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Abstract. It is shown that any ring being a sum of two left T -nilpotent
subrings is left T -nilpotent. The paper contains the description of all the
semigroups S such that an S-graded ring R =

⊕
s∈S As has the property

that the left T -nilpotency of all subrings among the subgroups As of the
additive group of R implies the left T -nilpotency of R. Furthermore, this
result is extended to rings R being S-sums.
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1. Introduction

We say that an associative ring R is a sum of its subrings R1 and R2 and write
R = R1+R2 if each element r of R can be written in the form r = r1+r2 with
r1 ∈ R1 and r2 ∈ R2. The direct inspiration for this paper was the following
general problem: given a class M of rings, does the condition R1, R2 ∈ M
imply R1 + R2 ∈ M? In [5], Kegel showed that if a ring R is a sum of its
nilpotent subrings R1 and R2, then R is nilpotent. By [16], an analogous
result occurs for the case when R1 and R2 are nil rings of bounded index.
The generalization of this result given in [15] lead to the positive answer to
a long-open question related to PI rings, i.e. rings satisfying certain polynomial
identities. Namely, it was shown there that if R1 and R2 are PI rings, then
so is R. On the other hand, for many classes of rings the mentioned problem
has a negative solution. For example, in [8,11] Kelarev constructed examples
of non-radical rings R (in the sense of the prime as well as Levitzki radical)
which are sums of their radical subrings R1 and R2. Moreover, in [17] Salwa
gave an example of a ring R containing a regular element despite the fact that
R is a sum of subrings R1 and R2 which are sums of its nilpotent ideals.
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In [1], Bokut’ proved that any algebra over a field can be embedded in an
algebra that is a sum of its three nilpotent subalgebras. This shows that the
mentioned above general problem for sums of two subrings and its analogues
for sums of three or more subrings are definitely different cases. However,
under some additional assumptions, it is possible to obtain satisfactory positive
results for sums of any number of subrings. The most general results related
to the topic were obtained for rings graded by a semigroup S (see [12,13]) and
rings being S-sums (see [9,14]). In particular, these results are also related to
the class of nilpotent rings, PI-rings, the prime radical, as well as Levitzki and
Jacobson radicals.

This article focuses mainly on the class of left T -nilpotent rings studied
in [3,7,16]. It should be mentioned that in [3] it was shown that the famous
Koethe problem is equivalent to the question whether a ring which is a sum
of a left T -nilpotent subring and a nil subring is nil.

In [16], it was proved that if the ring R is a sum of subrings R1 and
R2 such that R1 is left T -nilpotent and R2 ∈ S, where S is a supernilpotent
radical, then R ∈ S. Examples of supernilpotent radicals are the prime, locally
nilpotent and Jacobson radicals.

Many interesting results concerning the subject of this paper were ob-
tained by Kelarev. In [7], he provided an example of a ring R that is a sum of
two subrings R1 and R2 such that the Levitzki radical of R does not contain
any of the hyperanihilators of R1 and R2. Some results directly related to the
class of left T -nilpotent rings were presented in [10]. They were obtained for
rings which are arbitrary finite sums of their additive subgroups. In particu-
lar, Kelarev showed there that a ring which is finite union of left T -nilpotent
subrings is left T -nilpotent, too. These results were a strong inspiration for us.

In Sect. 2, we show that any ring R being a sum of two left T -nilpotent
subrings, is left T -nilpotent. Furthermore, we prove that if R = R1+R2, where
R1 is a T -nilpotent subring of R and R2 is a subgroup of the additive group of
R satisfying Rd

2 ⊆ R1 for some positive integer d, then R is left T -nilpotent.
Notice that in [14] a similar result was obtained for the Jacobson radical with
d = 2.

Section 3 is devoted to the description of all the semigroups S for which
S-graded rings R =

⊕
s∈S As have the property that the left T -nilpotency of

all subrings among the subgroups As of the additive group of R implies the
left T -nilpotency of R. The generalization of this result to rings being S-sums
is presented in Sect. 4.

The notation used in this article is consistent with generally accepted
standards. In particular, if A is a left (right) ideal of a ring R, then we write
A <l R (A <r R). If A is either a left or a right ideal of R, then A is said
to be a one-sided ideal of R. If it is not necessary to distinguish the side of
a one-sided ideal A of R, then we write briefly A < R. For two-sided ideals
of rings and semigroups the symbol � is used instead. The left annihilator of
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a subring A in R is denoted by lR(A). The symbol N stands for the set of all
non-negative integers.

2. Left T -Nilpotent Rings

We remind the reader that a ring R is said to be left T -nilpotent if for each
sequence (an) of elements of R, there exists n ∈ N such that a1 · . . . · an = 0.
There is a well-know criterion for a ring R to be T -nilpotent related to its left
hyperannihilator l(R) defined as a sum

⋃
α≥0 lα(R), where l0(R) = {0} and

lα(R) = {x ∈ R |xR ⊆
⋃

β<α lβ(R)} for any ordinal number α > 0. Namely,
a ring R is left T -nilpotent if and only if l(R) = R.

We start with some technical lemma which will turn out to be very useful
in further considerations.

Lemma 2.1. If {Xn : n ∈ N} is a family of non-empty finite subsets of a ring
R such that

∑
x∈X1

x · . . . ·
∑

x∈Xn
x �= 0 for every n ∈ N, then there exists an

infinite sequence (xn) satisfying xn ∈ Xn and x1 · . . . · xn �= 0 for each n ∈ N.

Proof. Let G =
⋃

n∈N
Gn with

Gn =
{
(y1, y2, . . . , yn) ∈ X1 × X2 × . . . × Xn : y1 · y2 · . . . · yn �= 0

}
.

