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Abstract. Chain total double complexes with reductive differentials for
non-abelian simplexes with associated spaces are considered. It is conjec-
tured that corresponding relative cohomology is equivalent to the coset
space of vanishing functionals over non-vanishing functionals related to
differentials of complexes. The conjecture is supported by the theorem for
the case of spaces of correlation functions and generalized connections on
vertex operator algebra bundles.
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1. Introduction

It is natural to consider non-abelian simplexes with associated spaces [1,8,40]
and corresponding cohomology. In [8] spectral sequences for ordinary sim-
plexes with associated functional spaces were studied. In [10] it was shown
that the Gelfand–Fuks cohomology of vector fields on a smooth compact man-
ifold M is isomorphic to the singular cohomology of the space of continuous
cross sections of a certain fiber bundle over M . Passing to a non-abelian sim-
plex setup, one would be interested in construction of explicit examples of
chain complexes, spectral sequences, and relations to geometrical structures of
associated manifolds. In [10,18,22,27,40,50,53–55,58,62] cohomology of non-
commutative structures with associated manifolds was studied.

In this paper we consider chain total double complexes of non-abelian
simplexes with associated spaces and reductive differentials. The reductivity
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property explained in the text allows to prove the relativity of corresponding
cohomology, as well as its equivalence to coset spaces of functionals associated
to differentials of chain complexes. The main conjecture 1 is illustrated by the
explicit proof of Theorem 1 describing a particular case of the simplex, the
total chain double complex of associated spaces of correlation functions, and
intrinsic invariant bundle for a vertex operator algebra [9,14,19,20,20,25,26,
30,56] considered on Riemann surfaces [16] of various genus. The geometrical
meaning of the theorem provides a vertex operator algebra description of Bott–
Segal relation [10] for Lie algebras.

1.1. Double Complex Families with Reductive Differentials

Let X be (non necessary commutative) space of simplexes endowed with a dou-
ble filtration X =

⋃
κ,n≥0 Xκ,n, with an associated functional space Cκ,n(Xκ,n).

Let us define reductive differentials Dκ = Dκ(X), Dn = Dn(X) such that
(
Xκ+1,n, Cκ+1,n

)
= Dκ. (Xκ,n, Cκ,n) ,

(
Xκ,n+1, Cκ,n+1

)
= Dn. (Xκ,n, Cκ,n) .

(1.1)

Requiring single chain complex property with respect to each of the differen-
tials

Dκ+1 ◦ Dκ. (Cκ,n) = 0, Dn+1 ◦ Dn. (Cκ,n) = 0, (1.2)

and the double complex property

(Dκ ◦ Dn − Dn ◦ Dκ) . (Cκ,n) = 0, (1.3)

the diagram
...

...
↓ Dκ−1 ↓ Dκ−1

· · · −→ Cκ,n Dκ,n

−→ Cκ,n+1 −→ · · ·
↓ Dκ ↓ Dκ

· · · −→ Cκ+1,n Dκ+1,n

−→ Cκ+1,n+1 → · · ·
↓ Dκ+1 ↓ Dκ+1

...
... (1.4)

is then commutative. For countable direct sums of Cκ,n(Xκ,n), one intro-
duces the total complex Cm =

⊕
m=κ+n Cκ,n(Xκ,n), Corresponding differential

is given by

dm = Dκ + (−1)κDn, dm ◦ dm−1. (Cm) = 0, (1.5)

with the cohomology of the total complex (dm, Cm) defined in the standard
way. We call the single part of a complex Cκ,n reductive if Ck = D◦· · ·◦D.C0 =
P (k).C0 with some operators P (k), k ≥ 0, and D is a finite combination of Dκ

and Dn.
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Introduce now the maps Φ, Ψ : X → Y ; F , G : Y → W , the action
Ψ.Φ : Y × Y → Y , for spaces Y , W , and a map G : Y → W × W , x ∈ X, of
the form

G(Ψ, Φ) = F (Ψ(x′)).G(Φ(x)) + F (Φ(x)).G(Ψ(x′)) +
∑

x′
0,x0
⊂X

G (
F (Ψ(x′

0)).Φ(x0)
)
.

(1.6)

For a double-filtered X denote by Gm =
{⊕

m=κ+n G(x), x ∈ Xκ,n

}
, the space

of functionals G(Ψ,Φ) satisfying 1.6, and by Conm the space of vanishing
G(Ψ,Φ). Let us fix the maps G, Φ, Ψ. G(Ψ,Φ) depends on the map F as a
functional. Suppose that the differential of the total complex d = d(F ) is also
a functional on F . If we fix a subspace F of maps F , then the cohomology
Hm(Cm,F) of the total complex is a relative cohomology with respect to F.

We call G(Ψ,Φ) covariant with respect to the differentials if (1.6) remains
of the same general form under arbitrary combinations of Dκ and Dn. We then
formulate the following conjecture which is a counterpart of a proposition of
[10,50], i.e., the Bott-Segal theorem.

Conjecture 1. The relative cohomology of the reductive chain total complex
(dm(F ), Cm) is equivalent to the coset space Conm/Gm for some m. For G
covariant with respect to dm, the equivalence extends to all m ≥ 0.

Note that the vanishing (1.6) represents a version of Leibniz rule. Thus,
the cohomology relation above measures the inclination of F and G from that
rule.

Our main example of the construction above is provided by the space X of
n-simplexes of pairs x = (v, z) of a vertex operator algebra elements v ∈ V and
a formal parameter z, and the space C = Cκ,n(V ) of vertex operator algebra
V -module W n-point correlation functions [5,6,12,13,15,21,28,42,43,52,57].
considered on a Riemann surface of genus κ = g. Due to the structure of
correlations functions and reduction relations [11,23,32–38,44–49,52] one can
form chain complexes of converging n-point functions. In this paper we assume
that all n-point correlation functions are reductive to corresponding zero-point
correlation function at any genus of Riemann surfaces.

