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Abstract. The parity of p(n), the ordinary partition function, has been studied for at least a
century, yet it still remains something of a mystery. Although much work has been done, the
known lower bounds for the number of even and odd values of p(n) for n < N still appear to
have a great deal of room for improvement. In this paper, we use classical methods to give a
new lower bound for the number of odd values of p(n).
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1. Introduction and Background

Computing the parity of specific values of p(n), the ordinary partition function, has
been possible since the time of Euler, but information about the overall distribution
of the parity of p(n) has been much more elusive. It is a long standing conjecture
that p(n) is odd (and even) half of the time asymptotically, but it was not until 1959
that Kolberg proved that it is both odd and even infinitely often [8]. In 1967 [11],
Parkin and Shanks undertook an in-depth computational investigation of the parity
of p(n), and their work (including the parity of over two million values of p(n))
does support the conjecture. In 1996 [9], Ono showed that p(n) is even infinitely
often in every arithmetic progression, and also that it is odd infinitely often in every
arithmetic progression, provided that it is at least once. In 1998 [10], Nicolas, Ruzsa,
and Sarkozy proved that for every € > 0,
logN

#{n <N: p(n)isodd} > VNe 1952 oglog
for N sufficiently large. They also showed that for some constant c,
#{n <N: p(n)iseven} > cVN

for N sufficiently large. Amazingly, these were the first lower bounds that were
greater than a power of logN. In an appendix to [10], Serre showed that for any ¢
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and r,
lim #{n <N: p(tn+r)iseven} _
N—oo VN

In 1999 [1], Ahlgren quantified Ono’s work, and gave new lower bounds for the

number of odd values of p(n) in arithmetic progressions. The explicit bound he gave
for the number of odd values of p(n) is

oo,

4+/N
#{n<N: i
{n<N: p(n)isodd} > log8N

for N sufficiently large. The technology used in this result involves both theorems
from the theory of modular forms and properties of /-adic Galois representations. In
this paper, we give a better lower bound for the number of odd values of p(n) using
only Euler’s Pentagonal Number Theorem, Jacobi’s Identity, the classical formula
for r»(n) (the number of representations of n as a sum of two squares), and the prime
number theorem for a single arithmetic progression.

2. The Lower Bound

Euler showed that the generating function for p(n) is

o o

ZM@f=Hlj¢

n=0 j=1

In [5], it was shown that the generating function for a4 (n) is

= e =7 ()"
,;)a4(n)q _H l—q/ )

Jj=1

where a4(n) is the number of 4-core partitions of n (a 4-core partition is a partition
whose Ferrers diagram has no hook numbers divisible by 4; however, the combi-
natorics of 4-core partitions will play no role in what follows). In [6], Hirschhorn
and Sellers use generating function manipulations relying only on Jacobi’s Identity
to show that a4(n) is congruent modulo 2 to 2%rz(Sn +5), where r,(n) is the number
of representations of n as a sum of two squares. Using a classical result expressing
r2(n) as a difference of divisor functions, they determine necessary and sufficient
conditions for a4(n) to be even, which we restate in the following way.

Lemma 2.1. (Hirschhorn and Sellers) The value of as(n) is odd if and only if 8n+
5 = p°M? for some integers p, e, and M, with p prime, e =1 (mod 4), and p { M.

We can now use the prime number theorem for the arithmetic progression 5
(mod 8) to count the odd values of a4(n).

2
N
Lemma 2.2. The number of odd values of as(n) withn <N is (Ti + 0(1)) logN’



The Odd Values of the Partition Function 299

Proof. Let Ty, y be {n <N: 8n+5= pM? for some prime p{ M} (notice here that
M must be odd and p =5 (mod 8)). For each fixed odd M, fewer than log M primes
p | M, so by the prime number theorem for the arithmetic progression 5 (mod 8),

1 8N +5 _ (2+o(1))N
Wl = (4 +0(1)> M?[log(8N +5) —log(M?)] ~ MZ*logN

where here we have adopted the usual convention that “o(1)” denotes some function
that tends to zero as N — oo, Taking the union over odd M up to N'/? and recalling

. . 2
that the sum of the reciprocals of the odd squares is ’% , we have

72 N
# TNA,M:< +0(1)> . (2.1)
M odd 4 logN
M§N1/3

Observe that each nonempty Ty j with M > N'/3 has size less than 8N'/3; there
are fewer than v/N such sets, so their union has size less than 8N3/®. Also observe
that there are fewer than N'/¢*1/2 positive integers of the form p¢M?2 less than N.
Combining these observations with (2.1) and Lemma 2.1, we have

2
#{n <N: asq(n)isodd} = (1: +0(1)> IOZ;N

as desired.

