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The Bishop–Phelps–Bollobás Property for
Weighted Holomorphic Mappings
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Abstract. Given an open subset U of a complex Banach space E, a weight
v on U and a complex Banach space F , let H∞

v (U,F ) denote the Banach
space of all weighted holomorphic mappings from U into F , endowed with
the weighted supremum norm. We introduce and study a version of the
Bishop–Phelps–Bollobás property for H∞

v (U,F ) (WH∞-BPB property,
for short). A result of Lindenstrauss type with sufficient conditions for
H∞

v (U,F ) to have the WH∞-BPB property for every space F is stated.
This is the case of H∞

vp (D, F ) with p ≥ 1, where vp is the standard polyno-
mial weight on D. The study of the relations of the WH∞-BPB property
for the complex and vector-valued cases is also addressed as well as the
extension of the cited property for mappings f ∈ H∞

v (U,F ) such that vf
has a relatively compact range in F .
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1. Introduction and Preliminaries

Bishop–Phelps Theorem [8] states that every continuous linear functional on
a Banach space can be approximated by a norm attaining linear functional. A
strengthening of Bishop–Phelps Theorem, known as Bishop–Phelps–Bollobás
Theorem [9], assures that, in addition, a point where the approximated func-
tional almost attains its norm can be approximated by a point at which attains
its norm. Acosta et al. [3] initiated the study of the Bishop–Phelps–Bollobás
property for bounded linear operators between Banach spaces.
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Let E and F be Banach spaces and let L(E,F ) be the Banach space of all
bounded linear operators from E into F , endowed with the operator canonical
norm. In particular, E∗ stands for the space L(E, K). As usual, BE and SE

denote the closed unit ball and the unit sphere of E, respectively.
Let us recall (see [1,3]) that the pair (E,F ) has the Bishop–Phelps–

Bollobás property if for any 0 < ε < 1, there exists 0 < η(ε) < ε such that
for every operator T ∈ SL(E,F ) and every point x ∈ SE such that ‖T (x)‖ >
1 − η(ε), there exist T0 ∈ SL(E,F ) and x0 ∈ SE satisfying ‖T0(x0)‖ = 1,
‖T − T0‖ < ε and ‖x − x0‖ < ε.

A vast research on this topic has been carried out over time. The survey
[18] by Dantas, Garćıa, Maestre, and Roldán provides an overview from 2008
to 2021 about the Bishop–Phelps–Bollobás property in several directions: for
operators, some classes of operators and multilinear forms (see also the survey
[1] by Acosta for these three lines), for homogeneous polynomials, for Lipschitz
mappings and for holomorphic functions.

In [18, p. 539], it is stated that little is known about the Bishop–Phelps–
Bollobás property for holomorphic mappings and it is suggested that its study
deserves special attention. In this direction, non-linear versions of Bishop–
Phelps–Bollobás Theorem were established for some classes of holomorphic
functions by Dantas et al. [17] and by Kim and Lee [25], and for operators
between spaces of bounded holomorphic functions by Bala et al. [5].

Motivated also by some results obtained in [22] about the density of norm
attaining weighted holomorphic mappings on open subsets of C

n, our aim in
this paper is to address the Bishop–Phelps–Bollobás property for weighted
holomorphic mappings under a different approach.

Let E and F be complex Banach spaces and let U be an open subset of
E. Let H(U,F ) denote the space of all holomorphic mappings from U into F .
A weight v on U is a (strictly) positive continuous function on U .

The weighted space of holomorphic mappings H∞
v (U,F ) is the Banach

space of all mappings f ∈ H(U,F ) such that

‖f‖v := sup {v(z) ‖f(z)‖ : z ∈ U} < ∞,

equipped with the weighted supremum norm ‖·‖v. Moreover, H∞
vK(U,F ) stands

for the space of all mappings f ∈ H∞
v (U,F ) such that vf has a relatively

compact range in F . It is usual to write H∞
v (U) instead of H∞

v (U, C).
These spaces appear in the study of growth conditions of holomorphic

functions. Some of the most important references about them are the works
by Bierstedt et al. [6] and Bierstedt and Summers [7]. For complete and recent
information on such spaces, we refer the reader to the survey [10] by Bonet
and the references therein.

Our approach requires the linearisation of weighted holomorphic map-
pings. This technique can be consulted in the works by Bonet et al. [12] and
Gupta and Baweja [20]. See also the papers [30] by Mujica for the case of
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bounded holomorphic mappings and [13] by Bonet and Friz for more general
weighted spaces of holomorphic mappings.

The linearisation of functions has been employed to address similar prob-
lems in the setting of Lipschitz mappings by Cascales et al. [15] and Chiclana
and Mart́ın [16], and in the environment of holomophic mappings by Carando
and Mazzitelli [14] and the first author [22].

Since BH∞
v (U) is compact for the compact open topology τ0 by Ascoli’s

Theorem, it follows by Ng’s Theorem [31] that H∞
v (U) is a dual Banach space

and its predual, denoted G∞
v (U), is defined as the space of all linear functionals

on H∞
v (U) whose restrictions to BH∞

v (U) are τ0-continuous.
For each z ∈ U , the evaluation functional δz : H∞

v (U) → C, defined by
δz(f) = f(z) for f ∈ H∞

v (U), is in G∞
v (U). By an atom of G∞

v (U) we mean
an element of G∞

v (U) of the form v(z)δz for z ∈ U . The set of all atoms in
G∞

v (U) will be denoted here by AtG∞
v (U).

Given a Banach space E, a subset N ⊆ BE∗ is said to be norming for E
if

‖x‖ = sup {|x∗(x)| : x∗ ∈ N} (x ∈ E).

Notice that AtG∞
v (U) is norming for H∞

v (U) since

‖f‖v = sup {v(z) |f(z)| : z ∈ U} = sup {|(v(z)δz)(f)| : z ∈ U}
for every f ∈ H∞

v (U).
We now fix some notations. Given Banach spaces E and F , we denote by

L((E, TE); (F, TF )) the space of all continuous linear operators from (E, TE)
into (F, TF ), where TE and TF are topologies on E and F , respectively. We
will not write TE whenever it is the norm topology of E. Hence L(E,F ) is the
Banach space of all bounded linear operators from E into F with the canonical
norm of operators. K(E,F ) is the norm-closed subspace of L(E,F ) consisting
of all compact operators. As usual, w∗, w and bw∗ denote the weak* topology,
the weak topology, and the bounded weak* topology, respectively. Ext(BE)
represents the set of extreme points of BE . D and T stand for the open unit
ball and the unit sphere of C, respectively. Given a set A ⊆ E, lin(A), co(A)
and abco(A) denote the norm-closed linear hull, the norm-closed convex hull
and the norm-closed absolutely convex hull of A in E, respectively.

Theorem 1.1 [12,13,20,30]. Let U be an open subset of a complex Banach space
E and v be a weight on U .

(i) G∞
v (U) is a Banach space with the norm induced by H∞

v (U)∗ (in fact, a
closed subspace of H∞

v (U)∗), and the evaluation mapping Jv : H∞
v (U) →

G∞
v (U)∗, given by Jv(f)(φ) = φ(f) for φ ∈ G∞

v (U) and f ∈ H∞
v (U), is

an isometric isomorphism.
(ii) The mapping Δv : U → G∞

v (U) defined by Δv(z) = δz for z ∈ U , is in
H∞

v (U,G∞
v (U)) with ‖Δv‖v ≤ 1.

(iii) BG∞
v (U) coincides with abco(AtG∞

v (U)) ⊆ H∞
v (U)∗.
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(iv) G∞
v (U) coincides with lin(AtG∞

v (U)) ⊆ H∞
v (U)∗.

(v) For every complex Banach space F and every mapping f ∈ H∞
v (U,F ),

there exists a unique operator Tf ∈ L(G∞
v (U), F ) such that Tf ◦ Δv = f .

Furthermore, ||Tf || = ‖f‖v.
(vi) The mapping f 	→ Tf is an isometric isomorphism from H∞

v (U,F ) onto
L(G∞

v (U), F ) (resp., from H∞
vK(U,F ) onto K(G∞

v (U), F )). �

In the case v = 1U where 1U (z) = 1 for all z ∈ U , we will simply write
H∞(U,F ) (the Banach space of all bounded holomorphic mappings from U
into F , under the supremum norm) instead of H∞

v (U,F ), H∞(U) in place of
H∞(U, C) and, following Mujica’s notation in [30], G∞(U) instead of G∞

v (U).
Let us recall that an operator T ∈ L(E,F ) is said to attain its norm at

a point x ∈ SE if ‖T (x)‖ = ‖T‖. Usually, NA(E,F ) denotes the set of all
operators in L(E,F ) that attain their norms and, in particular, NA(E) stands
for NA(E, K).

