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Abstract. In an earlier work (Castillo et al. in J Math Phys 61:103505,
2020), it was established, from a hypergeometric-type difference equation,
tractable sufficient conditions for the monotonicity with respect to a real
parameter of zeros of classical discrete orthogonal polynomials on linear,
quadratic, q-linear, and q-quadratic grids. In this work, we continue with
the study of zeros of these polynomials by giving a comparison theorem of
Sturm type. As an application, we analyze in a simple way some relations
between the zeros of certain classical discrete orthogonal polynomials.
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1. Introduction

In a companion paper (see [4]), we give new tractable sufficient conditions for
the monotonicity with respect to a real parameter of zeros of classical orthog-
onal polynomials (COP) on linear, quadratic, q-linear and q-quadratic grids
(see, e.g., [2,3]). In particular, we analyze in a simple and unified way the mono-
tonicity of the zeros of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual
Hahn, q-Meixner, quantum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk,
q-Charlier, Al-Salam-Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall,
q-Bessel, q-Racah and dual q-Hahn polynomials. However, these results do
not allow us to compare the zeros of the elements of two different sequences
of COP. For this purpose we need a “comparison theorem” of Sturm type for
difference equations. In [12, Corollary 1], Lun and Rafaeli used a comparison
theorem of Sturm type to obtain inequalities between the zeros of solutions
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of two differential equations. As we will see, this result can be extended to
difference equations and be used to obtain relations between the generalized
zeros of two COP.

For the linear grid, there is a wide variety of results for a Sturm type
comparison theorem, e.g., [1,6,8,18]. In [7], Gishe and Toókos prove a Sturm
type comparison theorem for q-difference equations and study the convexity
of the zeros of some q-orthogonal polynomials. However, as far as we know,
[12, Corollary 1] has not yet been considered for the linear grid nor the general
case. The fundamental purpose of this note is to establish the first results in
this direction. To achieve this objective, as in [4], our starting point is the
hypergeometric-type difference equation introduced by Nikiforov and Uvarov
in [14, (5)] (see also [15, p. 127] and [13, p. 71]):

ã(x(s))
Δ

Δx(s − 1/2)

(∇y(x(s))
∇x(s)

)

+
˜b(x(s))

2

(

Δy(x(s))
Δx(s)

+
∇y(x(s))
∇x(s)

)

+ c y(x(s)) = 0

or, equivalently,

a(s)
Δ

Δx(s − 1/2)

(∇y(x(s))
∇x(s)

)

+ b(s)
Δy(x(s))
Δx(s)

+ c y(x(s)) = 0, (1.1)

where

a(s) = ã(x(s)) − 1
2
˜b(x(s))Δx(s − 1/2), b(s) = ˜b(x(s)),

x(s) defines a class of grids with, generally nonuniform, step Δx(s) = x(s +
1) − x(s), ∇x(s) = x(s) − x(s − 1), ã(x(s)) and ˜b(x(s)) are polynomials of
degree at most 2 and 1 in x, respectively, and c is a constant. In what follows,
we assume that x is a real-valued function defined on an interval of the real
line. For similar purposes, in [4, (2.1)], we rewrite (1.1) in the following useful
way:

A(s)y(x(s − 1)) + B(s)y(x(s + 1)) + C(s)y(x(s)) = 0, (1.2)

where

A(s) =
a(s)

∇x(s)Δx(s − 1/2)
,

B(s) =
a(s) + b(s)Δx(s − 1/2)

Δx(s)Δx(s − 1/2)
,

C(s) = c − B(s) − A(s). (1.3)

For our purposes, we use another difference equation obtained from (1.2),
as done by Porter in [16]. Fix a ∈ R and N ∈ {3, 4, . . . }. Denote si = a + i
(i = 0, 1, . . . , N − 1), S = {s0, s1, . . . , sN−1} and S′ = S \ {s0, sN−1}. Assume
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A(s)B(s) �= 0 for each s ∈ S′. Set y = u v on S, v being the new unknown
function and u so that v satisfy a difference equation of the form