Since
∑

x∈X1
x · . . . ·

∑
x∈Xn

x �= 0, we have
∑

x∈X1

x · . . . ·
∑

x∈Xn

x =
∑

(y1,...,yn)∈Gn

y1 · y2 · . . . · yn

and consequently 0 < |Gn| < ∞, for every n ∈ N. Combining this with
|G| = ∞, we infer that there exists x1 ∈ X1 such that x1 �= 0 and infin-
itely many sequences belonging to G start with x1. We will construct the
next terms of the desired sequence (xn) inductively. Suppose that there ex-
ist (x1, x2, . . . , xk) ∈ Gk such that infinitely many sequences belonging to G
start with (x1, x2, . . . , xk). Since the set Xk+1 is finite and non-empty and
|G| = ∞, there exists xk+1 ∈ Xk+1 such that infinitely many sequences from
G start with (x1, . . . , xk, xk+1). It follows that x1 · . . . · xk · xk+1 �= 0. By in-
duction, we have constructed an infinite sequence (xn) such that xn ∈ Xn and
x1 · x2 · . . . · xn �= 0 for every n ∈ N. �

The following corollary is a direct consequence of Lemma 2.1.

Corollary 2.2. Let A and B be subgroups of the additive group of a ring R such
that R = A + B. Then the following conditions are equivalent:
(i) the ring R is left T -nilpotent
(ii) there is no sequence (cn) of elements of R such that cn ∈ A ∪ B and

c1 · . . . · cn �= 0 for each n ∈ N.

The next corollary follows at once from Corollary 2.2.
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Corollary 2.3. If A and B are left T -nilpotent subrings of a ring R which is not
left T -nilpotent and R = A + B, then there exists a sequence (cn) of elements
of A ∪ B such that cn ∈ A for infinitely many n, cn ∈ B for infinitely many n
and c1 · c2 · . . . · cn �= 0 for each n ∈ N.

In [4, Theorem 1.5] it was shown that any left T -nilpotent left ideal of
a ring R generates a left T -nilpotent ideal in R. Here we give a new simpler
proof of this fact in a slightly more general form. We begin with the following

Lemma 2.4. If A and B are left T -nilpotent subrings of a ring R such that
R = A + B and A < R, then the ring R is left T -nilpotent.

Proof. Suppose, contrary to our claim, that a ring R satisfies all the assump-
tions of the lemma but it is not left T -nilpotent. There is no loss of generality in
assuming that A <r R. It follows from Corollary 2.3 that there exist a sequence
(cn) of elements of A∪B and its subsequence (ckn

) such that c1 ·c2 · . . . ·cn �= 0
and ckn

∈ A for each n ∈ N. Define dn = ckn
· ckn+1 · . . . · ckn+1−1 ∈ A for each

n ∈ N. As A <r R, we get dn ∈ A for each n ∈ N. Furthermore, for each n ∈ N,
d1 ·d2 ·. . .·dn = ck1 ·. . .·ck1+1 ·. . .·ckn+1−1 �= 0 because of c1 ·c2 ·. . .·ckn+1−1 �= 0.
Therefore, the ring A is not left T -nilpotent, a contradiction. �

Theorem 2.5. If A is a one-sided left T -nilpotent ideal of a ring R, then the
ideal I generated by A is left T -nilpotent.

Proof. Without loss of generality, we may assume that A <l R. Then I = A+
AR. Assume, by way of contradiction, that the ring AR is not left T -nilpotent.
Then there is a sequence (an) of elements of AR such that a1 · . . . · an �= 0 for
each n ∈ N. In particular, each term of this sequence is a sum of elements of
the form a · r with a ∈ A and r ∈ R, so Lemma 2.1 implies the existence of
sequences (bn) and (rn) such that bn ∈ A, rn ∈ R and (b1r1) · . . . · (bnrn) �= 0
for each n ∈ N. Combining this with (b1r1) · . . . · (bnrn) = b1 · (r1b2) · . . . ·
(rn−1bn) · rn and r1b2, . . . , rn−1bn ∈ A for each n ∈ N leads to the conclusion
that (b1, r1b2, r2b3, r3b4, . . .) is an infinite sequence of elements of A satisfying
b1 · (r1b2) · (r2b3) · . . . · (rn−1bn) �= 0 for each integer n > 1, contrary to
the left T -nilpotency of A. Thus AR is a left T -nilpotent ring. Therefore,
applying Lemma 2.4 to the ring I = A + AR, we infer that the ring I is
left T -nilpotent. �

Let B and A be a subring of a ring R and a subgroup of the additive
group of R, respectively. Suppose that R = A + B and A2 ⊆ B. It follows
from [9] that if B is a locally nilpotent ring, then so is R. In view of [14], this
statements remains true for the case when B is a Jacobson radical ring. Here
we present the analogous results for left T -nilpotent rings.

