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Abstract. In this paper we introduce a new general multivariate fractal
interpolation scheme using elements of the zipper methodology. Under
the assumption that the corresponding Read-Bajraktarevic operator is
well-defined, we enlarge the previous frameworks occurring in the litera-
ture, considering the constitutive functions of the iterated function sys-
tem whose attractor is the graph of the interpolant to be just contractive
in the last variable (so, in particular, they can be Banach contractions,
Matkowski contractions, or Meir-Keeler contractions in the last variable).
The main difficulty that should be overcome in this multivariate frame-
work is the well definedness of the above mentioned operator. We provide
three instances when it is guaranteed. We also display some examples
that emphasize the generality of our scheme.
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1. Introduction

In 1986, M. Barnsley (see [3]), based on the concept of iterated function system
(for short IFS) introduced by J. Hutchinson (see [10]), developed the theory
of fractal interpolation functions which turned out to be an impressive device
in the study of non-linear phenomena in nature.

A fractal interpolation function (for short FIF) is a continuous function
interpolating a given set of data such that its graph is the attractor of some
IFS. Such functions offer two benefits: the free choice of scaling factor and
the self-similarity feature. In relation to the classical approximants, FIFs yield

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-024-02177-5&domain=pdf
http://orcid.org/0009-0005-3959-5659


  151 Page 2 of 22 R. Miculescu and P. Rajan Results Math

a more detailed approximation for non-smooth functions. Ergo they are used
in image compression, signal processing, bio-engineering etc. [14] and [18] are
excellent treaties on the topic of fractal interpolation.

Later on, in 1990, P. Massopust (see [13]) generalized the concept of FIF
by constructing fractal interpolation surfaces. For more results along this line
of research, see, for example, [4,6,8,11,12].

In 2002, V. Aseev (see [1]) introduced the concept of zipper which pro-
vides another way to construct self-similar sets. See also [2]. Later on (see [5]),
in 2020, this methodology of zipper was used to derive a univariate interpola-
tion scheme. For some other connected works (including the study of zipper
fractal interpolation surfaces) see: [9,19,24–26].

In this paper we introduce a multivariate fractal interpolation scheme
using elements of the zipper methodology. In Sect. 3, under the assumption
that the corresponding Read-Bajraktarevic operator is well-defined, we enlarge
the previous frameworks occurring in the literature, considering the constitu-
tive functions of the iterated function system whose attractor is the graph of
the interpolant to be just Edelstein contractions (i.e. contractive) in the last
variable (so, in particular, they can be Banach contractions, Matkowski con-
tractions, or Meir-Keeler contractions in the last variable). The main difficulty
that should be overcome in this multivariate framework is the well definedness
of the above mentioned operator. We provide three instances when it is guar-
anteed. The first one is presented in Sect. 4 and the other two (concerning the
bivariate case) in Sects. 5 and 6. Finally, in Sect. 7, we display some examples
(linked with the settings considered on Sects. 5 and 6) which emphasize the
generality of our scheme.

2. Preliminary Facts

Definition 1. A function f : X → X, where (X, d) is a metric space, is called
a Meir-Keeler contraction if for every ε > 0 there exists δ > 0 such that for all
x, y ∈ X the following implication is valid:

ε ≤ d(x, y) < ε + δ ⇒ d(f(x), f(y)) < ε.

Definition 2. A function f : X → X, where (X, d) is a metric space, is called
an Edelstein contraction (or contractive) if for all x, y ∈ X the following im-
plication is valid:

x �= y ⇒ d(f(x), f(y)) < d(x, y).

Theorem 1 (see [15]). If (X, d) is a complete metric space and f : X → X
is a Meir-Keeler contraction, then f is a Picard operator i.e. there exists a
unique fixed point x∗ and limn→∞f [n](x) = x∗ for all x ∈ X, where f [n]

means f ◦ · · · ◦ f
︸ ︷︷ ︸

n-times

.
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Theorem 2 (see [7]). If (X, d) is a compact metric space and f : X → X is a
Edelstein contraction, then f is a Picard operator.