Δ∇v(x(s)) + λ(s) v(x(s)) = 0 (1.4)

on S. One can check that this can be obtained by the recurrence relation

A(s)u(x(s − 1)) = B(s)u(x(s + 1)), (1.5)

which in turn leads to

u(x(sk)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x(a))
k/2
∏

j=1

A(s2j−1)
B(s2j−1)

, k even,

u(x(a + 1))
(k−1)/2

∏

j=1

A(s2j)
B(s2j)

, k odd,

(1.6)

with arbitrary initial condition u(x(a))u(x(a + 1)) �= 0. Hence, from (1.2), we
obtain the difference equation

v(x(s + 1)) + v(x(s − 1)) + G(s)v(x(s)) = 0, (1.7)

where

G(sk) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x(a))
u(x(a + 1))

C(sk)
B(sk)

k/2
∏

j=1

A(s2j−1)B(s2j)
A(s2j)B(s2j−1)

, k even,

u(x(a + 1))
u(x(a))

C(sk)
A(sk)

(k−1)/2
∏

j=1

A(s2j)B(s2j−1)
A(s2j−1)B(s2j)

, k odd,

(1.8)

with the initial conditions that v(x(a)) �= 0 is arbitrarily chosen and

v(x(a + 1)) = −C(a)
B(a)

u(x(a))
u(x(a + 1))

v(x(a)), B(a) �= 0.

(Note that (1.7) can be transformed into (1.4) taking G(s) = λ(s) − 2.)
In [17, Sect. 1.8], a similar procedure is done for differential equations of

the form
K(x)y′′(x) + M(x)y′(x) + N(x)y(x) = 0. (1.9)

By setting y(x) = u(x)v(x), v(x) being the new unknown function and u(x)
can be determined so that

v′′(x) + λ(x)v(x) = 0, (1.10)

it is possible to show that, under certain conditions, y and v have the same
zeros. In other words, to obtain information on the zeros of y, one can use
(1.10) instead of (1.9). For difference equations, since we only know what
happens on the discrete set of points S, we cannot readily conclude the same,
i.e., that the zeros of a solution of (1.1) and (1.7) coincide. However, we will
see in Sect. 2 that, under certain conditions, their generalized zeros coincide
and, consequently, in Sect. 3, we use (1.7) to obtain information about the
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Figure 1. The node (white point) between x(s′ − 1) and x(s′)

generalized zeros of a solution of (1.1). Finally, in Sect. 4, we use these results
to compare the zeros of elements of two different sequences of COP.

2. Nodes and Generalized Zeros

From now on, we assume that x is a continuous strictly increasing function
on an interval of the real line containing the discrete set of points S. To prove
some preliminary results, the familiar notion of “node” used by Porter [16]
(see also [6, p. 131]) will be very useful:

Definition 2.1 (Node of a function). Let v be a real function defined on S.
Assume that v changes its sign on the interval (x(s′ −1), x(s′)] (s′ ∈ S \{s0}).
The point of intersection of the x-axis with the line segment with endpoints
(x(s′ − 1), v(x(s′ − 1))) and (x(s′), v(x(s′))) is called a node of v (see Fig. 1).

We can relate the nodes of solutions of (1.1) and (1.7) in the following
way:

Lemma 2.1. Let y be a solution of (1.1). Set y = uv for s ∈ S, where u is
given by (1.6). Assume that u(x(a))u(x(a + 1)) > 0 and A(s)B(s) > 0 on S′.
Then, y has a node on (x(s′ − 1), x(s′)) (s′ ∈ S \ {s0}) if and only v has a
node on that interval. Moreover, y(x(s′)) = 0 if and only if v(x(s′)) = 0.