Recall the notion of a vertex operator algebra bundle given in “Appendix
5”. Motivated by the definition of a holomorphic connection for a vertex op-
erator algebra bundle (cf. Sect. 6, [6] and [24]) over a smooth complex curve,
we introduce the definition of the multiple point connection of the vertex op-
erator algebra bundle (see also [43]) over a direct product

⊕
g≥0 Σ(g). With

G(Ψ,Φ) = 0, the map G provides a generalization of the classical holomorphic
connection over a smooth variety. We call the functional G(Ψ,Φ) (1.6) the
form of connection. The main results of this paper is the following theorem.

Theorem 1. The relative cohomology Hm(W,F) of the chain total Dn-reductive
complex (dm (F ), Cm) of a vertex operator algebra V -module W correlation
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functions on the direct product of Riemann surfaces is isomorphic to the factor
space of Dg- and Dn-covariant connections G over the space of Gm−1 of (m−
1)-forms on corresponding V -module W -bundle W.

The plan of the paper is the following. In Sect. 2 we recall the notion of
vertex operator algebra V -module correlation functions, construct single chain
complexes, and reductive differentials. In Sect. 3 we describe the total chain
complex. Section 4 contains a proof of the main result of this paper, Theorem
1. In “Appendix 5” we recall the notion of a vertex operator algebra and
its properties. “Appendix 6” is devoted to a formalism of composing a genus
g+1 Riemann surface starting from a genus g Riemann surface. “Appendix 7”
reviews classical and generalized elliptic functions. In “Appendix 8” examples
of spaces of correlation functions and reduction formulas are provided.

The results of this paper may be interesting in various fields of math-
ematics including mathematical physics [13,21,42], Riemann surface theory
[16,24,27], theta-functions [17,39], cosimplisial geometry of manifolds [8,18,
50], non-commutative geometry, modular forms [7,29,38,41], and the theory
of foliations [2–4,8,59–61].

2. The Families of Chain Complexes for Vertex Operator
Algebra Correlation Functions

2.1. Spaces of Correlation Functions

In this Section we introduce a family of chain complexes of correlation func-
tions a vertex operator algebra V -module W on a genus g Riemann surface.
Let us fix a vertex operator algebra V . Depending on its commutation rela-
tions and configuration of a genus g Riemann surface Σ(g), the space of all
V -module W multipoint functions may represent various forms of complex
functions defined on Σ(g). Consider by vn,g = (v1,g, . . . , vn,g) ∈ V ⊗n a tuple
of vertex operator algebra elements. Pick n points on a Riemann surface Σ(g).
Denote by zn,g = (z1,g, . . . , zn,g) local coordinates around that points. Let us
introduce our standard notation: xn,g = (vn,g, zn,g). Note that we use such
notations to emphasize that the elements xn,g may be chosen different for
different genuses.

Let B(g) ⊂ B(g) be moduli parameters describing Σ(g). Here B(g) is the
set of moduli parameters for all genus g Riemann surfaces. In particular, B(g)

characterizes a geometrical way if Σ(g) was constructed in a sewing proce-
dure [51]. As we mentioned in Introduction, for each genus an n ≥ 0-point
vertex operator algebra V -module W correlation function F (g)

W

(
xn,g;B(g)

)
on

Σ(g) has a certain specific form. It depends on g, B(g), the way a Riemann
surface Σ(g) was formed, the type of conformal field theory model used for
definitions of multipoint functions, and the type of commutation relations for
V -elements. We assume that, for a fixed Riemann surface set of parameters
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B(g), multiple point functions are completely determined by all choices of
xn,g ∈ V ⊗n × (

Σ(g)
)n

. Thus, in the ρ-sewing procedure described in “Appen-
dix 6”, the reduction cohomology can be treated as depending on the set of
xn,g only with appropriate action of endomorphisms generated by xn+1,g.

For Σ(g), a V -module W , and n ≥ 0, xn,g ∈ V ⊗n × (
Σ(g)

)n
, we con-

sider the spaces of all multipoint correlation functions Cg,n(W ) =
{

F (g)
W

(
xn,g;B(g)

)}
. Note that we choose elements of vn belong to the same V -

module W . A construction with different V -modules Wi will be considered
elsewhere. Since we fix a vertex operator algebra module W and B(g) we will
omit them in what follows where it is possible.

2.2. Single Chain Complexes for Vertex Operator Algebra Multipoint
Functions

In this subsection we recall the definition of a single chain complex with re-
spect to the number of points, and introduce a single complex with respect
to the raise of genus of corresponding Riemann surface. The differentials for
corresponding complexes are constructed according to the previous experience
[11,23,32,37,45,49] in applying the reduction procedure to vertex operator
algebra n-point functions. For g ≥ 0, n ≥ 0, define

Dn(xn+1,g, g) : Cg,n → Cg,n+1,

Dn(xn+1,g, g) = Dn
1 (xn+1,g, g) + Dn

2 (xn+1,g, g), (2.1)

F (g)
W (xn+1,g) = Dn(xn+1,g, g) F (g)

W (xn,g) , (2.2)

with differentials Dn
1 (xn+1,g, g), Dn

2 (xn+1,g, g) given by

Dn
1 (xn+1,g, g).F(g)

W (xn,g) =

l(g)∑

l=1

f
(g)
1 (xn+1,g, l) T

(g)
l (xn+1,g).F(g)

W (xn,g) ,

Dn
2 (xn+1,g, g).F(g)

W (xn,g) =

n∑

k=1

∑

m≥0

f
(g)
2 (xn+1,g, k, m) T

(g)
k (vn+1,g(m)).