Theorem 2.6. Let B and A be a left T -nilpotent subring of a ring R and a sub-
group of the additive group of R, respectively. If R = A + B and Ad ⊆ B for
some positive integer d, then the ring R is left T -nilpotent.
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Proof. The assertion is obvious for d = 1. Consider any integer d ≥ 2. Suppose,
contrary to our claim, that the ring R is not left T -nilpotent. Then l(R) �= R
(see the introductory remarks before Lemma 2.1). First we show that B �⊆ l(R).
If B ⊆ l(R), then Ad ⊆ l(R) because of Ad ⊆ B. Thus Ad−1R = Ad+Ad−1B ⊆
l(R), whence Ad−1 ⊆ l(R). We continue in a similar fashion to obtain A ⊆ l(R)
after a finite number of steps. Consequently, R = A + B ⊆ l(R), contrary to
l(R) �= R. Thus B �⊆ l(R). Therefore, there is no loss of generality in assuming
that B �= {0} and lR(R) = {0}. Define L = lR(B). Then L �= 0, since L ∩ B =
lB(B) �= 0. If 0 �= x ∈ L, then xB = 0, whence xA = xR �= 0. Moreover, LAd ⊆
LB = 0, so there exists the largest positive integer k < d such that xAk �= 0 for
each x ∈ L \ {0}. Hence xAk+1 = 0 for some x ∈ L \ {0}. Combining this with
xAk �= 0 gives xAkB �= 0. Therefore, xAkb1 �= 0 for some b1 ∈ B. Suppose that
for some positive integer n, elements b1, . . . , bn ∈ B such that xAkb1 ·. . .·bn �= 0
have been constructed. Then (xAkb1 · . . . · bn)Ak ⊆ x(A + B)Ak = xAk+1 = 0,
whence xAkb1 · . . . · bn �⊆ L = lR(B), i.e. xAkb1 · . . . · bnbn+1 �= 0 for some
bn+1 ∈ B. In this way, we can construct a sequence (bn) of elements of B such
that xAkb1 · . . . · bn �= 0 for each n ∈ N. In particular, b1 · . . . · bn �= 0 for every
n ∈ N, contrary to the left T -nilpotency of B. This completes the proof. �

Remark 2.7. Let A be any subring of a ring R. Define A0(R) = {0}, Aα+1(R) =
{x ∈ R : xA ⊆ Aα(R)} for any ordinal number α > 0, and Aβ(R) =⋃

α<β Aα(R) for a limit ordinal β. A straightforward verification shows that
if α ≤ β, then Aα(R) ⊆ Aβ(R), Aα(R)A ⊆ Aα(R) and Aα(R) <l R for
each ordinal number α. Hence for LR(A) =

⋃
α Aα(R) we have LR(A) <l R.

Moreover, if S is a subring of R, then Aα(S) ⊆ Aα(R), so LS(A) ⊆ LR(A).
In particular, lα(A) ⊆ Aα(R) for each ordinal number α, and l(A) ⊆ LR(A).
Notice also that

Aα(LR(A)) = Aα(R) for every ordinal number α. (2.1)

Indeed, if this is not true, then there is the smallest ordinal number α such
that Aα(LR(A)) �= Aα(R). Since A0(LR(A)) = A0(R) = {0}, α is not a limit
number, i.e. α = β+1 for some ordinal number β. Furthermore, Aα(LR(A)) ⊆
Aα(R), so there exists x ∈ Aβ+1(R) such that x �∈ Aβ+1(LR(A)). But x ∈
LR(A) and xA ⊆ Aβ(R) = Aβ(LR(A)), whence x ∈ Aβ+1(LR(A)), a contra-
diction.

Lemma 2.8. Let R be a ring with lR(R) = {0}. If R = A+B for some non-zero
left T -nilpotent subrings A and B of R, then LR(A) ∩ lR(B) = {0}.

Proof. Suppose that LR(A) ∩ lR(B) �= {0}. Consequently, there exists the
smallest ordinal number α such that Aα(R) ∩ lR(B) �= {0}. Since lR(A) ∩
lR(B) ⊆ lR(R) = {0} and A1(R) = lR(A), we have A1(R) ∩ lR(B) = {0},
which shows that α > 1. Of course, α is not a limit number, so α = β + 1
for some ordinal number β, and there is a non-zero x ∈ Aβ+1(R) such that
xB = {0}. Therefore, {0} �= xA ⊆ Aβ(R), whence 0 �= xa ∈ Aβ(R) for
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some a ∈ A. Combining this with Aβ(R) ∩ lR(B) = {0} leads to xaB �= {0}.
Hence there exists b1 ∈ B such that xab1 �= 0. We now proceed by induction.
Suppose that for some n ∈ N there exist elements b1, . . . , bn ∈ B such that
xab1 · . . . · bn �= 0. As R = A + B, we get ab1 · . . . · bn = a′ + b′ for some
a′ ∈ A and b′ ∈ B. Combining this with xB = {0} gives 0 �= xab1 · . . . · bn =
x(a′ + b′) = xa′. Thus, 0 �= xa′ ∈ Aβ(R), and consequently, there exists
bn+1 ∈ B such that xa′bn+1 �= 0. Therefore, xab1 · . . . · bnbn+1 �= 0, from here
b1 · . . . · bn · bn+1 �= 0. By induction, there exists a sequence (bn) of elements of
B such that b1 ·b2 · . . . ·bn �= 0 for each n ∈ N, contrary to the left T -nilpotency
of B. �

We now are able to present the main result in this section.

Theorem 2.9. If A and B are left T -nilpotent subrings of a ring R and R =
A + B, then the ring R is left T -nilpotent.

Proof. Suppose, contrary our claim, that R is not left T -nilpotent. There is
no loss of generality in assuming that lR(R) = {0}, A �= {0} and B �= {0}.
Then lA(A) �= {0}, and consequently, lR(A) �= {0}. Moreover, LR(A) <l R
and the left T -nilpotency of A implies A ⊆ LR(A). Let I = lR(LR(A)). Since
LR(A) <l R, we obtain I � R. Suppose that I �= {0}. As A ⊆ LR(A), we get
IA = {0}. Combining this with R = A + B and lR(R) = {0} gives IB �= {0}.
Furthermore, IB ⊆ I, so (IB)A = {0}. Therefore, ib1 �= 0 for some i ∈ I
and b1 ∈ B. Assume that we have already found, for some k ∈ N, elements
b1, . . . , bk ∈ B such that j = ib1 · . . . · bk �= 0. Then j ∈ I, i.e. jA = {0}. Hence
jB �= {0} and jbk+1 �= 0 for some bk+1 ∈ B, and consequently, ib1·. . .·bkbk+1 �=
0. Therefore, b1 · . . . · bn �= 0 for every n ∈ N, contrary to the left T -nilpotency
of B. Thus I = {0}. In particular, lLR(A)(LR(A)) = {0}.