Proof. Follows immediately from (1.6). �

We can also relate the zeros of a solution of (1.1) and the nodes of a
solution of (1.7):

Proposition 2.1. Assume the hypotheses and notation of Lemma 2.1. Assume
that there is at most one zero of y on (x(s − 1)), x(s)) for each s ∈ S \ {s0}.
Then, y has a zero on (x(s′ −1), x(s′)) (s′ ∈ S \{s0}) if and only v has a node
on that interval. Moreover, y(x(s′)) = 0 if and only if v(x(s′)) = 0.
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Proof. Clearly, if v has a node on (x(s′ − 1), x(s′)) for some s′ ∈ S \ {s0},
then y has a zero on that interval. Now, assume that y has exactly one zero
on (x(s′ − 1), x(s′)) for some s′ ∈ S \ {s0}. Then, y(x(s′ − 1))y(x(s′)) < 0, i.e.,
y has a node on (x(s′ − 1), x(s′)), and the result follows from Lemma 2.1. �

To deal with a discrete analogue of Sturm’s separation theorem, Hartman
(see [9]) introduced the notion of generalized zeros: either an actual zero or
where the solution changes its sign (see also [5, Definition 7.8]):

Definition 2.2 (Generalized zero of a function). We say that a function f has
a generalized zero at x(s′) (s′ ∈ S \ {s0}) if either f(x(s′)) = 0 or f(x(s′ −
1))f(x(s′)) < 0.

Therefore, under the hypotheses of Proposition 2.1, the generalized zeros
of a solution of (1.1) and (1.7) coincide.

Remark 2.1. Note that a generalized zero x(s′) (s′ ∈ S) and a zero x(z′) ∈
(x(s′ − 1), x(s′)] of a function satisfy the relation x(z′) ≤ x(�z′�) = x(s′).

3. Comparison Theorem for Difference Equations

In this section, we consider equations of the form (1.7). The next result was
proved by Porter (see [16]) for the linear grid x(s) = s. Denote Sk = {a, a +
1, . . . , a + k − 1} for k ∈ {2, 3, . . . , N} and S′

k = S \ {a}.

Lemma 3.1. Let k ∈ {2, 3, . . . , N}. For each s ∈ S′
k, let G(s; t) be a strictly

decreasing function of a real parameter t varying in a nondegenerate interval
of the real line. Assume that v(·; t) is a nonzero continuous function of t for
each s ∈ Sk and satisfies

v(x(s + 1); t) + v(x(s − 1); t) + G(s; t)v(x(s); t) = 0. (3.11)

Suppose also that v(x(a + 1); t)/v(x(a); t) is a strictly increasing function of t
and v(x(a); t) �= 0 for all t. Then the nodes of v(·; t) on (x(a), x(a + k)) are
strictly increasing functions of t.

Proof. Define vε(x(s); t) = v(x(s); t + ε) for ε > 0 sufficiently small. Hence,

vε(x(s + 1); t) + vε(x(s − 1); t) + G(s; t + ε)vε(x(s); t) = 0. (3.12)

Multiplying (3.11) and (3.12) by vε(x(s); t) and v(x(s); t), respectively, and
subtracting the results, we get

v(x(s); t)vε(x(s + 1); t) − vε(x(s); t)v(x(s + 1); t)

= (G(s; t) − G(s; t + ε))v(x(s); t)vε(x(s); t)

+ v(x(s − 1); t)vε(x(s); t) − vε(x(s − 1); t)v(x(s); t). (3.13)
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Applying recursively (3.13), we have

v(x(sj); t)vε(x(sj + 1); t) − vε(x(sj); t)v(x(sj + 1); t)

=
j

∑

i=1

(G(si; t) − G(si; t + ε))v(x(si); t)vε(x(si); t)

+ v(x(a); t)vε(x(a); t)
(

vε(x(a + 1); t)
vε(x(a); t)

− v(x(a + 1); t)
v(x(a); t)

)

, (3.14)

for each sj ∈ Sk. For sufficiently small ε, we have v(x(s); t)vε(x(s); t) > 0.
Thus, under our assumptions, the right-hand side of (3.14) is positive and,
consequently,

v(x(s); t)vε(x(s + 1); t) − vε(x(s); t)v(x(s + 1); t) > 0 (3.15)

on Sk. Assume that v(·; t) has a node on (x(s′), (x(s′ + 1)) (s′ ∈ Sk). Hence
sgn v(x(s′); t) = −sgn v(x(s′ + 1); t). We leave it to the reader to verify that
from (3.15), and making use of our assumptions, we can conclude that v(x(s′+
1); t)/v(x(s′); t) is a strictly increasing function of t. Now we consider the line
segment with endpoints (x(s′), v(x(s′); t)) and (x(s′ + 1), v(x(s′ + 1); t)), i.e.,

V (X) − v(x(s′); t) =
v(x(s′ + 1); t) − v(x(s′); t)

x(s′ + 1) − x(s′)
(X − x(s′)).