We can introduce the following version of this concept for weighted holo-
morphic mappings.

Definition 1.2. Let U be an open subset of a complex Banach space E, let v
be a weight on U , let F be a complex Banach space, and f ∈ H∞

v (U,F ).

(i) We say that f attains its weighted supremum norm if there exists a point
z ∈ U such that v(z) ‖f(z)‖ = ‖f‖v. We denote by H∞

vNA(U,F ) the set of
all mappings f ∈ H∞

v (U,F ) attaining their weighted supremum norms.
In particular, we write H∞

vNA(U) instead of H∞
vNA(U, C).

(ii) We say that f attains its weighted supremum norm on G∞
v (U) if its

linearisation Tf ∈ L(G∞
v (U), F ) attains its operator canonical norm. The

set of all mappings f ∈ H∞
v (U,F ) that attain their weighted supremum

norms on G∞
v (U) is denoted by H∞

vNA(G∞
v (U), F ). In addition, we write

H∞
vNA(G∞(U)) in place of H∞

vNA(G∞(U), C).

Example 1.3. It is clear that if f attains its weighted supremum norm (at
z), then f attains its weighted supremum norm on G∞

v (U) (at v(z)δz). The
converse does not hold: for example, the function identity on D does not attain
its supremum norm on D, but it does on G∞(D) (see [19]).

In view of the definition of the weighted supremum norm, a possible
formulation of the Bishop–Phelps–Bollobás property in the setting of weighted
holomorphic mappings could be the following.

Definition 1.4. Let U be an open subset of a complex Banach space E, v be
a weight on U , and F be a complex Banach space. We say that H∞

v (U,F )
has the weighted holomorphic Bishop–Phelps–Bollobás property (WH∞ -BPB
property, for short) if given 0 < ε < 1, there is 0 < η(ε) < ε such that for every
f ∈ SH∞

v (U,F ), every λ ∈ T and every z ∈ U such that v(z) ‖f(z)‖ > 1 − η(ε),
there exist f0 ∈ SH∞

v (U,F ), λ0 ∈ T and z0 ∈ U such that v(z0) ‖f0(z0)‖ = 1,
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‖f − f0‖v < ε and ‖λv(z)δz − λ0v(z0)δz0‖ < ε. In this case, it is said that
H∞

v (U,F ) has the WH∞-BPB property with function ε 	→ η(ε).
If the preceding definition holds for a linear subspace A∞

v (U,F ) ⊆ H∞
v (U,

F ) (that is, f and f0 belong to SA∞
v (U,F )), we say that A∞

v (U,F ) has the WH∞

-BPB property.

Example 1.5. Let Ω ⊆ C be a simply connected open set. If Ω = C, then
H∞(Ω) = C by Liouville’s Theorem and thus H∞(Ω) has the WH∞-BPB
property.

If Ω � C, we can suppose that Ω = D by the Riemann Mapping Theorem.
By the maximum modulus principle, we have H∞

NA(Ω) = C, hence H∞
NA(Ω)

is not norm dense in H∞(Ω) and, therefore, H∞(Ω) fails the WH∞-BPB
property.

We now present the content of the paper. The main result of this paper
assures in Sect. 2 that if U is an open subset of a complex Banach space E and v
is a weight on U such that TAtG∞

v (U) is a norm-closed set of uniformly strongly
exposed points of BG∞

v (U), then H∞
v (U,F ) has the WH∞-BPB property for

every complex Banach space F . This is the case of H∞
vp

(D, F ) with p ≥ 1, where
vp is the polynomial weight on D defined by vp(z) = (1 − |z|2)p for all z ∈ D.
Our approach requires a foray into the study of the extremal structure of the
unit closed ball of the space G∞

vp
(U). This rich structure has been studied by

Boyd and Rueda [11] to develop the geometric theory of the space H∞
v (U).

In Sect. 3, we show that the WH∞-BPB property for mappings f ∈
H∞

v (U,F ) implies the WH∞-BPB property for functions f ∈ H∞
v (U), and

that the converse implication holds whenever the space F enjoys the Linden-
strauss’ property β.

Finally, we devote Sect. 4 to state analogous results for the space H∞
vK(U,

F ), and we also show that H∞
vK(U,F ) has the WH∞-BPB property whenever

H∞
v (U) enjoys this property and F is a predual of a complex L1(μ)-space.

2. Weighted Spaces of Holomorphic Mappings with the
WH∞-BPB Property

Following to Lindenstrauss [28], a Banach space E is said to have the property
A if NA(E,F ) is norm dense in L(E,F ) for every Banach space F . To give a
sufficient condition for a Banach space E to enjoy the property A, the notion
of a set of uniformly strongly exposed points of BE was considered in [28].

Let E be a complex Banach space. A point x ∈ BE is said to be an exposed
point of BE if there exists a functional f ∈ SE∗ such that Re(f(x)) = 1 and
Re(f(y)) < 1 for all y ∈ BE with y �= x. A point x ∈ BE is a strongly exposed
point of BE if there exists a functional f ∈ SE∗ such that f(x) = 1 and
satisfies the following condition: for every 0 < ε < 1, there exists a 0 < δ < 1
such that if y ∈ BE and Re(f(y)) > 1 − δ, then ‖y − x‖ < ε.
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Given f ∈ SE∗ and 0 < δ < 1, the slice of BE associated to f and δ is
the set

S(BE , f, δ) = {x ∈ BE : Re(f(x)) > 1 − δ} .

A subset S ⊆ SE is said to be a set of uniformly strongly exposed points of
BE if there exists a set of functionals {fx : x ∈ S} ⊆ SE∗ with fx(x) = 1
for every x ∈ S such that, given 0 < ε < 1, there is 0 < δ < 1 satisfying
that diam(S(BE , fx, δ)) < ε for all x ∈ S. In this case, it is said that BE is
uniformly strongly exposed by the family of functionals {fx : x ∈ S}.

In [28, Proposition 1], Lindenstrauss proved that if E is a Banach space
containing a set of uniformly strongly exposed points S ⊆ SE such that BE =
co(S), then E has the property A. In fact, a reading of its proof shows that
for every Banach space F , the set

{
T ∈ L(E,F ) : ∃x ∈ S | ‖T (x)‖ = ‖T‖

}

is norm dense in L(E,F ). We will apply this result to prove the following.

Lemma 2.1. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Assume that TAtG∞

v (U) is a norm-closed set of uni-
formly strongly exposed points of BG∞

v (U). Then H∞
vNA(U,F ) is norm dense

in H∞
v (U,F ) for every complex Banach space F .

Proof. By Theorem 1.1, we have

BG∞
v (U) = abco

(
AtG∞

v (U)

)
= co

(
TAtG∞

v (U)

)
.

Therefore, for every Banach space F , the set
{
T ∈ L(G∞

v (U), F ) : ∃φ ∈ TAtG∞
v (U) | ‖T (φ)‖ = ‖T‖

}

is norm dense in L(G∞
v (U), F ) by [28, Proposition 1]. It follows that H∞

vNA(U,F )
is norm dense in H∞

v (U,F ). Indeed, let ε > 0 and f ∈ H∞
v (U,F ). Consider

Tf ∈ L(G∞
v (U), F ) by Theorem 1.1 and therefore there is T ∈ L(G∞

v (U), F )
with ‖T (λv(z)δz)‖ = ‖T‖ for some λ ∈ T and z ∈ U such that ‖Tf − T‖ < ε.
By Theorem 1.1 again, T = Tf0 for some f0 ∈ H∞

v (U,F ). Hence f0 ∈
H∞

vNA(U,F ) since

‖f0‖v = ‖Tf0‖ = ‖T‖ = ‖T (λv(z)δz)‖ = ‖Tf0(λv(z)δz)‖ = v(z) ‖f0(z)‖ .

and, finally, note that

‖f − f0‖v = ‖Tf−f0‖ = ‖Tf − Tf0‖ = ‖Tf − T‖ < ε.

�

We are now ready to state the main result of this paper.

Theorem 2.2. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Assume that TAtG∞

v (U) is a norm-closed set of uniformly
strongly exposed points of BG∞

v (U). Then H∞
v (U,F ) has the WH∞-BPB prop-

erty for every complex Banach space F .
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Proof. Let 0 < ε < 1. Since TAtG∞
v (U) is a set of uniformly strongly exposed

points of BG∞
v (U), there exists a set {f(λ,z) : λ ∈ T, z ∈ U} ⊆ SH∞

v (U) with
λv(z)f(λ,z)(z) = Jv(f(λ,z))(λv(z)δz) = 1 for every λ ∈ T and z ∈ U , and a
number 0 < δ < 1 such that

sup
{
diam(S(BG∞

v (U), Jv(f(λ,z)), δ)) : λ ∈ T, z ∈ U
}

< ε.