Remark 1. It is well-known that each Banach contraction is a Meir-Keeler
contraction and each Meir-Keeler contraction is an Edelstein contraction. On
compact spaces, the family of Edelstein contractions coincide with the family
of Meir-Keeler contractions (see [15]).

Given a metric space (X, d), by Pcp(X) we designate the set {A ⊆ X | A �=
∅ and A is compact} and by h we denote the Hausdorff-Pompeiu metric.

Definition 3. A pair
(

(X, d), (fi)i∈{1,2,...,n}
)

:= S is called an iterated function
system (for short IFSs) if (X, d) is a complete metric space and fi : X → X is
continuous for each i ∈ {1, 2, . . . , n}.
The function FS : Pcp(X) → Pcp(X), given by

FS(K) =
n∪

i=1
fi(K),

for all K ∈ Pcp(X), is called the fractal operator associated with S.
If FS is a Picard operator, then its fixed point AS is called the attractor of S.

Theorem 3 (see [10]). In the framework of Definition 3, if fi’s are Banach
contractions, then FS is a Picard operator.

Theorem 4 (see [17]). In the framework of Definition 3, if fi’s are Edelstein
contractions and X is compact, then FS is a Picard operator.

Let us recall the basic facts concerning the fractal interpolation functions
which are due to Barnsley (see [3]).
Let us consider:

– {(xi, yi) ∈ R
2 | i ∈ {0, 1, . . . , n}} a set of data points such that x0 < x1 <

· · · < xn

– I = [x0, xn] and Ii = [xi−1, xi] for all i ∈ {1, 2, . . . , n}
– Li : I → Ii given by

Li(x) = aix + bi,

for all x ∈ I and i ∈ {1, 2, . . . , n} such that Li(x0) = xi−1 and Li(xn) =
xi for all i ∈ {1, 2, . . . , n}

– K ∈ Pcp(R) such that {y0, y1, . . . , yn} ⊂ K
– Fi : I × K → K Lipschitz with respect to the first variable, Banach

contraction with respect to the second variable and satisfying

Fi(x0, y0) = yi−1 and Fi(xn, yn) = yi,

for all i ∈ {1, 2, . . . , n}
– the IFS S =

(

(I × K, ‖.‖2), (Wi)i∈{1,2,...,n}
)

, where Wi : I × K → I × K
is given by

Wi(x, y) = (Li(x), Fi(x, y)),
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for all (x, y) ∈ I × K and i ∈ {1, 2, . . . , n}.
Then FS is a Picard operator and there exists a unique continuous func-

tion f∗ : I → K such that

Gf∗ = AS and f∗(xi) = yi,

for all i ∈ {0, 1, . . . , n}, where Gf denotes the graph of the function f .
The functions obtained in this way are called fractal interpolation functions
(for short FIFs).
Later on P. Massopust (see [13]) generalized Barnsley’s theory. He introduced
the fractal interpolation surfaces which are continuous functions f∗ : D → R,
where D ⊆ R

2 is a triangular domain, that interpolate certain sets of data
{(xi, yj , zij) | i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}} ⊆ D.

3. Contractive Zipper FIF on R
n

Let n ∈ N,m1,m2, . . . ,mn ∈ N and
{

(x1i1 , x2i2 , . . . , xnin
, zi1i2...in

) ∈ R
n+1|p ∈ {1, 2, . . . , n}, ip ∈ {0, 1, . . . ,mp}

}

,

be a given set of data such that

xp0 < xp1 < · · · < xpmp
,

for all p ∈ {1, 2, . . . , n}.
Let us choose the signature ε = (εp)n

p=1, where

εp = (εp1, εp2, . . . , εpmp
) ∈ {0, 1}mp .

We use the following notation:

Ip = [xp0, xpmp
], Ipip

= [xp(ip−1), xpip
],

C = I1 × I2 × · · · × In, Ci1i2···in
= I1i1 × I2i2 × · · · Inin

,

for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.