If V (X ′) = 0, then

X ′ =
x(s′ + 1) − x(s′)

1 − v(x(s′ + 1); t)
v(x(s′); t)

+ x(s′).

From (3.15), the function v(x(s′ + 1); t)/v(x(s′); t) < 0 is strictly increasing of
t. Hence, X ′ moves to the right when t increases. We reach the same conclusion
easily if v(x(s′); t) = 0 for some t, which concludes the proof. �

Now, we prove a Sturm type comparison theorem for difference equations
of the form (1.7). In [6, p.153], the author proves it for the linear grid x(s) = s.

Theorem 3.1 (Sturm type comparison theorem for difference equations). Let
v1 and v2 be nontrivial solutions on Sk (k ∈ {2, . . . , N}) of

v1(x(s + 1)) + v1(x(s − 1)) + G1(s)v1(x(s)) = 0, (3.16)

v2(x(s + 1)) + v2(x(s − 1)) + G2(s)v2(x(s)) = 0, (3.17)

respectively. If G2(s) < G1(s) for all s ∈ S′
k, v1(x(a))v2(x(a)) > 0 and

v1(x(a))v2(x(a + 1)) − v1(x(a + 1))v2(x(a)) > 0, (3.18)

then v1 has at least the same number of nodes as v2 on (x(a), x(a + k)].
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Proof. Note that multiplying a solution of (3.16) or (3.17) by a positive con-
stant does not affect its nodes nor (3.16)–(3.18). Hence, we may assume v1(x(a))
= v2(x(a)) = 1. Let t ∈ [0, 1]. Consider the difference equation on Sk:

v(x(s + 1); t) + v(x(s − 1); t) + G(s; t)v(x(s); t) = 0, (3.19)

where G(s; t) = t G2(s) + (1 − t)G1(s), with initial conditions v(x(a); t) = 1
for all t ∈ [0, 1] and v(x(a + 1)) is such that it increases from v1(x(a + 1)) to
v2(x(a + 1)) as t increases from 0 to 1. By (3.18) and these initial conditions
for (3.19), we have that v(x(a + 1); t)/v(x(a); t) is an increasing function of
t ∈ [0, 1]. Since G2(s) < G1(s) for each s ∈ S′

k, we conclude that G(s; t)
is a decreasing function of t ∈ [0, 1] for each s ∈ S′

k. By Lemma 3.1, since
v(x(a)) �= 0 for all t ∈ [0, 1] (i.e., no node of v(·; t) passes through x(a) as t
increases), we conclude that a node of v(·; t) increases from a node of v1 to
the a node of v2 as t increases from 0 to 1 on (x(a), x(a + k)] and the result
follows. �

Using similar arguments, one can also prove the following two results:

Lemma 3.2. Let k ∈ {2, . . . , N}. For each s ∈ S \ Sk, let G(s; t) be a strictly
decreasing function of a real parameter t varying in a nondegenerate interval
of the real line. Assume that v(·, t) is a nonzero continuous function of t for
each s ∈ SN \ Sk−1 and satisfies

v(x(s + 1); t) + v(x(s − 1); t) + G(s; t)v(x(s); t) = 0.

Suppose also that v(x(a + N − 1); t)/v(x(a + N); t) is a strictly increasing
function of t and v(x(a + N); t) �= 0 for all t. Then the nodes of v(·; t) on
(x(a + k − 1), x(a + N)) are strictly decreasing functions of t.