Take 0 < η < ε so that
(
1 +

ε

4

)
(1 − η) > 1 +

ε(1 − δ)
4

and consider f ∈ SH∞
v (U,F ), λ ∈ T and z ∈ U such that v(z) ‖f(z)‖ > 1 − η.

Define g0 : U → F by

g0(y) = f(y) +
ε

4
λf(λ,z)(y)v(z)f(z) (y ∈ U).

Clearly, g0 ∈ H∞
v (U,F ) with ‖f − g0‖v ≤ ε/4 since

v(y) ‖f(y) − g0(y)‖ =
ε

4
v(y)

∣
∣f(λ,z)(y)

∣
∣ v(z) ‖f(z)‖ ≤ ε

4
for all y ∈ U . Given y ∈ U , we claim that v(y)δy ∈ TS(BG∞

v (U), Jv(f(λ,z)), δ)
whenever v(y) ‖g0(y)‖ ≥ v(z) ‖g0(z)‖. Indeed, if v(y)δy /∈ TS(BG∞

v (U), Jv(f(λ,z)),
δ), we obtain

v(y) ‖g0(y)‖ =
∥
∥
∥v(y)f(y) +

ε

4
λv(y)f(λ,z)(y)v(z)f(z)

∥
∥
∥

=
∥
∥
∥v(y)f(y) +

ε

4
λJv(f(λ,z))(v(y)δy)v(z)f(z)

∥
∥
∥

≤ 1 +
ε

4

∣
∣Jv(f(λ,z))(v(y)δy)

∣
∣

= 1 +
ε

4
Re(Jv(f(λ,z))(αv(y)δy)) ≤ 1 +

ε(1 − δ)
4

,

where we have used that
∣
∣Jv(f(λ,z))(v(y)δy)

∣
∣ = αJv(f(λ,z))(v(y)δy) = Jv(f(λ,z))(αv(y)δy)

= Re(Jv(f(λ,z))(αv(y)δy))

for some α ∈ T, and as we also have

v(z) ‖g0(z)‖ =
(
1 +

ε

4

)
v(z) ‖f(z)‖ >

(
1 +

ε

4

)
(1 − η),

our claim follows.
Since ‖g0‖v ≥ v(z) ‖g0(z)‖ > 0, taking g = g0/ ‖g0‖v, we have

‖f − g‖v ≤ ‖f − g0‖v + ‖g0 − g‖v = ‖f − g0‖v + |‖g0‖v − 1| ≤ ε

4
+

ε

4
=

ε

2
.

The proof is finished if v(z) ‖g(z)‖ = ‖g‖v. Otherwise, take

0 < ε′ < min
{ε

2
, ‖g‖v − v(z) ‖g(z)‖

}
.
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Since H∞
vNA(U,F ) is norm dense in H∞

v (U,F ) by Lemma 2.1, we can take
f0 ∈ SH∞

v (U,F ) and z0 ∈ U such that v(z0) ‖f0(z0)‖ = 1 and ‖g − f0‖v < ε′.
From the inequality

v(z0) ‖g(z0)‖ ≥ v(z0) ‖f0(z0)‖ − ‖f0 − g‖v ≥ ‖f0‖v − ε′

≥ ‖f0‖v − (‖g‖v − v(z) ‖g(z)‖) = v(z) ‖g(z)‖ ,

we deduce that v(z0) ‖g0(z0)‖ ≥ v(z) ‖g0(z)‖ and our claim yields v(z0)δz0 ∈
TS(BG∞

v (U), Jv(f(λ,z)), δ). Hence λ0v(z0)δz0 ∈ S(BG∞
v (U), Jv(f(λ,z)), δ) for some

λ0 ∈ T, and thus we have

‖λv(z)δz − λ0v(z0)δz0‖ ≤ diam(S(BG∞
v (U), Jv(f(λ,z)), δ)) < ε

because also λv(z)δz ∈ S(BG∞
v (U), Jv(f(λ,z)), δ). Lastly, note that

‖f − f0‖v ≤ ‖f − g‖v + ‖g − f0‖v < ε. �

We now present a family of spaces H∞
v satisfying the conditions of Theo-

rem 2.2. For each p > 0, let us recall that vp : D → R
+ is the polynomial weight

defined by vp(z) = (1 − |z|2)p for all z ∈ D.
For each z ∈ D, let φz : D → D be the Möbius transformation given by

φz(w) =
z − w

1 − zw
(w ∈ D).

Consider the pseudohyperbolic metric ρ : D × D → R defined by

ρ(z, w) = |φz(w)| (z, w ∈ D).

It is easy to check that

|φ′
z(w)| =

1 − |z|2
|1 − zw|2

and

(1 − |w|2) |φ′
z(w)| =

(1 − |w|2)(1 − |z|2)
|1 − zw|2 = 1 −

∣
∣
∣
∣

z − w

1 − zw

∣
∣
∣
∣

2

= 1 − ρ(z, w)2

for all w ∈ D.
We will use a reformulation of an inequality stated in [21].

Lemma 2.3 [21, Lemma 5.1]. Let p > 0 and f ∈ H∞
vp

(D). Then there exists a
constant Np > 0 (depending only on p) such that

|vp(z)f(z) − vp(w)f(w)| ≤ Np ‖f‖vp
ρ(z, w)

for all z, w ∈ D with ρ(z, w) ≤ 1/2. �

In view of Lemma 2.3, we can make the following.
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Remark 2.4. For any f ∈ H∞
vp

(D), on the one hand, we have

|vp(z)f(z) − vp(w)f(w)| ≤ Np ‖f‖vp
ρ(z, w)

whenever z, w ∈ D with ρ(z, w) ≤ 1/2 by Lemma 2.3, and on the other hand,
we get

|vp(z)f(z) − vp(w)f(w)| ≤ 2 ‖f‖vp
≤ 4 ‖f‖vp

ρ(z, w)

whenever z, w ∈ D with ρ(z, w) > 1/2. Therefore, taking Mp = max{Np, 4},
we infer that

‖vp(z)δz − vp(w)δw‖ ≤ Mp ρ(z, w) (z, w ∈ D).

We will also apply the following easy fact.

Lemma 2.5. Let ε > 0. If λ ∈ C with |λ| ≤ 1 and 1 − Re(λ) < ε2/2, then
|1 − λ| < ε. �

We now have all the necessary tools to prove the following result.

Theorem 2.6. H∞
vp

(D, F ) with p ≥ 1 has the WH∞-BPB property for every
complex Banach space F .

Proof. Fix p ≥ 1. We will apply Theorem 2.2. First, we will prove that
TAtG∞

vp
(U) is a set of uniformly strongly exposed points of BG∞

vp
(U). Let λ ∈ T

and z ∈ D. Define the function fz : D → C by

fz(w) = (φ′
z(w))p (w ∈ D).

Clearly, λfz ∈ H(D) and since

(1 − |w|2)p|(λfz)(w)| = (1 − |w|2)p|φ′
z(w)|p =

(
1 − ρ(z, w)2

)p ≤ 1

for all w ∈ D, it follows that λfz ∈ H∞
vp

(D) with
∥
∥λfz

∥
∥

vp
≤ 1. Hence Jvp

(λfz) ∈
G∞

vp
(D)∗ with

∥
∥Jvp

(λfz)
∥
∥ ≤ 1 by Theorem 1.1. In fact,

Jvp
(λfz)(λvp(z)δz) = λvp(z)δz(λfz) = λvp(z)λfz(z) = vp(z)fz(z) = 1

where λvp(z)δz ∈ G∞
vp

(D) with ‖λvp(z)δz‖ = 1, and thus
∥
∥Jvp

(λfz)
∥
∥ = 1.

Now, we will prove that for every 0 < ε < 1 there exists 0 < δ < 1 such
that

Re(Jvp
(λfz)(φ)) > 1 − δ, φ ∈ BG∞

vp
(D) ⇒ ‖φ − λvp(z)δz‖ < ε.

Let 0 < ε < 1. Remark 2.4 provides a constant Mp > 1 so that

‖vp(z)δz − vp(w)δw‖ ≤ Mp ρ(z, w) (z, w ∈ D).