Next, A ⊆ LR(A) and R = A + B, so the modularity of the lattice of
subgroups of the group R+ implies LR(A) = A + B1, where B1 = LR(A) ∩ B
is a left T -nilpotent ring. Moreover, B1 �= {0}, whence bB1 = {0} for some
non-zero b ∈ B1. As b ∈ LR(A), we get b ∈ Aα(R) for some ordinal number
α. In view of (2.1), b ∈ Aα(LR(A)), i.e. b ∈ LLR(A)(A), contrary to Lemma
2.8. �

In [17, Example 2], Sands gave an example of a ring R such that R =
A + B, A is a M-nilpotent subring of R, B � R and B2 = {0}, but R is not
M-nilpotent. We now show that an analogous example does not exist under
the assumption A < R.

Lemma 2.10. If A and B are a M -nilpotent one-sided ideal and a nilpotent
subring of a ring R, respectively, and R = A + B, then the ring R is M -
nilpotent.

Proof. There is no loss of generality in assuming that A <r R. Suppose,
contrary to our claim, that the ring R is not M -nilpotent. Then it con-
tains a double sequence (xn) such that x−n · . . . · x0 · . . . · xn �= 0 for ev-
ery n ∈ N. Since R = A + B, for every k ∈ N ∪ {0} there exist a±k ∈ A



On Left T -Nilpotent Rings Page 7 of 17   157 

and b±k ∈ B such that x±k = a±k + b±k. Hence for every n ∈ N we have
(a−n + b−n) · . . . · (a0 + b0) · . . . · (an + bn) �= 0. Therefore, for all i = 0, 1, . . . , n
there exist z(±i) ∈ {a(±k), b(±k)} such that z−n · . . . · z0 · . . . · zn �= 0. For each
n ∈ N, let us denote by Gn the set of all elements (y−n, . . . , y0, . . . , yn) ∈
{a−n, b−n} × . . . × {a0, b0} × . . . × {an, bn} satisfying y−n · . . . · y0 · . . . · yn �= 0.
Since

0 �= (a−n+b−n) · . . . ·(a1+b1) · . . . ·(an+bn) =
∑

(y−n,...,y0,...,yn)∈Gn

y−n · . . . · y0 · . . . · yn,

we have 0 < |Gn| < ∞. Clearly the set G = G1 ∪ G2 ∪ . . . is infinite, and con-
sequently, there exists 0 �= c0 ∈ {a0, b0} such that infinitely many sequences
belonging to G have the zero term equal to c0. Assume that we have already
found an element (c−k, . . . , c0, . . . , ck) ∈ Gk for some k ∈ N and infinitely many
sequences belonging to G start with the subsequence (c−k, . . . , c0, . . . , ck). As
previously we infer that there exists c±(k+1) ∈ {a±(k+1), b±(k+1)} such that in-
finitely many sequences from G begin with (c−(k+1), c−k, . . . , c0, . . . , ck, ck+1),
so c−(k+1) ·c−k ·. . .·c0 ·. . .·ck ·ck+1 �= 0. By induction, there is a double sequence
(cn) such that c±n ∈ A∪B and c−n · . . . ·c0 · . . . ·cn �= 0 for every n ∈ N. Since B
is a nilpotent ring, there exists a subsequence (ckn

) of the sequence (cn) such
that {ckn

} ⊆ A. Let d0 = ck(−1) ·ck(−1)+1 ·. . .·ck1−1, dn = ckn
·ckn+1 ·. . .·ckn+1−1

and d−n = ck−n
· ck−n+1 · . . . · ck(−(n−1))+1 for n ∈ N. Then {dn} ⊆ A because

of A <r R. Moreover, for any fixed n ∈ N and t = max(k−n, kn) we have
ck−t

·. . .·c0 ·. . .·ct �= 0, so d−n ·. . .·d0 ·. . .·dn = ck−n
·ck−n+1 ·. . .·ckn

·ckn−1 �= 0.
Therefore, the ring A is not M -nilpotent, a contradiction. �

3. Rings with S-Gradation

Definition 3.1. Let S be a semigroup. A ring R is said to be S-graded if there
exist a family of subgroups {As : s ∈ S} of the additive group of R such that
R = ⊕s∈SAs and AsAt ⊆ Ast for all s, t ∈ S.

Remark 3.2. Notice that At is a subring of ring R if and only if t = t2 or t �= t2

and A2
t = 0. Indeed, if At is a subring in R and t �= t2, then A2

t ⊆ At ∩ At2 =
{0}. The reverse implication is obvious.

Definition 3.3. Let S be a semigroup, and let M be a class of rings. The class
M is said to be S-closed if M contains all the S-graded rings R = ⊕s∈SAs

such that all subrings among the groups As of the additive group of R belong
to M.

Definition 3.4. Let N and M be classes of rings satisfying N ⊆ M, and let S
be a semigroup. The pair (N ,M) is called S-closed if the class M contains all
the S-graded rings R = ⊕s∈SAs such that all subrings among the groups As

of the additive group of R belong to N .
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Remark 3.5. Let S be the class of all semigroups S such that the class of all
left T -nilpotent rings is S-closed. Then:

(i) if S ∈ S, then every subsemigroup A of S belongs to S;
(ii) if S ∈ S and I � S, then S/I ∈ S;
(iii) if S ∈ S, I � S and S/I ∈ S, then S ∈ S;
(iv) if S belongs to S, then the semigroup S0 = S ∪ {0} with zero adjoined

belongs to S

In view of the above remark, it is sufficient to describe semigroups with
zero from the class S.