F(g)
W (xn,g) , (2.3)

where l(g) ≥ 0 is a constant depending on g, and the meaning of indices 1 ≤ k ≤
n, 1 ≤ l ≤ l(g), m ≥ 0 explained below. Then the operator T

(g)
l (xn+1).F(g)

W (xn,g)

gives a function of F (g) (xn,g) depending on xn+1,g. The operator

T
(g)
k (vn+1,g(m)).F(g)

W (xn,g) = F(g)
W (Tk(vn+1,g(m)).xn,g) ,

is the insertion of the m-th mode vn+1,g(m) (or vn+1,g[m]-mode depending on g),
m ≥ 0. of vertex operator algebra elements vn+1,g, in front of the k-th argument
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vk,g of xk,g inside the k-th vertex operator in the functional F(g)
W (xn,g). Here

we use the notation

T
(g)
k (γ). f(xn,g) = f (x1,g, . . . , γ.xk,g, . . . , xn,g) ,

for an operator γ acting on k-th argument of a functions f . Note that commuta-
tion properties of Dn

1 (xn+1,g, g) and Dn
2 (xn+1,g, g) depend on genus g. Operator-

valued functions f
(g)
1 (xn+1,g, l) T

(g)
l (vn+1,g), f

(g)
2 (xn+1,g, k, m). T

(g)
k (vn+1,g(m))

depend on genus of a Riemann surface Σ(g). For n ≥ 0, let us denote by Vn the
subsets of all xn+1,g ∈ V × Σ(g), such that the chain condition

Dn+1(xn+2,g, g) ◦ Dn(xn+1,g, g).F(g)
W (xn,g) = 0, (2.4)

for the differentials (2.3) for complexes Cg,n is satisfied.

Next, consider the differentials

Dg : Cg,n → Cg+1,n, F(g+1)
W

(
xn,g+1; B

(g+1)
)

= Dg.F(g)
W

(
xn,g; B(g)

)
,

(2.5)

for V -module W on a genus g Riemann surface. There exist [7,23,28,32,34–
36,45,46,49,51] various geometrical ways how to increase the genus of a Riemann
surface, and, therefore, ways how to introduce corresponding differential Dg.
In this paper we will use the ρ-formalism of attaching a handle to a genus g
Riemann surface to form a genus g + 1 Riemann surface (see “Appendix 6”). In
this geometric setup the differential Dg is given by

F(g+1)
W

(
xn,g+1; B

(g+1)
)

= Dg · F(g)
W

(
xn,g; B(g)

)
,

F(g+1)
W

(
xn,g+1; B

(g+1)
)

=
∑

k≥0

∑

wk∈W(k)

ρk
g F(g)

W

(
xn,g, wk, ζ1, wk, ζ2; B

(g)
)

=
∑

k≥0

∑

wk∈W(k)

ρk
gT (wk, ζ1, wk, ζ2).F(g)

W

(
xn,g; B(g)

)
,

(2.6)

Note that in this formulation the differential Dg does not depend on n. It is

assumed that 2.6 converges in ρ for W . The resulting expression for F(g+1)
W

(xn,g+1) depends on the positions of (wk, ζ1), (wk, ζ2)-insertions into F(g)
W

(xn,g) and their permutation properties with xn,g. Here we fix the position of
insertion right agter the element xn,g as it was done in [44,45].

In this paper we consider Cg,n as spaces of arbitrary F(g)
W (xn,g) not neces-

sary obtained as a result of ρ-procedure from some F(g−1)
W (xn′,g−1) considered

on a genus g − 1 Riemann surface. At the same time we act on F(g)
W (xn,g)

by the differential Dg which involves the ρg-sewing procedure. We assume also

that F(g)
W (xn+1,g) can be obtained from F(g)

W (xn,g) via reduction formulas. The
single chain complex condition for the differentials Dg (2.6) has the form

Dg+1 ◦ Dg.F(g)
W (xn,g) = 0. (2.7)
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For g ≥ 0, let us denote by Vg the subsets of all xn,g ∈ V × Σ(g), such that
the single chain condition (2.7) for the differentials (2.6) of complexes Cg,n is
satisfied.

For the single chain complexes with differentials Dg and Dn(xn+1,g, g)
given in this Section one defines corresponding partial cohomology in the stan-
dard way. Combining the formulations for two single complexes, we introduce
the family of the single chain complexes Cg,n, g ≥ 0, n ≥ 0 for a vertex operator
algebra V on Riemann surfaces. Using the differentials (2.3) and (2.5) one can
compose the functional G(Ψ, Φ) (1.6). For each g and various types of vertex
operator algebras, there exists standard sets of operators F [11,23,32–37,44–49,

52], i.e., T (wk, ζ1, wk, ζ2), f
(g)
1 (xn+1,g, l) T

(g)
l (xn+1,g), and f

(g)
2 (xn+1,g, k, m)

T
(g)
k (vn+1,g(m)). determining the differentials Dg, Dn(xn+1,g, g).

3. The Chain Total Complex

In order to turn the family Cg,n of single chain complexes into a double chain
complex we have to apply further requirement of commutation on the differ-
entials Dg and Dn(xn+1,g, g). In addition to the conditions (2.4) and (2.7) we
require for the differentials Dg and Dn(xn+1,g, g) to satisfy

(Dg ◦ Dn(xn+1,g, g) − Dn(xn+1,g, g) ◦ Dg) .F(g)
W (xn,g) = 0. (3.1)

Then the family Cg,n turns into a chain double complex. We denote by Vg,n

the subsets of all xn+1,g ∈ V × Σ(g), such that (3.1) is satisfied.

3.1. The Total Complex

For the double complex Cg,n the associated total complex is given by Totm(Cg,n)
=

⊕
m=g+n Cg,n = Cm, for m ≥ 0, with the differential

dm : Totm(Cg,n) → Totm+1(Cg,n), dm =
∑

m=g+n

(Dg + (−1)gDn(xn+1,g, g)) .

(3.2)

Note that the differential Dn(xn+1,g, g) in (3.2) is defined for all choices of

xn+1,g ∈ V × Σ(g), chosen separately for all possible combinations of g and n
such that m = g + n. For n ≥ 0, g ≥ 0, m = g + n, let us denote by Vd the
subsets of all xn+1,g ∈ V ×Σ(g), such that the chain conditions (2.4), (2.7), (3.1)
and

dm+1 ◦ dm. (Cm) = 0, (3.3)

for the differentials (2.3) for complexes Cg,n are satisfied. Note that Vg, Vn, and
Vg,n are subsets of Vd. The spaces with conditions (2.4), (2.7), (3.1), and (3.3)
constitute a semi-infinite chain double complex with the commutative diagram
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...
...

↓ Dg−1 ↓ Dg−1 . . .