Take δ1 = ε/6Mp and we have

‖vp(z)δz − vp(w)δw‖ <
ε

6
(z, w ∈ D, ρ(z, w) < δ1).
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Let δ = (ε/36)
(
min

{
δ21 , ε/6

})2. We claim that

Re(Jvp
(λfz)(αvp(w)δw)) > 1 − 18δ

ε
, α ∈ T, w ∈ D

⇒ ‖αvp(w)δw − λvp(z)δz‖ <
ε

2
.

Indeed, let w ∈ D and α ∈ T with Re(Jvp
(λfz)(αvp(w)δw)) > 1 − 18δ/ε. It is

clear that

1 − Re
(
αvp(w)δw

(
λfz

))
<

18δ

ε
=

1
2

(
min

{
δ21 ,

ε

6

})2

and
∣
∣αvp(w)δw

(
λfz

)∣∣ ≤ ‖vp(w)δw‖ ‖fz‖vp
= 1,

and therefore Lemma 2.5 yields
∣
∣1 − αvp(w)δw

(
λfz

)∣∣ < min
{

δ21 ,
ε

6

}
.

Thus, by the properties of fz and the fact that p ≥ 1, it follows that

ρ(z, w)2 ≤ 1 −
(
1 − |w|2

)p |fz(w)| ≤
∣
∣
∣1 − αλ

(
1 − |w|2

)p
fz(w)

∣
∣
∣

=
∣
∣1 − αvp(w)δw

(
λfz

)∣∣ < min
{

δ21 ,
ε

6

}
,

so ρ(z, w) < δ1. Therefore, ‖vp(w)δw − vp(z)δz‖ < ε/6. Furthermore, we have

|λ − α| ≤ |λ − αvp(w)δw(fz)| + |αvp(w)δw(fz) − α|
=

∣
∣1 − αvp(w)δw

(
λfz

)∣∣ + |vp(w)δw(fz) − vp(z)δz(fz)|

<
ε

6
+ ‖vp(w)δw − vp(z)δz‖ <

ε

3
.

Hence

‖αvp(w)δw − λvp(z)δz‖ ≤ ‖αvp(w)δw − αvp(z)δz‖ + ‖αvp(z)δz − λvp(z)δz‖

<
ε

6
+ |α − λ| ‖vp(z)δz‖ <

ε

2
,

and this proves our claim.
Now, let φ ∈ BG∞

vp
(D) such that Re(Jvp

(λfz)(φ)) > 1 − δ. We will show

that ‖φ − λvp(z)δz‖ < ε. Since BG∞
vp

(D) = co
(
TAtG∞

vp
(D)

)
by Theorem 1.1,

then there exists γ ∈ co
(
TAtG∞

vp
(D)

)
such that ‖φ − γ‖ < min {ε/6, δ}. Thus

1 − Re
(
γ

(
λfz

))
= 1 − Re

(
φ

(
λfz

))
+ Re

(
φ

(
λfz

)
− γ

(
λfz

))
< 2δ.

Let z1, . . . , zm ∈ D, λ1, . . . , λm ∈ T and t1, . . . , tm ∈ [0, 1] be with
∑m

j=1 tj = 1
such that γ =

∑m
j=1 tjλjvp(zj)δzj

. Fix

I =
{

j ∈ {1, . . . , m} : vp(zj)Re
(
λjδzj

(
λfz

))
< 1 − 15δ

ε

}
.



The Bishop–Phelps–Bollobás Property Page 11 of 25   155 

On the one hand, we have

Re
(
γ

(
λfz

))
=

m∑

j=1

tjvp(zj)Re
(
λjδzj

(
λfz

))

≤
∑

j∈{1,...,m}\I

tj +

⎛

⎝
∑

j∈I

tj

⎞

⎠
(

1 − 15δ

ε

)
= 1 − 15δ

ε

∑

j∈I

tj ,

and it follows that
∑

j∈I

tj ≤ ε

15δ

(
1 − Re

(
γ

(
λfz

)))
<

ε

15δ
2δ <

ε

6
.

On the other hand, given j ∈ {1, . . . , m}\I, we have

1 − 18δ

ε
< 1 − 15δ

ε
≤ vp(zj)Re

(
λjδzj

(
λfz

))
= Re(Jvp

(λfz)(λjvp(zj)δzj
)),

and our previous claim yields
∥
∥λjvp(zj)δzj

− λvp(z)δz

∥
∥ < ε/2. Then

‖φ − λvp(z)δz‖ ≤ ‖φ − γ‖ + ‖γ − λvp(z)δz‖

<
ε

6
+

∥
∥
∥
∥
∥
∥

m∑

j=1

tjλjvp(zj)δzj
− λvp(z)δz

∥
∥
∥
∥
∥
∥

≤ ε

6
+

∑

j∈I

tj
∥
∥λjvp(zj)δzj

− λvp(z)δz

∥
∥

+
∑

j∈{1,...,m}\I

tj
∥
∥λjvp(zj)δzj

− λvp(z)δz

∥
∥

≤ ε

6
+ 2

∑

j∈I

tj +
ε

2

∑

j∈{1,...,m}\I

tj

<
ε

6
+ 2

ε

6
+

ε

2
= ε,

as required.
Second, we will prove that TAtG∞

vp
(D) is norm-closed in G∞

vp
(D). For it, let

(λn) and (zn) be sequences in T and D, respectively, such that (λnvp(zn)δzn
)

converges in norm to some φ ∈ G∞
vp

(D). This implies that ‖φ‖ = 1. Since T and
D are compact, we can take subsequences (λnk

)k and (znk
)k which converge

to some λ0 ∈ T and z0 ∈ D, respectively. If z0 ∈ T, we have

‖φ‖ = lim
k→∞

vp(znk
)
∥
∥
∥δznk

∥
∥
∥ = 0 · ‖δz0‖ = 0,

where we have used the continuity of Δv (see Theorem 1.1), and this is im-
possible. Hence z0 ∈ D, and we conclude that

φ = lim
k→∞

λnk
vp(znk

)δznk
= λ0vp(z0)δz0 .

�
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3. Relationship Between the Complex and Vector-Valued Cases
of the WH∞-BPB Property

Our goal in this section is to study when the WH∞-BPB property for vector-
valued weighted holomorphic mappings is inherited from the WH∞-BPB prop-
erty for complex-valued weighted holomorphic functions, and vice versa.

Proposition 3.1. Let U be an open subset of a complex Banach space E and
let v be a weight on U . Suppose that there exists a non-zero complex Banach
space F such that H∞

v (U,F ) has the WH∞-BPB the property. Then H∞
v (U)

has the WH∞-BPB property.

Proof. Let 0 < ε < 1 and assume that H∞
v (U,F ) has the WH∞-BPB property

with function ε 	→ η(ε). Take h ∈ SH∞
v (U), λ ∈ T and z ∈ U such that

v(z) |h(z)| > 1 − η(ε/2). Pick y0 ∈ SF and define f ∈ H∞
v (U,F ) by f(x) =

h(x)y0 for all x ∈ U . Clearly, f ∈ SH∞
v (U,F ) with v(z) ‖f(z)‖ > 1 − η(ε/2).

By hypothesis, we can find f0 ∈ SH∞
v (U,F ), λ0 ∈ T and z0 ∈ U such that

v(z0) ‖f0(z0)‖ = 1, ‖f − f0‖v < ε/2 and ‖λv(z)δz − λ0v(z0)δz0‖ < ε/2. Now
take y∗ ∈ SF ∗ such that y∗(v(z0)f0(z0)) = 1. We have

‖y∗(y0)h − y∗ ◦ f0‖v = ‖y∗ ◦ f − y∗ ◦ f0‖v ≤ ‖y∗‖ ‖f − f0‖v <
ε

2
,

and this implies

1 − |y∗(y0)| = ||y∗(y0)| − 1| = ∣
∣|y∗(y0)| ‖h‖v − ‖y∗ ◦ f0‖v

∣
∣ ≤ ‖y∗(y0)h − y∗ ◦ f0‖v <

ε

2
.

We can write |y∗(y0)| = α0y
∗(y0) for some α0 ∈ T. Take z∗ = α0y

∗. Clearly,
z∗ ∈ SF ∗ with 0 ≤ 1 − z∗(y0) < ε/2. Furthermore,

‖z∗(y0)h − z∗ ◦ f0‖v = ‖y∗(y0)h − y∗ ◦ f0‖v <
ε

2
,

and

‖h − z∗(y0)h‖v = |1 − z∗(y0)| ‖h‖v = 1 − z∗(y0) <
ε

2
.