Theorem 3.2. Let v1 and v2 be nontrivial solutions on SN \Sk (k ∈ {2, . . . , N})
of

v1(x(s + 1)) + v1(x(s − 1)) + G1(s)v1(x(s)) = 0,

v2(x(s + 1)) + v2(x(s − 1)) + G2(s)v2(x(s)) = 0,

respectively. If G1(s) < G2(s) for all s ∈ SN \Sk, v1(x(a+N))v2(x(a+N)) > 0
and

v1(x(a + N − 1))v2(x(a + N)) − v1(x(a + N))v2(x(a + N − 1)) > 0,

then v2 has at least the same number of nodes as v1 on (x(a+k−1), x(a+N)).

The next result is an extension of [12, Corollary 1] for difference equations.

Corollary 3.1. Let v1 and v2 be nontrivial solutions of (3.16) and (3.17) on S,
with n and m nodes on (x(a), x(a + N)), respectively. Denote the generalized
zeros of v1 and v2 by x1 < · · · < xn and X1 < · · · < Xm, respectively. If m ≤ n
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and there exists j ∈ {2, . . . , N} such that G2(s) < G1(s) for each s ∈ S′
j and

G1(s) < G2(s) for each s ∈ S \ Sj, and

v1(x(a))v2(x(a)) > 0,

v1(x(a + N))v2(x(a + N)) > 0,

v1(x(a))v2(x(a + 1)) − v1(x(a + 1))v2(x(a)) > 0,

v1(x(a + N − 1))v2(x(a + N)) − v1(x(a + N))v2(x(a + N − 1)) > 0,

then xk ≤ Xk for each k = 1, . . . ,m.

Proof. Assume that v2 has i nodes on (x(a), x(a + j − 1)] and m − i nodes on
(x(a + j − 1), x(a + N)). By Theorem 3.1, there is at least one node of v1 on
(x(a),X1], at least two nodes of v1 on (x(a),X2], and so on, until Xi. Hence,
xk ≤ Xk for each k = 1, . . . , i.

We may set x1 = x(z1), . . . , xn = x(zn), X1 = x(Z1), . . . , Xm = x(Zm),
where z1, . . . , zn, Z1, . . . , Zm ∈ S. By Theorem 3.2, there is at least one node of
v2 on (x(zn −1), x(a+N)), at least two nodes of v2 on (x(zn−1−1), x(a+N)),
and so on. Since m ≤ n, we have

Xm = x(Zm) ≥ x(zn) ≥ x(zm) = xm,

Xm−1 = x(Zm−1) ≥ x(zn−1) ≥ x(zm−1) = xm−1,

...

Xi+1 = x(Zi+1) ≥ x(zn−m+i+1) ≥ x(zi+1) = xi+1,

and hence Xk ≥ x(zk) = xk for each k = i + 1, . . . , m. Therefore, xk ≤ Xk for
each k = 1, . . . ,m. �

Remark 3.1. In order to use Corollary 3.1 to compare all the zeros of two
COP, we may choose any N ∈ {3, 4, . . . } such that all these zeros are on
(x(a), x(a + N)) to verify if the conditions are satisfied.

4. Applications

Here we present some examples comparing zeros of two COP. It is known
that (1.1) has polynomial solutions in x, whose difference derivatives satisfy
equations of the same kind if and only if, for q �= 1 fixed, x is a linear, quadratic,
q-linear, or q-quadratic grid of the form

x(s) =

{

C1s
2 + C2s,

C3q
−s + C4q

s,

where (C1, C2) �= (0, 0) and (C3, C4) �= (0, 0). The grids that depend on “q”
are called q-linear if C3 or C4 is zero; otherwise, it is q-quadratic. By using
transformations, we can reduce the expressions for the grids to simpler forms.
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In what follows, we assume that the grid x takes on the following canonical
forms:

x(s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s
s(s + 1)
qs (q > 1)
1
2
(qs − q−s) (q > 1)

1
2
(qs + q−s) (q > 1)

1
2
(qs + q−s) (q = e2iθ, 0 < θ < π/2).