0 −→ Cg,0 D0(x1,g,g)−→ Cg,1 D1(x2,g,g)−→ . . . −→ Cg,n−1 Dn−1(xn,g,g)−→ Cg,n −→
↓ Dg ↓ Dg . . .

0 −→ Cg+1,0 D0(x1,g+1,g+1)−→ Cg+1,1 D1(x2,g+1,g+1)−→ . . .
Dn−1(xn,g+1,g+1)−→ Cg+1,n −→

↓ Dg+1 ↓ Dg+1 . . .

...
...

and standardly defined the reduction cohomology involving dm of the total com-
plex (3.2).

Due to vertex operator algebra properties, the conditions (2.4), (2.7), (3.1),
and (3.3) result in expressions containing finite series of vertex operator al-
gebra modes and coefficient functions. That conditions narrow the space of
compatible elements xn+1,g, and, therefore, corresponding multipoint functions

F(g)(xn,g). Nevertheless, the subspaces of Cg,n(W ), g ≥ 0, n ≥ 0, of multi-
point functions such that the conditions above are fulfilled for reduction co-
homology complexes are non-empty. For all g, the conditions mentioned repre-
sent an infinite n ≥ 0, g ≥ 0 set of functional-differential equations (with fi-

nite number of summands) on converging complex functions F(g)
W (xn,g) defined

for n local complex variables on Riemann surfaces of genus g with extra ac-

tion of the operator T (wk, ζ1, wk, ζ2), with functional coefficients f
(g)
1 (xn+1,g, l),

f
(g)
2 (xn+1,g, k, m). In examples given in “Appendix 8” the functional coefficients

f
(g)
1 (xn+1,g, l), f

(g)
2 (xn+1,g, k, m) are genus g generalizations of elliptic func-

tions on Σ(g). Note that all vertex operator algebra elements of vn ∈ V ⊗n,
as non-commutative parameters are not present in final form of functional-
differential equations since they incorporated into either matrix elements, traces,
and other forms in corresponding genus g multipoint functions. According to the
theory of such equations, equations resulting from (2.4) (2.7), (3.1), and (3.3)
always have non-vanishing solutions in the domains they are defined. Applying
the reduction procedure by differentials Dn(xn+1,g, g) we reduce the functions

F(g)
W (xn,g) to corresponding zero-point functions F(g)

W,0, i.e., we obtain in gen-

eral F(g)
W (xn,g) = Pn (F ; g, n,xn,g) F(g)

W,0, where Pn (F ; g, n,xn,g) are explicitly

computable functions containing genus g ≥ 0 generalized elliptic functions (see
“Appendix 7”). For non-zero zero-point functions, equations (2.4), (2.7), (3.1),
and (3.3) expressed for Pn (F ; g, n,xn,g) can be solved by methods of the ana-
lytic number theory.

4. Proof of the Main Theorem

In this Section we provide a proof of Theorem 1. First, recall that the form

of F(g)
W (xn,g) is specific for each g. The differential Dg (2.5) makes the genus
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transitions from F(g)
W (xn,g) to F(g+1)

W (xn,g+1). Recall the notion of a vertex
operator algebra bundle given in “Appendix 5”. The definition (5.2) corresponds
to the case g = 0 of the W∗-section of the vertex operator algebra V bundle.
One can see that (5.2) combined with the differential Dg (2.5) extends (5.2) to

g > 0 cases. Namely, we define F(g)
W,n(xn) as follows

F(g)
W (xn) =

∑

kg∈Zg, uk∈V(k)

〈(uk, zn; wkj
, ζ1,j), YW(vn) · (uk, zn; wkj

, ζ2,j)〉

= Dg ◦ · · · ◦ D0.F(0)
W (xn), (4.1)

for ζa,j , a = 1, 2, uk ∈ W(k), wkj
∈ W(kj), 1 ≤ j ≤ g, uk, wkj

their corresponding

duals, and where the action of Dg, . . ., D0 is realized via (2.5). Note that (4.1)
preserves the linearity properties in u, u, and Ox-linearity in vn. Let us mention
that due to the relation (4.1) we could formulate all the material of Sects. 2–3
in terms of complexes constituted by FW,m.

Let us denote by SW the space of sections of the vertex operator algebra
V -module W bundle W. In our setup, by identifying Ψ and Φ with sections
ψ(x′) and φ(x) of W correspondingly, the map G(Ψ, Φ) (1.6) with a C-multi-

linear map G : SW =
⊕

m=g+n W⊗n ×
(
Σ(g)

)n → C, and for any operator F ,

turns into

G(ψ(x′), φ(x)) = F (ψ(x′)).G (φ(x)) + F (φ(x)).G (
ψ(x′)

)
+ G (

F (ψ(x′)).φ(x)
)
.

(4.2)

The vanishing map (4.2) gives raise to a generalization G of the holomorphic

connection on W. Geometrically, for a vector bundle W defined over Σ(g), the
vanishing generalized connection (4.2) relates two sections ψ(x′) and φ(x). Now
we are ready to give a proof of Theorem 1

Proof. Let us denote FW,m =
∑

m=g+n F(g)
W (xn,g). We assume that operators

F satisfy (2.4), (2.7), (3.1), and (3.3). The definition (4.1) provides the coordi-
nateless expression for FW,m, i.e.,

FW,m =
∑

m=g+n

∑

kg∈Zg

∑

uk∈V(k)

〈(uk, zn; wkj
, ζ1,j), YW(iz(vn)) · (uk, zn; wkj

, ζ2,j , )〉.

(4.3)

Using (2.3) and (2.6) we set for m = g + n, m + 1 = g′ + n′,

G (φ(x)) = FW,m, ψ(x′) = YW(iz(vn′,g′)) · (., zn′,g′), φ(x) = YW(iz(vn,g)) · (., zn,g),

− F
(
ψ(x′)

)
.G (φ(x)) =

⎛

⎝
∑

k≥1

∑

wk∈W(k)

ρk
g T (wk, ζ1, wk, ζ2)

⎞

⎠ .FW,m, (4.4)



  159 Page 10 of 21 A. Zuevsky Results Math

−G (
F (ψ(x′)).φ(x)

)
= (−1)g

⎡

⎣
l(g)∑

l=1

f
(g)
1 (xn+1,g, l) T

(g)
l (xn+1,g)

+
n∑

k=1

∑

r≥0

f
(g)
2 (xn+1,g, k, r) T

(g)
k (vn+1,g(r))

⎤

⎦ .FW,m.