Therefore, writing h0 = z∗ ◦ f0, we conclude that h0 ∈ SH∞
v (U) with v(z0)

|h0(z0)| = 1 and

‖h − h0‖v ≤ ‖h − z∗(y0)h‖v + ‖z∗(y0)h − h0‖v <
ε

2
+

ε

2
= ε. �

We can establish a similar result for the density of weighted holomorphic
mappings attaining their norms.

Proposition 3.2. Let U be an open subset of a complex Banach space E and
let v be a weight on U . Suppose that there exists a non-zero complex Banach
space F such that H∞

vNA(U,F ) is norm dense in H∞
v (U,F ). Then H∞

vNA(U) is
norm dense in H∞

v (U).
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Proof. Let ε > 0 and h ∈ SH∞
v (U). Pick y0 ∈ SF and define f ∈ H∞

v (U,F )
by f(x) = h(x)y0 for all x ∈ U . By hypothesis, we can find f0 ∈ SH∞

v (U,F )

and z0 ∈ U such that v(z0) ‖f0(z0)‖ = 1 and ‖f − f0‖v < ε/2. Now take
y∗ ∈ SF ∗ such that y∗(v(z0)f0(z0)) = 1. Let α0 ∈ T be so that |y∗(y0)| =
α0y

∗(y0) and take z∗ = α0y
∗ ∈ SF ∗ . As in the proof of Proposition 3.1,

we have ‖z∗(y0)h − z∗ ◦ f0‖v < ε/2 and ‖z∗(y0)h − h‖v < ε/2. Therefore,
h0 = z∗ ◦ f0 ∈ SH∞

v (U) with v(z0) |h0(z0)| = 1, hence h0 ∈ H∞
vNA(U)) and

satisfies that

‖h − h0‖v ≤ ‖h − z∗(y0)h‖v + ‖z∗(y0)h − h0‖v <
ε

2
+

ε

2
= ε. �

Our next aim is to study the converse problem of passing from the WH∞-
BPB property for complex-valued weighted holomorphic functions to vector-
valued mappings. We will need the following concept introduced by Linden-
strauss [28] and renamed as the property β by Schachermayer [33].

Definition 3.3 [28]. A Banach space F has the property β if there is a set
{(yi, y

∗
i ) : i ∈ I} ⊆ F × F ∗, and a constant 0 ≤ ρ < 1 satisfying the following

properties:
(i) ‖y∗

i ‖ = ‖yi‖ = y∗
i (yi) = 1 for every i ∈ I.

(ii) |y∗
i (yj)| ≤ ρ for every i, j ∈ I with i �= j.

(iii) ‖y‖ = sup {|y∗
i (y)| : i ∈ I} for every y ∈ F .

Examples of Banach spaces with the property β are the finite-dimensional
spaces whose unit ball is a polyhedron, the sequence spaces c0 and �1 endowed
with their usual norms, and those spaces of continuous functions C(K) where
K is a compact Hausdorff topological space having a dense set of isolated
points. Besides, Partington [32] proved that every Banach space admits an
equivalent norm with this property.

Our arguments will require a version for weighted holomorphic mappings
of the concept of the adjoint operator T ∗ ∈ L(F ∗, E∗) of an operator T ∈
L(E,F ). Let f ∈ H∞

v (U,F ). Given y∗ ∈ F ∗, it is clear that y∗ ◦ f ∈ H(U)
and

v(z) |(y∗ ◦ f)(z)| = v(z) |y∗(f(z))| ≤ v(z) ‖y∗‖ ‖f(z)‖ ≤ ‖f‖v ‖y∗‖
for all z ∈ U . Hence y∗ ◦f ∈ H∞

v (U) with ‖y∗ ◦ f‖v ≤ ‖f‖v ‖y∗‖. This justifies
the following.

Definition 3.4. Let U be an open subset of a complex Banach space E, v be
a weight on U and F be a complex Banach space. Given f ∈ H∞

v (U,F ), the
weighted holomorphic transpose of f is the mapping f t : F ∗ → H∞

v (U) given
by f t(y∗) = y∗ ◦ f for all y∗ ∈ F ∗.

Clearly, f t is linear and continuous with ||f t|| ≤ ‖f‖v. Furthermore,
||f t|| = ‖f‖v. Indeed, for 0 < ε < ‖f‖v, take z ∈ U such that v(z) ‖f(z)‖ >
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‖f‖v−ε. By Hahn–Banach Theorem, there exists y∗ ∈ SF ∗ such that |y∗(f(z))|
= ‖f(z)‖. We have

∥
∥f t

∥
∥ ≥ sup

x∗ �=0

‖f t(x∗)‖v

‖x∗‖ ≥ ‖y∗ ◦ f‖v

‖y∗‖ ≥ v(z) |y∗(f(z))| = v(z) ‖f(z)‖ > ‖f‖v − ε.

Letting ε → 0, one obtains ||f t|| ≥ ‖f‖v, as desired. Finally, note that

(Jv ◦ f t)(y∗)(v(z)δz) = Jv(f t(y∗))(v(z)δz) = Jv(y∗ ◦ f)(v(z)δz)

= v(z)(y∗ ◦ f)(z) = v(z)y∗(f(z))

= y∗(Tf (v(z)δz)) = (Tf )∗(y∗)(v(z)δz)

for all y∗ ∈ F ∗ and z ∈ U , where (Tf )∗ : F ∗ → G∞
v (U)∗ is the adjoint operator

of Tf . Since G∞
v (U) = lin(AtG∞

v (U)), we deduce that Jv ◦ f t = (Tf )∗. So we
have proved the following.

Proposition 3.5. Let U be an open subset of a complex Banach space E, v be
a weight on U and F be a complex Banach space. If f ∈ H∞

v (U,F ), then
f t ∈ L(F ∗,H∞

v (U)) with ||f t|| = ‖f‖v and f t = J−1
v ◦ (Tf )∗. �

We make a brief pause in our study on the WH∞-BPB property to
show that this transposition permits us to identify the spaces H∞

v (U,F ) and
H∞

vK(U,F ) with certain distinguished subspaces of operators.

Proposition 3.6. Let U be an open subset of a complex Banach space E, v be a
weight on U and F be a complex Banach space. Then f 	→ f t is an isometric
isomorphism from H∞

v (U,F ) onto L((F ∗, w∗); (H∞
v (U), w∗)).

Proof. Let f ∈ H∞
v (U,F ). Hence f t = J−1

v ◦(Tf )∗ ∈ L((F ∗, w∗); (H∞
v (U), w∗)).

We have ||f t|| = ‖f‖v by Proposition 3.5. To show the surjectivity of the
mapping in the statement, let T ∈ L((F ∗, w∗); (H∞

v (U), w∗)). Then the map-
ping Jv ◦ T is in L((F ∗, w∗); (G∞

v (U)∗, w∗)) and therefore there is a S ∈
L(G∞

v (U), F ) such that S∗ = Jv ◦ T . By Theorem 1.1, there exists f ∈
H∞

v (U,F ) such that Tf = S, and thus T = J−1
v ◦ (Tf )∗ = f t, as desired.

The next result contains a version of Schauder Theorem for mappings in
H∞

vK(U,F ).

Theorem 3.7. Let U be an open subset of a complex Banach space E, v be a
weight on U and F be a complex Banach space. For any f ∈ H∞

v (U,F ), the
following assertions are equivalent:

(i) f ∈ H∞
vK(U,F ).

(ii) f t : F ∗ → H∞
v (U) is compact.

(iii) f t : F ∗ → H∞
v (U) is bounded-weak*-to-norm continuous.

(iv) f t : F ∗ → H∞
v (U) is compact and bounded-weak*-to-weak continuous.

(v) f t : F ∗ → H∞
v (U) is compact and weak*-to-weak continuous.
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Proof. (i) ⇔ (ii): applying Theorem 1.1, the Schauder Theorem, and the ideal
property of compact operators between Banach spaces, we have

f ∈ H∞
vK(U,F ) ⇔ Tf ∈ K(G∞

v (U), F )

⇔ (Tf )∗ ∈ K(F ∗, G∞
v (U)∗)

⇔ f t = J−1
v ◦ (Tf )∗ ∈ K(F ∗,H∞

v (U)).

(i) ⇔ (iii): similarly,

f ∈ H∞
vK(U,F ) ⇔ Tf ∈ K(G∞

v (U), F )

⇔ (Tf )∗ ∈ L((F ∗, bw∗);G∞
v (U)∗)

⇔ f t = J−1
v ◦ (Tf )∗ ∈ L((F ∗, bw∗);H∞

v (U)),

by Theorem 1.1 and [29, Theorem 3.4.16].
(iii) ⇔ (iv) ⇔ (v): it follows from [24, Proposition 3.1]. �

Proposition 3.8. Let U be an open subset of a complex Banach space E, v be a
weight on U and F be a complex Banach space. Then f 	→ f t is an isometric
isomorphism from H∞

vK(U,F ) onto L((F ∗, bw∗);H∞
v (U)).