With Lemma 2.2 in place, we are now able to prove our main theorem.

Theorem 2.3. The number of odd values of p(n) is bounded below as follows:

2
6 N
#{n<N: p(n)isodd} > (n ;/ +0(1)> l<\){gN’
Proof. Since we are only concerned with parity, all of our power series calculations
will be in F2[[g]]. This being the case, notice that (1 —z)* = (1 — z2)2 = (1-2*) by
the “mod 2 binomial theorem” for any z € F»[[q]].
Now consider

= (1=a)
’1;)04(n)q _1131 1_qj
e
-,
_ (E)p(n)qn) (mzz_wq&n@m—l)) ; 2.2)

where in the last step we have applied Euler’s Pentagonal Number Theorem with g
replaced by ¢'© to the numerator of the previous line. Notice that Y°_ _ ¢%"(m=1)
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has \/N/6(1 + o(1)) nonzero terms up through the ¢" term. Also recall that, by
Lemma 2.2, ¥ jas4(n)g" has (’f +0(1)) 102’ v nonzero terms up through the ¢V

term. Since every nonzero term on the left-hand side of (2.2) must come from an odd
value of p(n) coupled with a nonzero term of ¥2_ %"~ 1), we have

2

and our result follows.

In [1], Ahlgren shows that for r =0, 1,2, or 3, #{n < N: n=r (mod 4), p(n)
is odd} is greater than IO‘QN. Combining these four arithmetic progressions, his lower

bound on the number of odd values of p(n) with n <N is lﬁé/SNN’ so we see that

Theorem 2.3 improves this bound by a bit more than a factor of 3/2. At first glance,
one might think that we have sacrificed the information in arithmetic progressions
with modulus 4 to achieve a better lower bound; however, a careful examination of the
proof of Theorem 2.3 reveals that in fact, the opposite is true. Since the second sum
on the right-hand side of (2.2) is a power series in ¢'°, we actually have information
refined into every arithmetic progression with modulus 16.

Theorem 2.4. For any integer 0 < r < 16,

#{n<N:n=r (mod 16), p(n) is odd} > <n2\/6 +o(1)> VN

64 logN~

Proof. By reasoning as in Lemma 2.2, Y%, as(16n +r)g'®"*" has at least (gi +

0(1)) - 102]  honzero terms up through the ¢" term (notice here that primes p = 87 +5
(mod 128) take the place of primes p =5 (mod 8) in Lemma 2.2). Now, since the
second sum on the right-hand side of (2.2) is actually a power series in ¢'¢, contribu-
tions to Y as(16n+r)g'®"*" can only come from odd values of p(16n+r) coupled

with nonzero terms of ¥'°_ __ ¢3"(>”=1)_ Thus,
#Hn<N:n=r (mod 16), p(n)is odd} \/N (o= (T vom) N
== P 6 = \64 logN’
and our result follows.

It is worth mentioning here that for each r, { p(16n+r)} was first shown to contain
both infinitely many odd values and infinitely many even values by Hirschhorn and
Subbarao in [7]. Our (2.2) coupled with the first step of the analysis in [6] appeared
first in [7] as the key ingredient of their proof.

3. Other Results

One nice feature of this new lower bound for the number of odd values of p(n) is that
the proof contains a certain amount of concrete information that addresses not only
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the number of odd values, but also their location. Although we have not explicitly
exhibited an infinite set of n for which p(n) is odd, we still can draw some conclusions
about where a certain number of odd values must be. Also, since Lemma 2.1 tells us
explicitly when a4(n) is odd, we can use that information to draw conclusions about
partition functions other than p(n), which would not be possible if we had only the
result of Theorem 2.3 in isolation. In this section, we demonstrate these nice features
by providing a few further results that follow from arguments given in the proof of
Theorem 2.3.