Remark 2. Note that

Ip =
⋃

ip∈{1,2,...,mp}
Ipip

and

C =
⋃

p∈{1,2,...,n}
ip∈{1,2,...,mp}

Ci1i2···in
.

Let Lpip
: Ip → Ipip

be given by

Lpip
(x) = apip

x + bpip
,

for all x ∈ Ip, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}, where

apip
=

xp(ip−εpip )
− xp(ip−1+εpip )

xpmp
− xp0
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and

bpip
= xp(ip−1+εpip )

−
xp(ip−εpip )

− xp(ip−1+εpip )

xpmp
− xp0

xp0.

Remark 3. Note that

|apip
| < 1,

for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.

Let Li1···in
: C → Ci1···in

be given by

Li1···in
(x1, x2, . . . , xn) = (L1i1(x1), L2i2(x2), . . . , Lnin

(xn)) ,

for all xp ∈ Ip, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.

Remark 4. Note that, for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp},
(i) Li1···in

is one-to-one.
(ii) If:

εpip
= 0, then Lpip

(xp0) = xp(ip−1) and Lpip
(xpmp

) = xpip
;

εpip
= 1, then Lpip

(xp0) = xpip
and Lpip

(xpmp
) = xp(ip−1).

(iii) Consequently

Li1···in
(x1e1 , x2e2 , . . . , xnen

) =
(

x1σ1(e1), x2σ2(e2), . . . , xnσn(en)

)

, (1)

for all ep ∈ {0,mp} and p ∈ {1, 2, . . . , n}, where

σp(ep) :=

{

ip − 1 + εpip
if ep = 0,

ip − εpip
if ep = mp.

Let us consider K ∈ Pcp(R) such that

{zi1i2...in
| p ∈ {1, 2, . . . , n}, ip ∈ {0, 1, . . . ,mp}} ⊂ K

and for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}, we consider Fi1i2...in
:

C × K → K satisfying the following two conditions:
(i)

Fi1i2...in
(x1e1 , x2e2 , . . . , xnen

, ze1e2···en
) = zσ1(e1)σ2(e2)···σn(en), (2)

for all ep ∈ {0,mp};
(ii) there exist rpip

∈ [0,∞) and an Edelstein contraction map hi1i2...in
: K →

K such that

|Fi1...in
(x1, . . . , xn, z) − Fi1...in

(x′
1, . . . , x

′
n, z′)|

≤
n

∑

p=1

rpip
|xp − x′

p| + |hi1...in
(z) − hi1...in

(z′)|, (3)

for all (x1, . . . , xn, z), (x′
1, . . . , x

′
n, z′) ∈ C × K.
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Let us consider the IFS

S =
(

(C × K, ‖.‖2), (Wi1i2···in
)p∈{1,2,...,n},ip∈{1,2,...,mp}

)

,

where Wi1i2···in
: C × K → C × K is given by

Wi1i2···in
(x1, x2, . . . , xn, z)

= (Li1i2···in
(x1, x2, . . . , xn), Fi1i2...in

(x1, x2, . . . , xn, z)) ,

for all (x1, x2, . . . , xn, z) ∈ C × K, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.
Let G∗ be a closed subset of

G = {f : C → K | f is continuous, f(x1i1 , . . . , xnin
)

= zi1...in
for all p ∈ {1, . . . , n}, ip ∈ {0,mp}}

endowed with the uniform metric ρ and let us suppose that the Read-
Bajraktarevic type operator T : G∗ → G∗ given by

T (f)(x1, x2, . . . , xn)=Fi1...in

(

L−1
i1···in

(x1, x2, . . . , xn), f(L−1
i1···in

(x1, x2, . . . , xn))) ,

for all f ∈ G∗, (x1, x2, . . . , xn) ∈ Ci1···in
, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}

is well-defined.