Proof. Let f ∈ H∞
vK(U,F ). Then f t ∈ L((F ∗, bw∗);H∞

v (U)) by Theorem
3.7 and ||f t|| = ‖f‖v by Proposition 3.5. To prove the surjectivity, take
T ∈ L((F ∗, bw∗);H∞

v (U)). Then Jv ◦ T ∈ L((F ∗, bw∗);G∞
v (U)∗). If QG∞

v (U)

denotes the natural injection from G∞
v (U) into G∞

v (U)∗∗, then QG∞
v (U)(φ) ◦

Jv ◦ T ∈ L((F ∗, bw∗); C) for all φ ∈ G∞
v (U) and, by [29, Theorem 2.7.8],

QG∞
v (U)(φ) ◦ Jv ◦ T ∈ L((F ∗, w∗); C) for all φ ∈ G∞

v (U), that is, Jv ◦ T ∈
L((F ∗, w∗); (G∞

v (U)∗, w∗)) by [29, Corollary 2.4.5]. Hence Jv ◦ T = S∗ for
some S ∈ L(G∞

v (U), F ) by [29, Theorem 3.1.11]. Note that S∗ ∈ L((F ∗, bw∗);
G∞

v (U)∗) and this means that S ∈ K(G∞
v (U), F ) by [29, Theorem 3.4.16].

Now, S = Tf for some f ∈ H∞
vK(U,F ) by Theorem 1.1. Finally, we have

T = J−1
v ◦ S∗ = J−1

v ◦ (Tf )∗ = f t. �

Returning to the WH∞-BPB property, we can adapt the proof of [3,
Theorem 2.2] to yield the next result in the weighted holomorphic setting.

Theorem 3.9. Let U be an open subset of a complex Banach space E and let v
be a weight on U . Suppose that H∞

v (U) has the WH∞-BPB property and let
F be a complex Banach space satisfying the property β. Then H∞

v (U,F ) has
the WH∞-BPB property.

Proof. By hypothesis, H∞
v (U) has the WH∞-BPB property by a function

ε 	→ η(ε). Take a set {(yi, y
∗
i ) : i ∈ I} ⊆ F × F ∗ and a number 0 ≤ ρ < 1

satisfying Definition 3.3. Let 0 < ε < 1 and choose 0 < γ < ε/8 so that
ρ(ε/4 + 2γ) < ε/4. Consider f ∈ SH∞

v (U,F ), λ ∈ T and z ∈ U such that
v(z) ‖f(z)‖ > 1−η(γ). Take i ∈ I so that v(z) |y∗

i (f(z))| > 1−η(γ). Note that
f t(y∗

i ) ∈ H∞
v (U) with

∥
∥f t(y∗

i )
∥
∥

v
≥ v(z) |y∗

i (f(z))| > 1 − η(γ) > 1 − γ.
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By hypothesis there exist f0 ∈ SH∞
v (U), λ0 ∈ T and z0 ∈ U such that∥

∥f0 − f t(y∗
i )/ ‖f t(y∗

i )‖v

∥
∥

v
< γ, v(z0) |f0(z0)| = 1 and ‖λv(z)δz − λ0v(z0)δz0‖ <

γ. Hence we have

∥
∥f0 − f t(y∗

i )
∥
∥

v
≤

∥
∥
∥
∥f0 − f t(y∗

i )
‖f t(y∗

i )‖v

∥
∥
∥
∥

v

+
∥
∥
∥
∥

f t(y∗
i )

‖f t(y∗
i )‖v

− f t(y∗
i )

∥
∥
∥
∥

v

< γ

+
(
1 −

∥
∥f t(y∗

i )
∥
∥

v

)
< 2γ.

Define g0 : U → F by

g0(y) = f(y) +
[(

1 +
ε

4

)
f0(y) − f t(y∗

i )(y)
]
yi (y ∈ U).

Clearly, g0 ∈ H∞
v (U,F ) with ‖f − g0‖v < ε/2 since

v(y) ‖f(y) − g0(y)‖ ≤ v(y)
ε

4
|f0(y)| + v(y)

∣
∣f0(y) − f t(y∗

i )(y)
∣
∣ ≤ ε

4
+ 2γ <

ε

2

for all y ∈ U . We will now prove that ‖g0‖v = v(z0) ‖g0(z0)‖. Note that

(g0)t(y∗) = f t(y∗) + y∗(yi)
(ε

4
f0 + f0 − f t(y∗

i )
)

(y∗ ∈ F ∗),

and using the properties of {(yi, y
∗
i ) : i ∈ I} in Definition 3.3, it holds that

∥
∥(g0)t

∥
∥ = sup

y∗∈SF∗

∥
∥(g0)t(y∗)

∥
∥

v
= sup

y∗∈SF∗
sup
y∈U

v(y)
∣
∣(g0)t(y∗)(y)

∣
∣

= sup
y∈U

sup
y∗∈SF∗

|y∗(v(y)g0(y))|

= sup
y∈U

‖v(y)g0(y)‖

= sup
y∈U

sup
i∈I

|y∗
i (v(y)g0(y))|

= sup
i∈I

sup
y∈U

v(y)
∣
∣(g0)t(y∗

i )(y)
∣
∣

= sup
i∈I

∥
∥(g0)t(y∗

i )
∥
∥

v
.

Given j ∈ I with j �= i, we have
∥
∥(g0)t(y∗

j )
∥
∥

v
≤ 1 + ρ

(ε

4
+ 2γ

)
.

Moreover, (g0)t(y∗
i ) = (1 + ε/4)f0 and thus

∥
∥(g0)t(y∗

i )
∥
∥

v
=

(
1 +

ε

4

)
‖f0‖v = 1 +

ε

4
> 1 + ρ

(ε

4
+ 2γ

)
.

Therefore, ‖(g0)t‖ = ‖(g0)t(y∗
i )‖v. By Proposition 3.5, we deduce

‖g0‖v =
∥
∥(g0)t

∥
∥ =

∥
∥(g0)t(y∗

i )
∥
∥

v
=

(
1 +

ε

4

)
‖f0‖v =

(
1 +

ε

4

)
v(z0) |f0(z0)|

= v(z0) |y∗
i (g0(z0))| = |y∗

i (v(z0)g0(z0))| ≤ v(z0) ‖g0(z0)‖ ≤ ‖g0‖v ,



The Bishop–Phelps–Bollobás Property Page 17 of 25   155 

hence ‖g0‖v = v(z0) ‖g0(z0)‖, as required. Finally, take g = g0/ ‖g0‖v ∈
SH∞

v (U,F ), and one has v(z0) ‖g(z0)‖ = 1 and

‖f − g‖v ≤ ‖f − g0‖v + ‖g0 − g‖v = ‖f − g0‖v + |‖g0‖v − 1| <
ε

2
+

ε

2
= ε.

�

We now obtain a similar result for the norm density of H∞
vNA(U,F ) un-

der the property quasi-β, a weaker property than the property β which was
introduced by Acosta et al. [2].

Note that every Banach space with the property β has also the property
quasi-β. For a finite-dimensional Banach space with the property quasi-β but
not β, see [2, Example 5].

Definition 3.10 [2]. A Banach space F has the property quasi-β if there is a
subset A ⊆ SF ∗ , a mapping σ : A → SF and a function ρ : A → R such that
the following conditions hold:

(i) y∗(σ(y∗)) = 1 for every y∗ ∈ A.
(ii) |z∗(σ(y∗))| ≤ ρ(y∗) < 1 for every y∗, z∗ ∈ A with y∗ �= z∗.
(iii) For every e∗ ∈ Ext(BF ∗), there exist a set Ae∗ ⊆ A and a scalar t ∈ T

such that te∗ ∈ Ae∗
w∗

and sup {ρ(y∗) : y∗ ∈ Ae∗} < 1.

Theorem 3.11. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Suppose that H∞

vNA(U) is norm dense in H∞
v (U) and let F

be a complex Banach space satisfying the property quasi-β. Then H∞
vNA(U,F )

is norm dense in H∞
v (U,F ).

