑i∈S xn
i .

We can also derive analogues of our results for other partial orders on P by spe-
cializing our results. For instance, suppose that � is the partial order where all the
odd numbers are incomparable, every even number is larger than every odd number,
and the even numbers are ordered as in the standard universe. In this case, we define
for any composition γ = (γ1, . . . , γn),

Des(γ) = {i : γi � γi+1},

des(γ) =
∣∣Des(γ)

∣∣ , and

maj(γ) = ∑
i∈Des(γ)

i.

Then it is easy to see that the generating function

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ)

arises by taking the generating function

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ)

and setting x1 = 1
1−∑n≥0 x2n+1

and setting x2i+1 = 0 for i ≥ 1. Thus, we have the
following corollary.

Corollary 3.4.

∑
n≥0

tn

(y; u)n+1
∑

γ∈Pn
xγydes(γ)umaj(γ) = ∑

k≥0

yk

∏k
j=0

(
1− u jt

1−∑n≥0 x2n+1

)
∏i≥1(x2it; u)k+1

.
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