Remark 5. If n = 1 it is well-known that T is well-defined. For n ≥ 2 the issue
of well-definedness of T becomes problematic. In Sects. 4, 5 and 6, we will work
under some supplementary conditions which guarantee that T is well-defined.

Lemma 1.

T (f)(x1i1 , x2i2 , . . . , xnin
) = zi1i2...in

,

for all f ∈ G∗, p ∈ {1, 2, . . . , n} and ip ∈ {0, 1, . . . ,mp}.
Proof. For f ∈ G∗, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}, we have

T (f)(x1i1 , x2i2 , . . . , xnin
)

= Fi1i2...in

(

L−1
i1i2···in

(x1i1 , x2i2 , . . . , xnin
), f(L−1

i1i2···in
(x1i1 , x2i2 , . . . , xnin

))
)

(1)
= Fi1i2...in

(x1e1 , x2e2 , . . . , xnen
, f(x1e1 , x2e2 , . . . , xnen

)

= Fi1i2...in
(x1e1 , x2e2 , . . . , xnen

, ze1e2···en
)

(2)
= zi1i2...in

,

where

ep =

{

mp, if εpip
= 0,

0, if εpip
= 1,

for all p ∈ {1, 2, . . . , n}.
Similarly, we get the conclusion if ip = 0 for some of p ∈ {1, 2, . . . , n}. �
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Theorem 5. T is a Meir-Keeler contraction, so it is a Picard operator.

Proof. Let us choose an arbitrary ε > 0.
Taking into account Remark 1, for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp},
there exists δi1i2...in

> 0 such that, for all x ∈ C and z, z′ ∈ K, the following
implication is valid:

ε ≤ |z − z′| < ε + δi1i2...in
⇒ |Fi1i2...in

(x, z) − Fi1i2...in
(x, z′)| < ε.

Let f, g ∈ G∗ such that

ε ≤ ρ(f, g) < ε + δ,

where

δ = min{δi1i2...in
| p ∈ {1, 2, . . . , n}, ip ∈ {1, 2, . . . ,mp}}.

Claim.

|Fi1i2...in
(x, f(x)) − Fi1i2...in

(x, g(x))| < ε,

for all x ∈ C, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.
Justification of the claim.

If ε ≤ |f(x) − g(x)|, then we have

|Fi1i2...in
(x, f(x)) − Fi1i2...in

(x, g(x))| < ε,

since f(x), g(x) ∈ K and |f(x) − g(x)| ≤ ρ(f, g) < ε + δ.
Otherwise

|Fi1i2...in
(x, f(x)) − Fi1i2...in

(x, g(x))|
(3)
≤ |f(x) − g(x)| < ε.

Now the justification of the claim is complete.
Thus, we get

ρ(Tf, Tg) = max
x∈C

|Tf(x) − Tg(x)|
= max

p ∈ {1, 2, . . . , n}
ip ∈ {1, 2, . . . ,mp}

max
x∈Ci1···in

|Fi1...in
(L−1

i1···in
(x), f(L−1

i1···in
(x)))

− Fi1...in
(L−1

i1···in
(x), g(L−1

i1···in
(x)))| Claim

< ε.

Hence, T is a Meir-Keeler contraction and via Theorem 1, we conclude that T
is a Picard operator. �
Remark 6. Based on Theorem 5, there exists a unique function f∗ ∈ G∗ such
that

T (f∗) = f∗ and lim
n→∞T [n](f) = f∗,

for all f ∈ G∗.
So, taking into account Lemma 1, we get

f∗(x1i1 , x2i2 , . . . , xnin
) = zi1i2...in

,

for all p ∈ {1, 2, . . . , n} and ip ∈ {0, 1, . . . ,mp}.
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Remark 7. (i) For

θ = min
p∈{1,...,n}

⎧

⎨

⎩

1 − max
ip∈{1,...,mp}

|apip
|

1 + max
ip∈{1,...,mp}

rpip

⎫

⎬

⎭

Remark 3
> 0,

let us consider the metric dθ, on R
n+1, given by

dθ((x1, x2, . . . , xn, z), (x′
1, x

′
2, . . . , x

′
n, z′)) :=

n
∑

p=1

|xp − x′
p| + θ|z − z′|,

for all (x1, x2, . . . , xn, z), (x′
1, x

′
2, . . . , x

′
n, z′) ∈ R

n+1.
Note that dθ and the Euclidean metric are equivalent.