(4.20)

Definition 4.1. Fix a ∈ R ∪ {−∞} and M ∈ N ∪ {∞} and set b = a + M . Fix
q and let x(s) be a real-valued function given by (4.20), where the variable s
ranges over the finite interval [a,b] or the infinity interval [a,∞). A sequence
of polynomials, (Pn(x(s)))M−1

n=0 , is said to be a sequence of classical discrete
orthogonal polynomials on the set {x(a), x(a + 1), . . . , x(b − 1)} or, simply,
COP if:

i) Pn satisfy (1.1), with x being a strictly monotone function on [a,b] or
[a,∞) given, up to a linear transformation, by (4.20);

ii) there exists a positive weight function ω satisfying the boundary condi-
tions

ω(s)a(s)xk

(

s − 1
2

)∣

∣

∣

∣

a,b

= 0 (k = 0, 1, . . . ); (4.21)

iii) the difference equation

Δ
Δx

(

x − 1
2

) (ω(s)a(s)) = ω(s)b(s) (4.22)

holds.

Definition 4.2. Let y be a solution of (1.2) on S. The function F defined by

F (sk) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C(sk)
B(sk)

k/2
∏

j=1

A(s2j−1)B(s2j)
A(s2j)B(s2j−1)

, k even,

C(sk)
A(sk)

(k−1)/2
∏

j=1

A(s2j)B(s2j−1)
A(s2j−1)B(s2j)

, k odd,

(4.23)

is called the comparison function of y.

Remark 4.1. For convenience, we defined the comparison function of a solution
of (1.2) by setting u(x(a)) = u(x(a + 1)) = 1 in (1.8). However, we could have
chosen any other initial conditions such that u(x(a))u(x(a + 1)) > 0.
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Remark 4.2. Using (4.22), one may also write the comparison function (4.23)
for a COP as

F (sk) =
ω(sk)C(sk)Δx(sk − 1/2)

ω(a)B(a)∇x(1/2)
×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

k/2
∏

j=1

A(s2j−1)
B(s2j−1)

)2

, k even,
(

(k−1)/2
∏

j=1

A(s2j)
B(s2j)

)2

, k odd.

(4.24)

Next, we present an example of application of Corollary 3.1 on the linear
grid. By [4, Lemma 2.1], the additional condition on Proposition 2.1 is satisfied
for COP and, consequently, we just have to check if the conditions of Lemma
2.1 are satisfied, i.e., if A(s)B(s) > 0 for each s ∈ S′, in order to use (1.7)
instead of (1.2).

4.1. The Meixner and Charlier Polynomials

We consider two COP on the linear grid x(s) = s.
The Meixner polynomials (see [10, Sect. 9.10]),

y(s) = M (γ,μ)
n (s) = 2F1

( −n, −s

γ

∣

∣

∣

∣

1 − 1
μ

)

(n = 1, 2, . . . ; 0 < μ < 1, γ > 0), satisfy the difference equation (1.2) with
A(s) = s, B(s; γ, μ) = μ(s + γ) and C(s; γ, μ) = n(1 − μ) − s − (s + γ)μ. Note
that A(s)B(s; γ, μ) > 0 for each s ∈ {1, 2, . . . }.

The Charlier polynomials (see [10, Sect. 9.14]),

y(s) = C(α)
n (s) = 2F0

( −n, −s

−
∣

∣

∣

∣

− 1
α

)

(n = 1, 2, . . . ;α > 0), satisfy the difference equation (1.2) with A(s) = s,
B(s;α) = α and C(s;α) = n − s − α. Note that A(s)B(s;α) > 0 for each
s ∈ {1, 2, . . . }.