Definition 3.6. We say that a sequence (sn) of elements of a semigroup S
satisfies the condition (q) if for any positive integers k < l < m the condition
s = sk · . . . · sl = sl+1 · . . . · sm implies s �= s2.

Remark 3.7. Notice that the existence of a sequence that satisfying the con-
dition (q) in a semigroup S is equivalent to the existence of such a sequence
in the semigroup S0.

From now on, each semigroup is assumed to be a semigroup with zero.

Example 3.8. Let (sn) be a sequence in a semigroup S. If the set M = {sk ·
. . . · sl : k, l ∈ N, k ≤ l} does not contain an idempotent, then (sn) satisfies the
condition (q). In particular, if G is a subset of S and sn ∈ G for every n ∈ N

and e �∈ M , then (sn) satisfies condition (q).

Example 3.9. If (sn) be a sequence in a nil semigroup S and s1 · . . . · sn �= 0
for every n ∈ N, then (sn) satisfies condition (q).

Example 3.10. If an element x of a semigroup S is not periodic, then it follows
from Example 3.8 that the sequence (x, x, x, . . .) satisfies condition (q).

Let Z and T be the classes of all zero-rings and left T -nilpotent rings,
respectively. It is easily seen that if S is a semigroup and the pair (Z, T ) is
not S-closed, then the class T is not S-closed. Our main goal in this section
is to show that the converse implication is also true.

Let us start with the following useful lemma:

Lemma 3.11. For any semigroup S the following conditions are equivalent:
(i) there exists a sequence (sn) of elements of the semigroup S satisfying the

condition (q);
(ii) the pair (Z, T ) is not S-closed.

Proof. (i) ⇒ (ii). Let A be an algebra over the field K generated by the
elements a1, a2, . . . satisfying the following relations ai · aj = 0 for any i, j ∈ N

such that j �= i + 1. Then a1 · a2 · . . . · an �= 0 for every n ∈ N, so A is not a
left T -nilpotent ring. Let S = {sk · . . . · sl : k, l ∈ N, k ≤ l}. For any s ∈ S, let
As denote the K-subspace of the linear space A generated by all elements of
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the form ak · . . . · al, where k ≤ l are positive integers such that sk · . . . · sl = s.
Then A =

⊕
s∈S As. Moreover, define As = {0} for s ∈ S \ S. Obviously,

A =
⊕

s∈S As. An easy computation shows that AsAt ⊆ Ast for all s, t ∈ S.
Take any t ∈ S such that At is a subring of the ring A. Then it follows from
Remark 3.2 that t = t2 or A2

t = 0. If A2
t = 0, then At is a left T -nilpotent ring.

Now suppose t = t2. By way of contradiction assume that A2
t �= {0}. Then

there exist two non-zero generators a = ak · . . . · al and b = an · . . . · am of the
subspace At such that k ≤ l, n ≤ m, sk · . . . · sl = t = sn · . . . · sm and a · b �= 0.
From the definition of the algebra A, we infer that n = l+1. Furthermore, the
sequence (sn) satisfies the condition (q), so t �= t2, a contradiction. Therefore,
A2

t = 0 for every t ∈ S such that At is a subring of the ring A.

(ii) ⇒ (i). Suppose the pair (Z, T ) is not S-closed. Then there exist a ring
R which is not left T -nilpotent and a non-empty family of subgroups {At}t∈T

of the additive group of the ring R such that R =
⊕

t∈T At, AsAt ⊆ Ast for
all s, t ∈ T and A2

t = 0 for every t ∈ T for which At is a subring of R. In
particular, if t ∈ T and t = t2, then A2

t = 0. Hence, by Lemma 2.1, there exist
sequences (sn) of elements of S and (an) of elements of R such that an ∈ Asn

and a1 · . . . · am �= 0 for any n,m ∈ N. Now it is easy to see that the sequence
(sn) satisfies condition (q). �

Combining Lemma 3.11, Example 3.10 and Remark 3.5 leads to the con-
clusion that every semigroup S belonging to S is periodic.

The proof of the next lemma is partially related to that of [12, Lemma
9].

Lemma 3.12. Any infinite simple semigroup S includes a sequence (sn) satis-
fying the condition (q).

Proof. Suppose G is an infinite subgroup of a semigroup S. First we show that
there exists an infinite sequence (gn) of elements of G such that gmgm+1 · · · gn �=
e for all positive integers m ≤ n. We construct it inductively. Since |G| = ∞,
there exists g ∈ G such that g �= e. Define g1 = g. Assume that we have
already found, for some n ∈ N, the desired elements g1, g2, . . . , gn. Since the
set C = {(gmgm+1 · · · gn)−1 |m ≤ n} ∪ {e} is finite, it is sufficient to take any
member g′ of set G \ C and define gn+1 = g′. Of course, the sequence (gn)
satisfies condition (q).

If S is not a periodic group, the assertion follows at once from Exam-
ple 3.10. Now suppose that S is a periodic semigroup. If S is 0-simple, it is
completely 0-simple. In view of Rees theorem (see [2, Theorem 3.5]), we can as-
sume that S = M0(G0;X,Y ;P ) for some finite group G and non-degenerated
Y × X-matrix P . Without loss of generality, we may assume that the set Y
is infinite. Then it contains pairwise different elements y1, y2, . . .. Take any
g1 ∈ G. Since the matrix P is non-degenerated, there exists x0 ∈ X such that
py1x0 �= 0, i.e. py1x0 ∈ G. Hence s1 = (g1, x0, y1) ∈ S. Let s2 = (p−1

y1x0
, x0, y2).