Proof. We essentially follow the proof of Theorem 2 in [2]. Let ε > 0 and
f ∈ SH∞

v (U,F ). By [34, Proposition 4], there exists T ∈ SL(G∞
v (U),F ) such that

‖Tf − T‖ < ε/2 and T ∗ ∈ NA(F ∗, G∞
v (U)∗). By Theorem 1.1, T = Tg for

some g ∈ SH∞
v (U,F ), and we have

‖f − g‖v = ‖Tf − Tg‖ = ‖Tf − T‖ <
ε

4
.

By [27, Theorem 5.8], T ∗ and, consequently also gt = J−1
v ◦ (Tg)∗ = J−1

v ◦
T ∗ : F ∗ → H∞

v (U), attains its norm at a point e∗ ∈ Ext(BF ∗), and Definition
3.10 provides us a set Ae∗ ⊆ A and a scalar t ∈ T such that te∗ ∈ Ae∗

w∗
and

r := sup {ρ(y∗) : y∗ ∈ Ae∗} < 1.
Now, fix a number 0 < γ < ε/16 such that r(ε/8 + 2γ) < ε/8, and since

1 =
∥
∥gt

∥
∥ =

∥
∥gt(te∗)

∥
∥

v
= sup

{∥
∥gt(y∗)

∥
∥

v
: y∗ ∈ Ae∗

}
,

we can find y∗
1 ∈ Ae∗ so that ‖gt(y∗

1)‖v > 1 − γ. Since gt(y∗
1) ∈ H∞

v (U), by
hypothesis, there exist g0 ∈ SH∞

v (U) and z0 ∈ U such that v(z0) |g0(z0)| = 1
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and ‖g0 − gt(y∗
1)/ ‖gt(y∗

1)‖v‖
v

< γ. Consequently, we have

∥
∥g0 − gt(y∗

1)
∥
∥

v
≤

∥
∥
∥
∥g0 − gt(y∗

1)
‖gt(y∗

1)‖v

∥
∥
∥
∥

v

+
∥
∥
∥
∥

gt(y∗
1)

‖gt(y∗
1)‖v

− gt(y∗
1)

∥
∥
∥
∥

v

< γ

+
(
1 −

∥
∥gt(y∗

i )
∥
∥

v

)
< 2γ.

Define f0 : U → F by

f0(y) = g(y) +
[(

1 +
ε

8

)
g0(y) − gt(y∗

1)(y)
]
y1 (y ∈ U),

where y1 = σ(y∗
1) ∈ SF . Clearly, f0 ∈ H∞

v (U,F ) with ‖g − f0‖v < ε/4 since

v(y) ‖g(y) − f0(y)‖ ≤ v(y)
ε

8
|g0(y)| + v(y)

∣
∣g0(y) − gt(y∗

1)(y)
∣
∣ ≤ ε

8
+ 2γ <

ε

4

for all y ∈ U . Hence

‖f − f0‖v ≤ ‖f − g‖v + ‖g − f0‖v <
ε

2
.

We now show that ‖f0‖v = v(z0) ‖f0(z0)‖. For it, note first that Condition
(iii) in Definition 3.10 implies that the set A ⊆ SF ∗ is norming for F and,
consequently,

∥
∥(f0)t

∥
∥ = sup

{∥
∥(f0)t(y∗)

∥
∥

v
: y∗ ∈ A

}
.

Since

(f0)t(y∗) = gt(y∗) + y∗(y1)
(ε

8
g0 + g0 − gt(y∗

1)
)

(y∗ ∈ F ∗),

we have
∥
∥(f0)t(y∗)

∥
∥

v
≤ 1 + ρ(y∗

1)
(ε

8
+ 2γ

)
≤ 1 + r

(ε

8
+ 2γ

)
(y∗ ∈ A, y∗ �= y∗

1).

Moreover, (f0)t(y∗
1) = (1 + ε/8)g0 and we obtain

∥
∥(f0)t(y∗

1)
∥
∥

v
=

(
1 +

ε

8

)
‖g0‖v = 1 +

ε

8
> 1 + r

(ε

8
+ 2γ

)
.

Therefore, ‖(f0)t‖ = ‖(f0)t(y∗
1)‖v. It follows that

‖f0‖v =
∥
∥(f0)t

∥
∥ =

∥
∥(f0)t(y∗

1)
∥
∥

v
=

(
1 +

ε

8

)
‖g0‖v =

(
1 +

ε

8

)
v(z0) |g0(z0)|

= v(z0)
∣
∣(f0)t(y∗

1)(z0)
∣
∣ = |y∗

1(v(z0)f0(z0))| ≤ v(z0) ‖f0(z0)‖ ≤ ‖f0‖v ,

and so ‖f0‖v = v(z0) ‖f0(z0)‖. Taking h0 = f0/ ‖f0‖v ∈ SH∞
v (U,F ), we conclude

that v(z0) ‖h0(z0)‖ = 1 and

‖f − h0‖v ≤ ‖f − f0‖v + ‖f0 − h0‖v = ‖f − f0‖v + |‖f0‖v − 1| < ε. �
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4. The WH∞-BPB Property for Mappings with a Relatively
Compact v-Range

We now present some versions of the preceding results for mappings f ∈
H∞

v (U,F ) such that vf has a relatively compact range in F .

Lemma 4.1. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Assume that TAtG∞

v (U) is a norm-closed set of uni-
formly strongly exposed points of BG∞

v (U). Then H∞
vKNA(U,F ) is norm dense

in H∞
vK(U,F ) for every complex Banach space F .

Proof. A reading of the proof of [28, Proposition 1] shows that for every Banach
space F , the set

{
T ∈ K(G∞

v (U), F ) : ∃φ ∈ TAtG∞
v (U) | ‖T (φ)‖ = ‖T‖

}

is norm dense in K(G∞
v (U), F ). Let ε > 0 and f ∈ H∞

vK(U,F ). Since Tf ∈
K(G∞

v (U), F ) by Theorem 1.1, we can find T ∈ K(G∞
v (U), F ), λ ∈ T and

z ∈ U such that ‖T (λv(z)δz)‖ = ‖T‖ and ‖Tf − T‖ < ε. By Theorem 1.1,
T = Tf0 for some f0 ∈ H∞

vK(U,F ). Similarly, as in the proof of Lemma 2.1, we
deduce that f0 ∈ H∞

vNA(U,F ) and ‖f − f0‖v < ε. �

This result can be improved as follows.

Proposition 4.2. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Assume that TAtG∞

v (U) is a norm-closed set of uniformly
strongly exposed points of BG∞

v (U). Then H∞
vK(U,F ) has the WH∞-BPB prop-

erty for every complex Banach space F .

Proof. Following the proof of Theorem 2.2, it is sufficient to note that if f ∈
H∞

vK(U,F ), then the mapping g0 belongs to H∞
vK(U,F ) since v(g0 − f) has

a finite dimensional range, and the mapping f0 belongs to H∞
v (U,F ) by the

application now of Lemma 4.1. �

The proof of Theorem 2.6 shows that for any p ≥ 1, TAtG∞
vp

(D) is a
norm-closed set of uniformly strongly exposed points of BG∞

vp
(D). Therefore,

Proposition 4.2 yields the following.

Proposition 4.3. H∞
vpK(D, F ) with p ≥ 1 has the WH∞-BPB property for ev-

ery complex Banach space F . �

A reading of the proofs of Theorems 3.9 and 3.11 shows that the following
result holds.

Proposition 4.4. Let U be an open subset of a complex Banach space E and v
be a weight on U .

(i) If H∞
v (U) has the WH∞-BPB property then for all 0 ≤ ρ < 1, there

exists a map η such that for all complex Banach space F with the property
β for ρ, H∞

vK(U,F ) has the WH∞-BPB property with respect to η.
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(ii) If H∞
vNA(U) is norm dense in H∞

v (U), then H∞
vKNA(U,F ) is norm dense

in H∞
vK(U,F ) for any complex Banach space F with the property

quasi-β. �

Let us recall that a Banach space F is said to be a Lindenstrauss space
if F ∗ is isometrically isomorphic to an L1(μ) space for some measure μ.

The next result, influenced by [4, Theorem 4.2], shows that the space
of mappings f ∈ H(U,F ) such that vf has a relatively compact range in a
Lindenstrauss space F enjoys the WH∞-BPB property whenever H∞

v (U) also
has it.

Theorem 4.5. Let U be an open subset of a complex Banach space E and let
v be a weight on U . Suppose that H∞

v (U) has the WH∞-BPB property. Then
H∞

vK(U,F ) has the WH∞-BPB property for any complex Lindenstrauss space
F .