Denote the comparison functions of M
(γ,μ)
n (s) and C

(α)
n (s) by FM and

FC , respectively. As an example, consider n = 10 (the reader may check that
something similar also happens for other values of n). Set α = 10, γ = 100
and μ = 1/10. In this case,

C
(10)
10 (0)M (100,1/10)

10 (1) − M
(100,1/10)
10 (0)C(10)

10 (1) > 0,

C
(10)
10 (0)M (100,1/10)

10 (0) > 0,

and FC(s) > FM (s) for s = 1, 2, . . . , 29 and FC(s) < FM (s) for s = 30, 31, . . . ,

38. Since all the zeros of M
(100,1/10)
10 (s) are on (0, 40) (see [11, Theorem 7]),

we only need to verify what happens on that interval. Moreover,

C
(10)
10 (39)M (100,1/10)

10 (40) − M
(100,1/10)
10 (39)C(10)

10 (40) > 0,

M
(100,1/10)
10 (40)C(10)

10 (40) > 0.
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Figure 2. Zeros of C
(10)
10 (s) and M

(100,1/10)
10 (s) (� and •,

respectively)

Figure 3. Zeros of C
(50)
8 (s) and M

(1,1/2)
8 (s) (� and •, re-

spectively)

Therefore, by Corollary 3.1, we have �xk� ≤ �Xk� for each k = 1, . . . , 10, where
x1 < · · · < x10 are the zeros of C

(10)
10 (s) and X1 < · · · < X10 are the zeros of

M
(100,1/10)
10 (s) (see Fig. 2).

Remark 4.3. Corollary 3.1 gives sufficient conditions for inequalities between
the generalized zeros of solutions of difference equations. Consequently, these
inequalities might be true even if the conditions needed to apply Corollary 3.1
are not satisfied. For example, consider M

(1,1/2)
8 (s) and C

(50)
8 (s). In this case,

�xk� ≤ �Xk� (k = 1, . . . , 8), where xk are the zeros of M
(1,1/2)
8 (s) and Xk

are the zeros of C
(50)
8 (s) (see Fig. 3). However, the comparison functions are

such that FM (s) > FC(s) for s = 1, 2, 3, 5, 7, . . . , 83, 85 and FM (s) < FC(s) for
s = 4, 6, 8, . . . , 84, 86, i.e., the inequality changes more than once.
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[7] Gishe, J., Toókos, F.: On the Sturm comparison and convexity theorem for
difference and q-difference equations. Acta Sci. Math. (Szeged) 78(3–4), 529–
540 (2012)

[8] Graef, J.R., Miciano-Cariño, A., Qian, C.: A Sturm type comparison theorem for
higher order nonlinear difference equations. In: Advances in Difference Equations
(Veszprém, 1995), pp. 263–270. Gordon and Breach, Amsterdam (1997)

[9] Hartman, P.: Difference equations: disconjugacy, principal solutions, Green’s
functions, complete monotonicity. Trans. Am. Math. Soc. 246, 1–30 (1978)

[10] Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polyno-
mials and Their q-Analogues. Springer Monographs in Mathematics, Springer-
Verlag, Berlin, xx+578, https://doi.org/10.1007/978-3-642-05014-5, 978-3-642-
05013-8 (2010)

[11] Krasikov, I., Zarkh, A.: On zeros of discrete orthogonal polynomials. J. Approx.
Theory 156, 121–141 (2009)

[12] Lun, Y.C., Rafaeli, F.R.: Inequalities for zeros of Jacobi polynomials via Sturm’s
theorem: Gautschi’s conjectures. Numer. Algorithms 67(3), 549–563 (2014)

[13] Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Klacciqeckie ortogonal�nye
polinomy dickpetno� pepemenno� (Russian) [Classical orthogonal polynomi-
als of a discrete variable]. “Nauka”, Moscow (1985)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-05014-5


Sturm’s Comparison Theorem Page 13 of 13   153 

[14] Nikiforov, A.F., Uvarov, V.B.: Klacciqeskie optogonal�nye polinomy
diskpetno� pepemenno� na nepavnomernyh cetkah (russian) [Classical or-
thogonal polynomials of a discrete variable]. Preprint 17, Keldysh Inst. Appl.
Math. (1983)

[15] Nikiforov, A.F., Uvarov, V.B.: cpecial�nye Funkcii matematiqeseo�
Fiziki. (Russian) [Special Functions of Mathematical Physics] With a pref-
ace by A. A. Samarskii. “Nauka”, Moscow, second edition (1984)

[16] Porter, M.B.: On the roots of functions connected by a linear recurrent relation
of the second order. Ann. Math. 3, 55–70 (1901–1902)
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