Now, let us assume that the form of the generalized connection G = FW,m

remains the same for the vanishing Gm ∈ Conm and non-vanishing Gm ∈ Gm

given by (4.2), but the operator F , and the differentials (Dn(xn+1,g, g))′ may
differ from (4.4), (2.3)–(2.6), and satisfying conditions (2.7), (2.4), (3.1), and
(3.3). By using the reduction procedure given by some other operators F ′ and
some different differentials (Dn(xn+1,g, g))′, we reduce (4.2) to

G(ψ(x′), φ(x)) =
∑

m=g+n

Pm

(
F ′; g, n,xn,g

) F(g)
W,0, (4.5)

where Pm

(
F ′; g, n,xn,g

)
are functions depending on operators F ′, and explicitly

containing genus g ≥ 0 generalized elliptic functions. Thus, F(g)
W,n is explicitly

known and it is represented as a series of auxiliary functions Pm

(
F ′; g, n,xn,g

)

depending on F ′, g, n, and xn,g.
Now let us consequently apply the initial differential Dn(xn+1,g, g) (2.3)

to reconstruct back some functions F ′′
W starting from each of F(g)

W for m = g+n
in (4.5). Finally, we obtain (4.2) for G = F ′′

W,m with

F ′′
W,m =

∑

m=g+n

Dn−1(xn−1,g) ◦ · · · ◦ D1(x1,g) ◦ Pm(F ′; g, n,xn,g).F(g)
W,0.

Since the differentials Dg and Dn(xn+1,g, g) are defined in that way they act on

the functions F(g)
W only, it is clear that the action of Dn−1(xn−1,g)◦. . .◦D1(x1, g)

and multiplication by Pm(F ′; g, n,xn,g) commute.
Thus, we infer that the m-th reduction cohomology Hm of (dm, Cm) is

equivalent to the factor space Comm/Gm with the coefficients given by the
coset

{
Pm(F ′; g, n,xn,g)|G(x′,x)=0/Pm−1(F

′; g, n,xn,g)|G(x′,x)�=0

}
,

of genus g counterparts of elliptic functions, and relative to the subspace of
covariance preserving operators F ′ for the the functional G

(
ψ(x′), φ(x)

)
. The

Hm-th relative reduction cohomology of a vertex operator algebra V -module W
is then given by the ratio of series of generalized elliptic functions recursively
generated by the reduction formulas (2.2)–(2.5). �
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5. Appendix: Vertex Operator Algebras

In this Subsection we recall the notion of a vertex operator algebra (V, Y,1V , ω)
[9,14,19,20,26,30]. Here V is a linear space endowed with a Z-grading V =⊕

r∈Z
Vr, dim Vr < ∞. The state 0 �= 1V ∈ V0, is called vacuum vector, ω ∈ V2

is the conformal vector with properties described below. The vertex operator
is a linear map Y : V → End(V )[[z, z−1]], with formal variable z. For any
vector v ∈ V , x = (v, z), we have a vertex operator Y (x) =

∑
n∈Z

v(n)z−n−1.
The linear operators (which are called modes) u(n) : V → V satisfy creativity
Y (v, z)1V = v + O(z), and lower truncation v(n)u = 0, conditions for each u,
v ∈ V and n � 0. The vertex operators satisfy an analogue of Jacobi identity

δ(z1, z2, z0)Y (x1)Y (x2) − δ(z2, z1, −z0)Y (x2)Y (x1)

= z0z
−1
2 δ(z1, z0, z2)Y (Y (u, z0)v, z2) ,

for x1 = (u, z1), x2 = (v, z2), and δ(z, z′, z′′) = δ((z′−z′′)(z′′′)−1). These axioms
imply locality, skew-symmetry, associativity and commutativity conditions:

(z1 − z2)
NY (x1)Y (x2) = (z1 − z2)

NY (x2)Y (x1),

Y (u, z)v = ezL(−1)Y (v, −z)u,

(z0 + z2)
NY (u, z0 + z2)Y (v, z2)w = (z0 + z2)

NY (Y (u, z0)v, z2)w,

u(k)Y (v, z) − Y (v, z)u(k) =
∑

j≥0

(
k

j

)

Y (u(j)v, z)zk−j ,

for u, v, w ∈ V and integers N � 0. For the conformal vector ω one has
Y (ω, z) =

∑
n∈Z

L(n)z−n−2, where L(n) satisfies the Virasoro algebra with
central charge c

[ L(m), L(n) ] = (m − n)L(m + n) +
c

12
(m3 − m)δm,−nIdV , (5.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where IdV is identity operator on V . Each vertex operator satisfies the trans-
lation property ∂zY (u, z) = Y (L(−1)u, z). The Virasoro operator L(0) defined
a Z-grading with L(0)u = ru, for u ∈ Vr, r ∈ Z, wt(u) = r. For v = 1V one
has Y (1V , z) = IdV . Note also that modes of homogeneous states are graded
operators on V , i.e., for v ∈ Vk, v(n) : Vm → Vm+k−n−1. In particular, let us
define the zero mode o(v) as o(v) = v(wt(v) − 1) additively extending to V .

Let us recall also the square-bracket formalism [52] for a vertex operator
algebra V , i.e., the quadruple (V, Y [., .],1V , ω̃) The square bracket vertex oper-
ators are given by

Y [v, z] =
∑

n∈Z

v[n]z−n−1 = Y (qL(0)
z v, qz − 1),

with qz = ez. Corresponding conformal vector is ω̃ = ω − cV

24 1V . For v of L(0)
weight wt(v) ∈ R and m ≥ 0,

v[m] = m!
∑

i≥m

c(wt(v), i, m)v(i),
i∑

m=0

c(wt(v), i, m)xm =

(
wt(v) − 1 + x

i

)

.