Then s2 ∈ S and s1s2 = (g1, x0, y2). Suppose that we have already found, for
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some n ∈ N, the elements s1, . . . , sn ∈ S such that s1 · . . . · sn = (g1, x0, yn).
Then pynx ∈ G for some x ∈ X, so sn+1 = (p−1

ynx, x, yn+1) ∈ S and s1s2 ·
. . . · snsn+1 = (g1, x0, yn+1). Thus for any positive integers k < l < m we get
sk · . . . · sl = (h, x, yl) and sl+1 · . . . · sm = (h′, x′, ym) for some h, h′ ∈ G and
x, x′ ∈ X. Therefore, sk · . . . · sl �= sl+1 · . . . · sm. Consequently, the sequence
(sn) satisfies condition (q). �
Definition 3.13. We say that a nil semigroup S is left T -nilpotent if for every
sequence (sn) of elements of S, there exists positive integer n such that s1 ·s2 ·
. . . · sn = 0.

Proposition 3.14. Let S be a nil semigroup. Then the class of left T -nilpotent
rings is S-closed if and only if the semigroup S is left T -nilpotent.

Proof. (i) ⇒ (ii). Suppose, contrary our claim, that S is not left T -nilpotent.
Then there exists a sequence (sn) of elements of S satisfying s1 ·s2 · . . . ·sn �= 0
for every n ∈ N. By virtue of Example 3.9, the sequence (sn) satisfies the
condition (q). Combining this with Lemma 3.11 leads to a contradiction.

(ii) ⇒ (i). Assume, by way of contradiction, that R = ⊕s∈SRs is an S-graded
ring such that R �∈ T and Rs ∈ T for every s ∈ S for which Rs is a subring
of R. It follows from Lemma 2.1 that there is a sequence (sn) of elements of S
such that rn ∈ Rsn

and r1 · r2 · . . . · rn �= 0 for each n ∈ N. Since the semigroup
S is left T -nilpotent, there exists a sequence c1 ≤ c2 ≤ . . . of positive integers
such that yt = rct

· rct+1 · . . . · rct+1 ∈ R0 for each t ∈ N. Since R0 is a ring
belonging to T , there exists k ∈ N such that y1 · . . . · yk = 0, contrary to the
fact that r1 · . . . · rn �= 0 for every n ∈ N. �
Remark 3.15. Let S and T be any semigroup and set, respectively. Suppose
that S =

⋃
i∈T Si, where Si � S and Si ∩ Sj = {0} for i �= j (i.e. S is a direct

sum of ideals Si). If the class T is Si-closed for each i ∈ T , then it is also
S-closed. Indeed, consider any S-graded ring R = ⊕s∈SRs such that Rs ∈ T
for every s ∈ S for which Rs is a subring of R. Notice that R = ⊕i∈T RSi

is a direct sum of ideals RSi
= ⊕s∈Si

Rs. Since RSi
is a ring belonging to T

for i ∈ T , we get R ∈ T . Notice also that if |T | < ∞, then the assumption
Si ∩ Sj = {0} for i �= j can be omitted.

Definition 3.16. We say that class M of rings is closed under sums of left ideals
if for any ring R and its left ideals L1, L2 the condition that L1, L2 ∈ M implies
L1 + L2 ∈ M.

Lemma 3.17. Any class M of rings, which is closed under sums of one-sided
ideals, subrings, and contains a class of all zero rings, is G-closed for any finite
group G.

Proof. Let G = {g1, g2, . . . , gn} with g1 = e. Consider any ring A = ⊕g∈GAs

with G-gradation with respect to the group G, and suppose Ae ∈ M. Define
the following matrix ring:
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P =

⎛

⎜
⎜
⎜
⎜
⎝

Ae Ag1g−1
2

· · · Ag1g−1
n

Ag2g−1
1

Ae · · · Ag2g−1
n

...
...

...
Agng−1

1
Agng−1

2
· · · Ae

⎞

⎟
⎟
⎟
⎟
⎠

.

Since P is a sum of left ideals of the form

Li =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · Ag1g−1
i

· · · 0
0 · · · Ag2g−1

i
· · · 0

...
...

...
0 · · · Ae · · · 0
...

...
...

0 · · · Agng−1
i

· · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ M,

we get P ∈ M. It is easy to check that

A �
∑

g∈G

ag
φ−→

⎛

⎜
⎜
⎜
⎜
⎝

ae ag1g−1
2

· · · ag1g−1
n

ag2g−1
1

ae · · · ag2g−1
n

...
...

...
agng−1

1
agng−1

2
· · · ae

⎞

⎟
⎟
⎟
⎟
⎠

∈ P

is an isomorphism of the ring A onto some subring M of P . Thus M ∈ M,
and consequently, A ∈ M. �

Corollary 3.18. The class of left T -nilpotent rings is G-closed for any finite
group G.

The proof of the next lemma is similar to that of [18, Lemma 4.1]. We
include it for completeness of this paper.

Lemma 3.19. The class of left T -nilpotent rings is S-closed for any finite semi-
group S.