Proof. Let 0 < ε < 1 and let ε 	→ η(ε) be the function from R
+ into R

+ which
gives the WH∞-BPB property for H∞

v (U). Since �n
∞ has the property β for

every n ∈ N with ρ = 0, Proposition 4.4 assures that H∞
vK(U, �n

∞) enjoys the
WH∞-BPB property with the same function ε 	→ η(ε). Take

η′(ε) = min
{ε

4
, η

(ε

2

)}
> 0,

and let f ∈ SH∞
vK(U,F ), λ ∈ T and z ∈ U be so that v(z) ‖f(z)‖ > 1 − η′(ε).

Choose

0 < δ <
1
4

min
{ε

4
, v(z) ‖f(z)‖ − 1 + η

(ε

2

)}

and let {y1, . . . , yn} be a δ-net of Tf (BG∞
v (U)). By [26, Theorem 3.1], there

exist a natural number m and a subspace F0 ⊆ F , isometric to �m
∞, such that

d(yi, F0) < δ for all i ∈ {1, . . . , n}. Let P : F → F0 be a surjective projection
with ‖P‖ = 1.

We claim that ‖f − P ◦ f‖v ≤ 4δ. Indeed, fix φ ∈ BG∞
v (U) and so ‖Tf (φ)

−yi‖ < δ for some i ∈ {1, . . . , n}. Let y0 ∈ F0 be such that ‖y0 − yi‖ < δ.
Then we have

‖Tf (φ) − P (Tf (φ))‖ ≤ ‖Tf (φ) − yi‖ + ‖yi − y0‖ + ‖y0 − P (Tf (φ))‖
≤ 2δ + ‖P (y0) − P (Tf (φ))‖ ≤ 2δ + ‖y0 − Tf (φ)‖
≤ 2δ + ‖y0 − yi‖ + ‖yi − Tf (φ)‖ < 4δ,

and thus ‖Tf − P ◦ Tf‖ ≤ 4δ. Since Tf − P ◦ Tf ∈ L(G∞
v (U), F ) and (Tf −

P ◦ Tf ) ◦ Δv = f − P ◦ f , it follows that Tf − P ◦ Tf = Tf−P◦f by Theorem
1.1. Hence ‖f − P ◦ f‖v ≤ 4δ and this proves our claim. This implies that
‖P ◦ f‖v ≥ ‖f‖v − 4δ = 1 − 4δ > 0. Moreover, we have

v(z) ‖f(z) − P (f(z))‖ = ‖Tf (v(z)δz) − P (Tf (v(z)δz))‖ < 4δ



The Bishop–Phelps–Bollobás Property Page 21 of 25   155 

and therefore,

v(z) ‖P (f(z))‖ > v(z) ‖f(z)‖ − 4δ > 1 − η
(ε

2

)
.

Consequently, g = (P◦f)/ ‖P ◦ f‖v : U → F0 is in SH∞
v (U,F ) with v(z) ‖g(z)‖ >

1 − η(ε/2). Since H∞
vK(U, �m

∞) has the WH∞-BPB property by the func-
tion ε 	→ η(ε) and F0 ⊆ F is isometrically isomorphic to �m

∞, there are
a mapping f0 ∈ H∞

vK(U,F0) ⊆ H∞
vK(U,F ) with ‖f0‖v = 1, a point z0 ∈

U and a scalar λ0 ∈ T so that v(z0) ‖f0(z0)‖ = 1, ‖f0 − g‖v < ε/2 and
‖λv(z)δz − λ0v(z0)δz0‖ < ε/2. Lastly, we have

‖f − f0‖v ≤ ‖f − P ◦ f‖v + ‖P ◦ f − g‖v + ‖g − f0‖v < 4δ + 1

−‖P ◦ f‖v +
ε

2
≤ 8δ +

ε

2
< ε.

�
Our next result allows us to transfer the WH∞-BPB property for map-

pings in H∞
vK from range spaces to domain spaces. Its proof is based on [23,

Lemma 3.4].

Proposition 4.6. Let U be an open subset of a complex Banach space E, let
v be a weight on U and let F be a complex Banach space. Suppose that there
exists a net of norm-one projections (Pi)i∈I ⊆ L(F, F ) such that (Pi(y))i∈I

converges in norm to y for every y ∈ F . If there is a function η : R
+ → R

+

such that for every i ∈ I, H∞
vK(U,Pi(F )) has the WH∞-BPB property by the

function η, then H∞
vK(U,F ) has the WH∞-BPB property.

Proof. Let 0 < ε < 1 and put

η′(ε) =
1
2

min
{
ε, η

(ε

2

)}
.

Let f ∈ SH∞
vK(U,F ), λ ∈ T and z ∈ U such that v(z) ‖f(z)‖ > 1 − η′(ε). By the

relative compactness of (vf)(U) in F , we can find a set {y1, . . . , yn} ⊆ F such
that

min {‖v(x)f(x) − yj‖ : 1 ≤ j ≤ n} <
η′(ε)

3
for every x ∈ U . By hypothesis, there exists i ∈ I such that

‖Pi(yj) − yj‖ <
η′(ε)

3
(j = 1, . . . , n).

Given x ∈ U , we have

‖v(x)(f(x) − Pi(f(x)))‖ ≤ ‖v(x)f(x) − yj‖ + ‖yj − Pi(yj)‖
+ ‖Pi(yj) − Pi(v(x)f(x))‖

< 2 ‖v(x)f(x) − yj‖ +
η′(ε)

3
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for all 1 ≤ j ≤ n, and thus

‖v(x)(f(x) − Pi(f(x)))‖ ≤ 2min {‖v(x)f(x) − yj‖ : 1 ≤ j ≤ n} +
η′(ε)

3
< η′(ε).

Therefore, ‖Pi ◦ f − f‖v ≤ η′(ε). Clearly, g = Pi ◦ f ∈ H∞
vK(U,Pi(F )) with

‖g‖v ≤ 1 and

v(z) ‖g(z)‖ ≥ v(z) ‖f(z)‖ − ‖Pi ◦ f − f‖v > 1 − 2η′(ε) ≥ 1 − η
(ε

2

)
.

Since H∞
vK(U,Pi(F )) has the WH∞-BPB property by the function η, we can

take a mapping h0 ∈ SH∞
vK(U,Pi(F )), a point z0 ∈ U and a scalar λ0 ∈ T such

that v(z0) ‖h0(z0)‖ = 1, ‖h0 − g‖v < ε/2 and ‖λv(z)δz − λ0v(z0)δz0‖ < ε/2.
Finally, take f0 = ι ◦ h0, where ι is the inclusion operator from Pi(F ) into F .
Clearly, f0 ∈ SH∞

vK(U,F ) with v(z0) ‖f0(z0)‖ = 1 and

‖f0 − f‖v ≤ ‖f0 − g‖v + ‖g − f‖v = ‖h0 − g‖v + ‖g − f‖v <
ε

2
+ η′(ε) ≤ ε.

�

With a similar proof to that of Proposition 4.6, we can state the analogue
for the norm density of H∞

vKNA(U,F ) in H∞
vK(U,F ).

Proposition 4.7. Let U be an open subset of a complex Banach space E, v be
a weight on U and F be a complex Banach space. Suppose that there exists
a net of norm-one projections (Pi)i∈I ⊆ L(F, F ) such that (Pi(y))i∈I con-
verges in norm to y for every y ∈ F . If H∞

vKNA(U,Pi(F )) is norm dense in
H∞

vK(U,Pi(F )) for every i ∈ I, then H∞
vKNA(U,F ) is norm dense in H∞

vK

(U,F ). �

A consequence of Proposition 4.7 yields the norm density of H∞
vKNA(U,F )

whenever F is a predual of a complex L1(μ)-space.

Corollary 4.8. Let U be an open subset of a complex Banach space E and
let v be a weight on U . Suppose that H∞

vNA(U) is norm dense in H∞
v (U).

Then H∞
vKNA(U,F ) is norm dense in H∞

vK(U,F ) for any complex Linden-
strauss space F . �

Proof. It suffices to note that every finite subset of a Lindenstrauss space is “al-
most” contained in a subspace of it which is isometrically isomorphic to an �n

∞
space (see [26, Theorem 3.1]). Since all these subspaces are one-complemented
and have the property β, Proposition 4.4 (ii) gives the hypothesis of Proposi-
tion 4.7. �
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[15] Cascales, B., Chiclana, R., Garćıa-Lirola, L.C., Mart́ın, M., Rueda-Zoca, A.:
On strongly norm attaining Lipschitz maps. J. Funct. Anal. 277(6), 1677–1717
(2019)

[16] Chiclana, R., Mart́ın, M.: The Bishop–Phelps–Bollobás property for Lipschitz
maps. Nonlinear Anal. 188, 158–178 (2019)
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