Given a vertex operator algebra V , one defines the adjoint vertex opera-

tor with respect to ρ ∈ C, Y †
ρ [v, z] = Y

[
exp

(
zρ−1L[1]

) (−ρz−2
)L[0]

v, ρz−1
]
.

associated with the formal Möbius map [19] z 
→ ρ
z . An element u ∈ V is

called quasiprimary if L(1)u = 0. For quasiprimary u of weight wt(u) one has

u†(n) = (−1)wt(u) αn+1−wt(u) u(2wt(u) − n − 2).

We call a bilinear form 〈., .〉 : V ×V → C, invariant if [19,31] 〈Y (u, z)a, b〉 =

〈a, Y †(u, z)b〉, for all a, b, u ∈ V . Note that the adjoint vertex operator Y †(., .)
as well as the bilinear form 〈., .〉, depend on α. Rewriting in terms of modes,

we obtain 〈u(n)a, b〉 = 〈a, u†(n)b〉. Choosing u = ω, and for n = 1 implies that
〈L(0)a, b〉 = 〈a, L(0)b〉. Thus, 〈a, b〉 = 0, when wt(a) �= wt(b). A vertex operator
algebra V is called of strong-type if V0 = C1V , and it is simple and self-dual,
i.e., isomorphic to the dual module V ′ as a V -module. It is proven in [31] that
a strong-type vertex operator algebra V has a unique invariant non-degenerate
bilinear form up to normalization. The form 〈., .〉 defined on a strong-type vertex
operator algebra V is the unique invariant bilinear form 〈., .〉 normalized by
〈1V ,1V 〉 = 1. A vertex operator algebra V -module W has similar properties as
V [9,19,20,26,30].

A vertex algebra V is called quasi-conformal [6] if it admits an action of
the local Lie algebra of Aut O for which

[v , Y (u, w)] = −
∑

m≥−1

((m + 1)!)−1(∂m+1
w v(w))Y (Lmu, w),

with v = − ∑
r≥−1 vrLr, v(z)∂z =

∑
r≥−1 vrzr+1∂z, is true for any v ∈ V ,

the element LW (−1) = −∂z, as the translation operator T , LW (0) = −z∂z. In
addition it acts semi-simply with integral eigenvalues, and the Lie subalgebra of
the positive part of local Lie algebra of Aut O(n) acts locally nilpotently.
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5.1. Vertex Operator Algebra V -Module W Bundle W
The notion of a vertex operator algebra V bundle was introduced in [6]. In this
Appendix we recall that definition of a V -module W bundle W. The idea is
to associate canonically (i.e., coordinate independently) End W-valued sections
YW of W∗ (the bundle dual to W) to matrix elements of V -module W vertex
operators.

Denote by Aut O the group of continuous automorphisms of O = C[[z]]
on an arbitrary smooth curve S and its Lie algebra Aut O. Let V be a quasi-
conformal vertex algebra (see the previous subsection). Its module W is graded
by finite dimensional Aut O-submodules. One defines a vertex operator algebra
bundle WS and its dual W∗

S as inductive and projective limits of vector bundles
of finite rank over S, in particular, for the disc D = SpecC[[z]], or Dz = SpecOz

with AutDz
= Aut X|Dz

and WDz
= WS|Dz

. Let Autz be the Aut O-torsor

of coordinates at z ∈ S. Recall that Wz = Autz
×

AutO W is the fiber of W|Dz

at z ∈ S. Let us define End Wz-valued meromorphic section YW of the bundle
W∗ on the punctured disc D×

z . This section is given by the map (linear in u,
u, and Oz-linear in s) (u, s, u) 
→ 〈u, YW(s) · u〉, assigning a function on D×

z

denoted by 〈u, YW(s) · v〉, for u ∈ W∗
z , u ∈ Wz, and a regular section s of

W|Dz
. For a coordinate z on the disc Dz, we then obtain a z-trivialization of

W iz : W [[z]] � Γ(Dz, W), and trivializations W∗ � W∗
z , W � Wz of the fibers

which we denote by (u, z), (u, z). Define an End Wz-valued section YW of W∗

on D×
z by

F(0)
W (x) =

∑

wk∈V(k)

〈(uk, z), YW(iz(v)) · (uk, z)〉

∼
∑

wk∈W(k)

〈uk, Y (v, z)uk〉 = F(0)
W (x), (5.2)

where z is a coordinate on Dz. Then the section YW is canonical, i.e., indepen-
dent of the choice of coordinate z on Dz.

Let S be a smooth complex variety and E → S a holomorphic vector bundle
over S. We use the same notation E for the sheaf of holomorphic sections of E .
Let Ω be the sheaf of differentials on S. A holomorphic connection ∇ on E is a
C-linear map ∇ : E → E ⊗ Ω satisfying Leibniz rule ∇(fφ) = f∇(φ) + φ ⊗ df ,
for any holomorphic function f .

6. Appendix: The ρ-Formalism of Raising the Genus of a
Riemann Surface

Here we recall so called ρ-formalism of raising the genus, i.e., a specific way of
attaching a handle to a Riemann surface Σ(g) of genus g to form a genus g + 1
Riemann surface Σ(g+1) was introduced in [51]. Let z1, z2 be local coordinates in

the neighborhood of two separated points p1 and p2 on Σ(g). Consider two disks
|za| ≤ ra, for ra > 0 and a = 1, 2. r1, r2 required to be small enough so that
the disks do no intersect. Introduce a complex parameter ρ with |ρ| ≤ r1r2 and
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excise the disks {za : |za| < |ρ|r−1
ā } ⊂ Σ(g), to form a twice-punctured surface

Σ̂(g) = Σ(g)\ ⋃
a=1,2{za : |za| < |ρ|r−1

ā }. We notate 1̄ = 2, 2̄ = 1. Next define

annular regions Aa ⊂ Σ̂(g) with Aa = {za : |ρ|r−1
ā ≤ |za| ≤ ra} and identify

them as a single region A = A1 � A2 via the sewing relation

z1z2 = ρ, (6.1)

to form a compact Riemann surface Σ(g+1) = Σ̂(g)\{A1 ∪ A2} ∪ A of genus
g + 1. The relation (6.1) parametrizes a cylinder connecting the punctured

Riemann surface to itself. On Σ(g+1) we define the standard basis of cycles
{a1, b1, . . . , ag+1, bg+1} where the set {a1, b1, . . . , ag, bg} is the original basis on

Σ(g). Introduce a closed anti-clockwise contour Ca(za) ⊂ Aa parametrized by za

around the puncture at za = 0. Due to the sewing relation (6.1) C2(z2) ∼ −C1(z1)

We then introduce the cycle ag+1 ∼ C2(z2) and bg+1 as a path chosen in Σ̂(g)

between identified points z1 = z0 and z2 = ρ/z0 on the sewn surface.