Proof. Let S be a finite semigroup and R = ⊕s∈SRs be an S-graded ring such
that Rs ∈ T for every s ∈ S for which Rs is a subring of R. The proof is by
induction on |S|. In view of the fact that class T is closed under extensions, it
suffices to prove the lemma for semigroups S which are nilpotent or 0-simple. If
S is a nilpotent semigroup, then R is a nilpotent ring. Therefore, it is sufficient
to assume that S is a 0-simple semigroup. Then S = M0(G0;m,n;A) for some
group G, positive integers m,n and m × n matrix A. If S = G0, the assertion
follows from Corollary 3.18 and (iv) of Remark 3.5. Now suppose S �= G0.
Then, for 1 ≤ i ≤ n, the columns Bi of the matrix semigroup M0(G0;m,n; a)
are left ideals of S. This implies that R is a sum of left ideals RBi

= ⊕s∈Bi
Rs
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which are Bi-graded rings such that |RBi
| < |S|. By induction hypothesis, R

is a sum of left ideals belonging to T . Finally, R ∈ T . �

Our next aim is to describe all the semigroups S for which the class of left
T -nilpotent rings is S-closed. We begin with the following definition of some
particular chain of ideals in S

Definition 3.20. Let S be a semigroup, and let U0(S) = {0}. Consider any ordi-
nal number α > 0. If α is a limit number, then we define Uα(S) =

⋃
γ<α Uγ(S).

Otherwise, Uα(S) is defined to an ideal of S such that Uα(S)/Uα−1(S) decom-
poses into a direct sum of minimal finite ideals in S/Uα−1(S) or Uα(S)/Uα−1(S)
is a left T -nilpotent. Moreover, define U(S) =

⋃
α≥0 Uα(S).

Lemma 3.21. If S is a semigroup in which there is no sequence satisfying the
condition (q), then S = U(S).

Proof. In view of Example 3.10, S is a periodic semigroup. Suppose S/U(S) �=
{0}. Obviously, in Q = S/U(S) also there is no sequence satisfying the condi-
tion (q). Moreover, every nil ideal Q is left T -nilpotent by Example 3.9, so Q
does not have any non-zero nil ideals.

We will show that Q has a non-zero minimal ideal. Note that if Q1 is
a right ideal of Q, then there exists a non-zero idempotent e ∈ Q1. Indeed,
otherwise, since Q1 is a periodic semigroup and S does not have sequences that
satisfy condition (q), Q1 is left T -nilpotent. It is easy to see that an ideal H
generated by Q1 in Q is left T -nilpotent, which gives a contradiction. Assume
that for some sequence (en) of idempotents of Q there exists an infinite chain
of right ideals e1Q � e2Q � . . . of Q. Clearly, enen+1 = en+1 for every n ∈ N,
so (en) satisfies condition (q), contrary to our assumption. Therefore J = emQ
is a minimal non-zero right ideal of Q for some m ∈ N. Let us note that every
ideal M of emQ such that M2 �= {0} contains a non-zero right ideal MJ of
Q. Since J is a minimal right ideal of Q, MJ ⊆ M ⊆ J ⊆ MJ . It follows
that M = J . Hence J/N is 0-simple for some nilpotent ideal N of J , because
J is not nil. Since J/N is a periodic semigroup, J/N is completely 0-simple.
Therefore J/N , and consequently also J , contains a primitive idempotent.
Without loss of generality we can assume that em is a primitive idempotent
of J . Note that, if Qf � Qem for some non-zero idempotent f ∈ Q, we have
f = fem. Clearly Qemf � Qem. But t = emf ∈ J is a non-zero idempotent
and tem = emt = t, so t = em. The obtained contradiction implies that QemQ
is a non-zero minimal ideal of Q. Using Lemma 3.12, we get that QemQ is a
finite ideal in Q, which is a contradiction with the definition of U(S), so the
proof is complete. �

Theorem 3.22. Let S be a semigroup. The class of left T -nilpotent rings is
S-closed if and only if there is no sequence of elements of S satisfying the
condition (q).
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Proof. First suppose T is an S-closed class. Then the pair (Z, T ) is S-closed.
It follows from Lemma 3.11 that there exists no sequence of elements of S
satisfying the condition (q).

Conversely, suppose that there is no sequence of elements of S satisfying
the condition (q). First we show that the class T is Uα(S)-closed for any ordinal
number α. Of course, this is true for U0(S). Consider any ordinal number α > 0,
and assume the class T is Uβ(S)-closed for every ordinal β < α. By Proposition
3.14, Lemma 3.19 and Remark 3.15, the class T is Q-closed if Q is a T -nilpotent
semigroup or Q is a direct sum of minimal ideals. Moreover, the class T is closed
under extensions, so it is enough to assume that α is a limit ordinal number.
In this case, suppose that class T is not Uα(S)-closed. Let R = ⊕h∈Uα(S)Ah

be a Uα(S)-graded ring such that R �∈ T and Ah ∈ T for every h ∈ Uα(S) for
which Ah is a subring in R. In view of R �∈ T and Lemma 2.1, we can assume
that there exists a sequence (hn) of elements of Uα(S) such that for every
n ∈ N there exists an ∈ Ahn

and a1 · . . . · am �= 0 for every m ∈ N. Let β be
the smallest ordinal number such that Uβ(S) ∩ H �= ∅ for H = {hn : n ∈ N}.
Then there exists a set of natural numbers C = {c1, c2, . . . , cs} such that
1 = c1 < c2 < . . . < cs and hcj

· hcj+1 · . . . · hcj+1−1 ∈ Uβ(S) for each
j ∈ {1, 2, . . . , s − 1}. Furthermore, {hcs

· . . . · hl : l ∈ N, cs ≤ l} ∩ Uβ(S) = ∅,
so the set C cannot be extended infinitely many times. Indeed, if C could
be extended infinitely many times, then we would get a contradiction to the
fact that a1 · . . . · am �= 0 for each m ∈ N, because the class T is Uβ(S)-
closed. Let h1 = h1 · h2 · . . . · hcs

, and let γ1 = β. Similarly, we define h2 and
the ordinal number γ2 > γ1 by using the sequence (hcs+1, hcs+2, . . .). This
construction can be repeated infinitely many times. Consequently, we obtain
the sequence (hn) and the growing sequence of ordinal numbers (γn) such that
hk · . . . ·hl ∈ Uγk

(S) \Uγk−1(S) where k, l ∈ N, k ≤ l. It is easily seen that (hn)
satisfies the condition (q), a contradiction. Thus the class T is Uα(S)-closed.
Moreover, S = U(S) by Lemma 3.21. �

In view of the foregoing result we have the following

Corollary 3.23. For any semigroup S the following conditions are equivalent:

(i) the class T is S-closed;
(ii) the pair (Z, T ) is S-closed;
(iii) there is no sequence of elements of S satisfying the condition (q).