In Theorem 3.1, we draw a slightly stronger conclusion than the final statement
of Theorem 2.4. As it turns out, for every positive integer n, we know the parity of
the number of odd values in {p(n —8m(3m —1)): m € Z}. Let A4 be the set of all
integers n such that a4 (n) is odd (this set is given explicitly in Lemma 2.1).

Theorem 3.1. Ifn € A4, then
{p(n—8m(3m—1)): m € Z} contains an odd number of odd values;

otherwise, it contains an even number of odd values.

Proof. This follows immediately from equating coefficients of ¢" on the left- and
right-hand sides of (2.2), and recalling that this is an identity in F[g]].

Now, Theorem 2.3 could be viewed as a corollary of Theorem 3.1 that reflects the
fact that if {p(n—8m(3m—1)): m € Z} contains an odd number of odd values, it
must contain at least one.

Our next result gives a lower bound on the number of odd values of p,(n), where
Pa(n) is the number of partitions of n with no parts of size a. This is made possible
by a somewhat surprising appeal to upper bounds for the number of prime 2-tuples.

Theorem 3.2. For any positive integer a,

)
#{n <N: py(n)is odd} > <(16 ;)\/6+0(1)> 1<\>/g]>]\"

Proof. Notice that the generating function for p,(n) is the generating function for
p(n) multiplied by (1 —¢“). Thus, multiplying both sides of (2.2) by (1 —¢“), we
have

(1 _qa) i 614(71)6]" _ (ipa(n)qn> ( i qsm(3m1>> . 3.1
n=0 n=0

Now we see that a lower bound like the one we gave for p(n) will also hold for
Pa(n), provided that multiplication by (1 — ¢) does not thin the power series on the
left-hand side of (3.1) too severely.

The powers of g that occur on the left-hand side of (3.1) will be exactly the sym-
metric difference of A4 and the translation of A4 upwards by a (We will denote this

symmetric difference as “A4/\ (A4 +a)”). If we consider the subset Py of A4 that

N

consists of all elements of the form ? gs where p is prime, then P4 has (2+0(1)) logN
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elements up to N. Of course, P4+ a also has (24 o(1)) 101;’  €lements up to N, so that
P4\ (Ps+a) has (4+0(1)) 102]1\/ — R(N) elements up to N, where R(N) is twice the
number of elements in P4 N (Py+a) up to N. If n € P4N (P4 + a), then both 8n+35
and 8n+ 5 — 8a are prime. However, by bounds on the number of prime 2-tuples
of the form (8n+ 5, 8n+5 — 8a) (see [4], for example), we know that the relative
density of these 2-tuples amongst the primes is zero, and so the size of P4 N (P4 + a)

iso (101;]1\/)' Thus, P4\ (P4~ a) has (44 o0(1)) IOZN elements up to N. Since A4 \ Py
2

and (A4 +a)\ (P4++a) each have (’Z 2+ o(l)) th elements up to N, and
A4 (As+a) 2 PO (Py+a) \ [([As\ PN [As+a]) U ([(As +a) \ (Ps +a)]NA4)],

we have that the number of elements in A4\ (A4 +a) up to N is at least (8 — 7‘22 +

0(1)) 101;’ - Following the analysis in the proof of Theorem 2.3, we have

)
#{n<N: p,(n)is odd} > <(16 ; )\/6 +0(1)) l(\)/gl\;\;

as desired.

We could give a much sharper bound on the amount of cancelation that occurs in
the product on the left-hand side of (3.1), and give a better lower bound for #{n <
N: ps(n) is odd}. However, we have given a smaller lower bound here in order
to more quickly highlight one way in which information about the distribution of
primes can be applied to this question. Of course, this result may also be refined into
arithmetic progressions with modulus 16 as was done in Theorem 2.4. In addition,
we can get similar results for pg(n) for any finite set S, where pg(n) is the number of
partitions of n with no parts from S.

4. Conclusion and Further Study

If we analyze the proof of Theorem 2.3, we see that the key ingredient for our result
was the ability to express a power series in IF5[[g]] with a known thickness as a product
of the generating function for p(n) and a very sparse series. It is certainly possible
that we may be able to further improve our lower bound by considering other such
products. In Theorem 3.2, we were able to extend our results to another family of
partition functions. It is also possible that other families of partition functions can be
treated using this method. We save these explorations for study in a future project.
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