7. Appendix: Genus g Generalizations of Elliptic Functions

In this Appendix we recall [44] genus g generalizations of classical elliptic func-
tions.

7.1. Classical Elliptic Functions

Here we recall the classical elliptic functions [29,41]. For an integer k ≥ 2, the
Eisenstein series is given by

Ek(τ) = Ek(q) = δn,even

⎛

⎝−(k!)−1Bk + 2((k − 1)!)−1
∑

n≥1

σk−1(n)qn

⎞

⎠ ,

where τ ∈ H, q = e2πiτ , σk−1(n) =
∑

d|n dk−1, and Bk is the k − th Bernoulli

number. For integer k ≥ 1, define elliptic functions z ∈ C

P1(z, τ) =
1

z
−

∑

k≥2

Ek(τ)zk−1, Pk(z, τ) =
(−1)k−1

(k − 1)!
∂k−1

z P1(z, τ),

In particular P2(z, τ) = ℘(z, τ) + E2(τ), for Weierstrass function ℘(z, τ) with
periods 2πi and 2πiτ . P1(z, τ) is related to the quasi–periodic Weierstrass σ–
function with P1(z + 2πiτ, τ) = P1(z, τ) − 1.

7.2. Genus g Generalizations of Elliptic Functions

The generalizations of elliptic functions at genus g were proposed in [49]. Intro-
duce a column vector X = (Xa(m)), indexed by m ≥ 0 and a ∈ I

Xa(m) = ρ
− m

2
a

∑

b +

Z(0)(. . . ; u(m)ba, wa; . . .),

and a row vector p(x) = (pa(x, m)), for m ≥ 0, a ∈ I
pa(x, m) = ρ

m
2

a ∂(0,m)ψ(0)
p (x, wa).
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Let us also define column vector G(g) =
(
G

(g)
a (m)

)
, for m ≥ 0, a ∈ I, given by

G(g) =
n∑

k=1

∑

j≥0

∂
(j)
k q(yk,g) F(g)

W ((u(j))kxn,g),

where q(y) = (qa(y; m)), for m ≥ 0, a ∈ I, is a column vector

qa(y; m) = (−1)pρ
m+1

2
a ∂(m,0)ψ(0)

p (w−a, y),

R = (Rab(m, n)), for m, n ≥ 0 and a, b ∈ I

Rab(m, n) =

⎧
⎨

⎩

(−1)pρ
m+1

2
a ρ

n
2
b ∂(m,n)ψ

(0)
p (w−a, wb), a �= −b,

(−1)pρ
m+n+1

2
a En

m(w−a), a = −b,

En
m(y) =

2p−2∑

�=0

∂(m)f�(y) ∂(n)y�, ψ(0)
p (x, y) =

1

x − y
+

2p−2∑

�=0

f�(x)y�,

for any Laurent series f�(x) for � = 0, . . . , 2p−2. Define the matrices Δab(m, n) =

δm,n+2p−1δab, R̃ = RΔ, and
(
I − R̃

)−1
=

∑
k≥0 R̃ k. Introduce χ(x) = (χa(x; �))

and o(u; v, y ) = (oa(u; v, y ; �)), which are are finite row and column vectors for
a ∈ I, 0 ≤ � ≤ 2p − 2 with

χa(x; �) = ρ
− �

2
a (p(x) + p̃(x)(I − R̃)−1R)a(�), oa(�) = oa(u; v, y ; �) = ρ

�
2
a Xa(�),

p̃(x) = p(x)Δ. Note that ψp(x, y) is defined by

ψp(x, y) = ψ(0)
p (x, y) + p̃(x)(I − R̃)−1q(y).

For each a ∈ I+ introduce a vector θa(x) = (θa(x; �)), 0 ≤ � ≤ 2p − 2,

θa(x; �) = χa(x; �) + (−1)pρp−1−�
a χ−a(x; 2p − 2 − �).

We then have the following vectors of differential forms

P (x) = p(x) dxp, Q(y) = q(y) dy1−p, P̃ (x) = P (x)Δ, (7.1)

Ψp(x, y) = ψp(x, y) dxp dy1−p = Ψ(0)
p (x, y) + P̃ (x)(I − R̃)−1Q(y). (7.2)

Finally, one introduces

Θa(x; �) = θa(x; �) dxp, Oa(u; v, y ; �) = oa(u; v, y ; �) dy
wt(v )

. (7.3)

8. Appendix: Examples of Vertex Operator Algebra n-Point
Functions

8.1. Vertex Operator Algebra n -Point Functions on Riemann Sphere

For vn ∈ V , and a homogeneous u ∈ V , the n-point function on the sphere is
given by [19,20]

F(0)
W (xn,0) = 〈u′, Y (x1) . . . Y (xn)u〉,
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while the partition function is F(0)
W,0 = 〈u′

(a), u(b)〉 = δa,b. The reductive differ-

entials of (2.3) are

Dn
1 (xn+1,0, 0).F(0)

W (xn,0) = T1(o(v)).F(0)
W (xn,0) , (8.1)

Dn
2 (xn+1,0, 0).F(0)

W (xn,0) = z
−wt(v)
n+1

n∑

k=1

∑

m≥0

fwt(vn+1,0),m(zn+1, zr)Tk(v(m)).

F(0)
W (xn,0) ,

where we define f
(0)
wt(v,m(z, w) is a rational function defined by

f (0)
n,m(z, w) =

z−n

m!