4. Rings Which are S-Sums

Definition 4.1. Let S be a semigroup. A ring R is called an S-sum if there
exists a family of subgroups {Rs : s ∈ S} of the additive group of R such that
R =

∑
s∈S Rs and RsRt ⊆

∑
q∈〈st〉 Rq for all s, t ∈ S, where 〈st〉 means the

subsemigroup of S generated by st.
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Remark 4.2. Let S be a semigroup. Of course, every S-graded ring is an S-
sum. Much relevant information on S-sums can be found in [6].

Our goal is to extend Theorem 3.22 to rings being S-sums. As for S-
graded rings, the description of semigroups S will turn to crucial. The following
additional facts will be also needed.

Lemma 4.3. Let G be a finite 2-group, and let R =
∑

s∈G Rs be a G-sum. If
Re ieft T -nilpotent ring, then so is R.

Proof. Each finite 2-group has a central sequence with quotients of order two.
Moreover, if N is a normal divisor of the group G, then R =

∑
gN∈G/N RgN is a

G/N -sum, whose initial component is RN . Therefore, if RN is a left T -nilpotent
ring and G/N is a group of order two, then it follows from Theorem 2.6 that
the ring R is left T -nilpotent. Thus the assertion follow by a straightforward
induction on the order of G. �

Lemma 4.4. Let S be a finite semigroup, and let R =
∑

s∈S Rs be an S-sum
such that the only subgroups of S are 2-groups. If Rs ∈ T for every s ∈ S for
which Rs is a subring of R, then R ∈ T .

Proof. If S = G0 for some 2-group G, the claim follows from Lemma 4.3.
In the case when S �= G0 it is enough to use inductive reasoning related to
cardinality of semigroup S, as in the proof of Lemma 3.19. �

Lemma 4.5. For any periodic group G which is not a 2-group, there exists a G-
sum R =

∑
s∈G Rs which is not left T -nilpotent and Rs is a zero-ring for every

s ∈ S for which Rs is a subring in R.

Proof. Let X = {x, y, z} be any three-element set, and let B be a ring which
is not left T -nilpotent. Consider the ring A = XB[X] of all commutative
polynomials over B in variables x, y, z with zero constant term. Let I be the
ideal of A generated by x3, y3, xy, xz and yz. Consider the ring R = A/I.
Define Rg = (zB[z] + xB + y2B + I)/I, Rg2 = (x2B + yB + I)/I and Rs = 0
for any s ∈ G \ {g, g2}. Notice that RgRg2 = Rg2Rg = 0. Since g, g2 ∈ 〈g〉, we
get also R2

g = (zB[z] + x2B + I)/I ⊆
∑

s∈〈g〉 Rs and R2
g2 = (y2B + I)/I ⊆

∑
s∈〈g〉 Rs. Thus R is a G-sum which is not left T -nilpotent and Rs is a ring

with zero multiplication for every s ∈ S for which Rs is a subring in R. �

Theorem 4.6. The following conditions are equivalent for a semigroup S:
(i) every S-sum R =

∑
s∈S Rs has the property that the left T -nilpotency of

all subrings among the subgroups Rs implies the left T -nilpotency of R;
(ii) each subgroup of S is 2-group and there does not exists a sequence of

elements of S satisfying the condition (q).

Proof. (i) ⇒ (ii). The first statement of (ii) follows at once from Lemma 4.5,
while the second-one is a direct consequence of Lemma 3.11.
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(ii) ⇒ (i) It follows from Lemma 3.21 that S = U(S). The rest of the proof is
based on Lemma 4.4 and the proof of (ii) ⇒ (i) of Proposition 3.14, and runs
analogously to the proof of Theorem 3.22. �
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[6] Kelarev, A.V.: Ring Constructions and Applications, vol. 9. World Scientific,
River Edge, NJ (2002)

[7] Kelarev, A.V.: An answer to a question of Kegel on sums of rings. Can. Math.
Bull. 41(1), 79–80 (1998)

[8] Kelarev, A.V.: A primitive ring which is a sum of two Wedderburn radical sub-
rings. Proc. Am. Math. Soc. 125(7), 2191–2193 (1997)

[9] Kelarev, A.V., McConnell, N.R.: Two versions of graded rings. Publ. Math.
Debrecen 47, 219–227 (1995)

[10] Kelarev, A.V.: Nil properties for rings which are sums of their additive sub-
groups. Commun. Algebra 22(13), 5437–5446 (1994)

[11] Kelarev, A.V.: A sum of two locally nilpotent rings may be not nil. Arch. Math.
(Basel) 60(5), 431–435 (1993)

[12] Kelarev, A.V.: On semigroup graded PI-algebras. Semigroup Forum 47, 294–298
(1993)

[13] Kelarev, A.V.: On the radicalness of semigroup graded algebras. Matem. Issle-
dovaniya (Kishiniov) 111, 82–96 (1989). ((in Russian))

[14] Kepczyk, M.: On rings which are sums of subrings and additive subgroups. Int.
J. Algebra Comput. 32(6), 1203–1208 (2022)
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