(
d

dw

)m
wn

z − w
, ιz,wf (0)

n,m(z, w)

=
∑

j∈N

(
n + j

m

)

z−n−j−1wn+j−1,

where ιz,w : C[z1, . . . , zn] → C[[z1, z
−1
1 . . . , znz−1

n ]] are maps [19].

8.2. Vertex Operator Algebra n -Point Functions on the Torus

For vn ∈ V ⊗n the genus one n-point function is defined by

F(1)
W (xn,1) = TrW

(
Y

(
q

L(0)
1 v1, q1

)
. . . Y

(
qL(0)
n vn, qn

)
qL(0)−c/24

)
,

for q = e2πiτ and qi = ezi , where τ is the torus modular parametr, and c is the
central charge of the Virasoro algebra of V . For any vn+1,g ∈ V , vn ∈ V ⊗n, the
torus reduciton formula is given by [52]

Dn+1
1 (xn+1,1, 1).F(1)

W (xn,1) = F(1)
W (o(vn+1,g) xn,1) , (8.2)

Dn+1
2 (xn+1,1, 1).F(1)

W (xn,1) =

n∑

k=1

∑

m≥0

Pm+1(zn+1 − zk, τ) F(1)
W ((v[m])k. xn,1).

Here Pm(z, τ) denote Weierstrass functions defined by

Pm(z, τ) =
(−1)m

(m − 1)!

∑

n∈Z�=0

nm−1qn
z

1 − qn
.

8.3. Vertex Operator Algebra Reduction Formulas in Genus g Schottky Uni-
formization

In this Section we recall reduction relations for vertex operator algebra n-point
functions defined on a genus g Riemann surface constructed in the Schottky
uniformization procedure [7,44,45,49]. In this case, the coefficients in reduc-
tion formulas are meromorphic functions on Riemann surfaces and represent
genus g generalizations of the elliptic functions [29,41]. For 2g vertex operator
algebra V states and corresponding local coordinates b = (b−1, b1; . . . ; b−g; bg),
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w = (w−1, w1; . . . ; w−g, wg), of 2g points (p−1, p1; . . . ; p−g, pg) on the Riemann
sphere consider the genus zero 2g-point correlation function

F(0)
V (b, w ) =F(0)

V (b−1, w−1; b1, w1; . . . ; b−g, w−g; bg, wg)

=
∏

a∈I+

ρwt(ba)
a F(0)

V (b1, w−1; b1, w1; . . . ; bg, w−g; bg, wg).

where I+ = {1, 2, . . . , g}. Let us denote b+,g = (b1, . . . , bg), and an element of
a V -tensor product V ⊗g-basis with the dual basis b−,g = (b−1, . . . , b−g), with
respect to the bilinear form 〈·, ·〉ρa (cf. Appendix 5). Let wa for a ∈ I be 2g
formal variables and ρg = (ρ1, . . . , ρg) g complex parametrs. We may identify
ρg with the canonical Schottky parametrs. One introduces the genus g partition
function (zero-point function) as

F(g)
V = F(g)

V (w , ρg) =
∑

b+,g

F(0)
V (b, w ), (w , ρg) = (w±1, ρ1; . . . ; w±g, ρg).

(8.3)

For xn,g = (vn,g,yn,g), one defines the genus g formal n-point function for
vn,g ∈ V ⊗n and formal parametrs yn,g by

F(g)
V (xn,g) = F(g)

V (xn,g; w, ρ) =
∑

b+,g

F(0)
V (xn,g; b, w ),

F(0)
V (xn,g; b, w ) = F(0)

V (xn; b−1, w−1; . . . ; bg, wg). (8.4)

Let U ⊂ V be a vertex operator subalgebra such that V admits a U -module Wα

decomposition V =
⊕

α∈A Wα, over an indexing set A. For a tensor product of
g modules Wα =

⊗g
a=1 Wαa , consider

F(g)
Wα

(xn,g) =
∑

b+,g∈Wα

F(0)
W (xn,g; b, w ), (8.5)

where here the sum is over a basis {b+,g} for Wα . It follows that

F(g)
W (xn,g) =

∑

α ∈A

F(g)
Wα

(xn,g), (8.6)

with α = (α1, . . . , αg) ∈ A , for A = A⊗g. Finally, one defines corresponding
formal n-point correlation differential forms

F̃(g)
Wα

(xn,g) = F(g)
Wα

(xn,g)
n∏

k=1

dy
wt(vk,g)
k,g .

Corresponding differential Dg acts as

F̃(g+1)
V (xn,g) = Dg.F(g+1)

V (xn,g) = Dg.
∑

b+,g

F̃(0)(xn,g;b2g,w2g)

=
∑

b+,g+1

F̃(0)(xn,g;b2g+1,w2g+1). (8.7)
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In [49] they prove that the genus g (n + 1)-point formal differential

F̃(g)
Wα

(xn+1,g;xn,g), for xn+1,g = (vn+1,g, yn+1,g), for quasiprimary vectors vn+1,g ∈
U of weight wt(vn+1,g) = p with formal parametrs yn+1,g, and general vectors
vn with parametrs yn satisfies the reduction formulas

F̃(g)
Wα ,n+1

(xn+1,g) =
(
D

(n+1)
1 + D

(n+2)
2

)
· F̃(g)

Wα ,n (xn,g) , (8.8)

Dn+1
1 (xn,g, g) · F̃(g)

Wα ,n (xn,g) =

g∑

a=1

Θa(yn+1,g) OWα
a (vn+1,g;xn,g) ,

Dn+1
2 (xn+1,g, g) · F̃(g)

Wα ,n+1 (xn+1,g)

=
n∑

k=1

∑

j≥0

∂(0,j)Ψp(yn+1,g, yk,g) F̃(g)
Wα ,n ((u(j))k.xn,g) dyj

k,g,

Here ∂(0,j) is given by ∂(i,j)f(x, y) = ∂
(i)
x ∂

(j)
y f(x, y), for a function f(x, y),

and ∂(0,j) denotes partial derivatives with respect to x and yj,g. The forms

Ψp(yn+1,g, yk,g) dyj
k,g are given by (7.2), Θa(x) is of (7.3), and OWα

a (vn+1,g;xn,g)

is (7.3).
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