(ii) If two metrics are equivalent, then the corresponding Hausdorff metrics
are also equivalent.

Theorem 6. Wi1i2···in
is an Edelstein contraction with respect to dθ for all

p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.
Proof. Note that

|apip
| + θrpip

< 1, (4)

for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.
Since hi1i2···in

is an Edelstein contraction, we obtain

dθ(Wi1i2···in
(x1, x2, . . . , xn, z),Wi1i2···in

(x′
1, x

′
2, . . . , x

′
n, z′))

=
n

∑

p=1

|Lpip
(xp) − Lpip

(x′
p)| + θ|Fi1...in

(x1, . . . , xn, z) − Fi1...in
(x′

1, . . . , x
′
n, z′)|

(3)
≤

n
∑

p=1

(|apip
| + θrpip

)|xp − x′
p| + θ|hi1...in

(z) − hi1...in
(z′)|

(4)
<

n
∑

p=1

|xp − x′
p| + θ|z − z′| = dθ((x1, x2, . . . , xn, z), (x′

1, x
′
2, . . . , x

′
n, z′)),

for all p ∈ {1, 2, . . . , n}, ip ∈ {1, 2, . . . ,mp} and (x1, x2, . . . , xn, z), (x′
1, x

′
2, . . . ,

x′
n, z′) ∈ C × K with (x1, x2, . . . , xn, z) �= (x′

1, x
′
2, . . . , x

′
n, z′). �

Corollary 1. FS is a Picard operator.

Proof. In view of Remark 7, (C ×K, dθ) is compact, and the Hausdorff metrics
corresponding to ‖.‖2 and dθ are equivalent.
From Theorem 6 and Theorem 4, we can conclude that FS is a Picard operator
with respect to the Hausdorff metric corresponding to dθ.
The equivalence of Hausdorff metrics corresponding to ‖.‖2 and dθ ensures that
FS is a Picard operator with respect to the Hausdorff metric corresponding to
‖.‖2. �
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Proposition 7.

Gf∗ = AS .

Proof. Since f∗ is the fixed point of T , we have

Wi1i2···in
(Gf∗) = {Wi1i2···in

(x, f∗(x)) | x ∈ C}
= {(Li1i2···in

(x), Fi1i2...in
(x, f∗(x))) | x ∈ C}

= {(Li1i2···in
(x), f∗ (Li1i2···in

(x))) | x ∈ C}
= {(x, f∗(x) | x ∈ Ci1i2···in

},

for all p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}.
Therefore

Gf∗ =
⋃

p∈{1,2,...,n},ip∈{1,2,...,mp}
Wi1i2···in

(Gf∗) = FS(Gf∗).

Since Gf∗ ∈ Pcp(C × K), the uniqueness of the fixed point of FS implies that
Gf∗ = AS . �

Remark 8. Since from Proposition 7 and Remark 6, we have

Gf∗ = AS

and

f∗(x1i1 , x2i2 , . . . , xnin
) = zi1i2...in

,

for all ip ∈ {0, 1, . . . ,mp} and p ∈ {1, 2, . . . , n}, we call f∗ a contractive mul-
tivariate zipper fractal interpolation function.

4. The First Instance When T is well-defined

In this section we work under the following supplementary conditions which
are natural in view of [16,20,23]:
(α)

εp = (0, 1, 0, 1, . . . ) or εp = (1, 0, 1, 0, . . . ),

for all p ∈ {1, 2, . . . , n};
(β)

Fi1i2...in
(x, z) = Fδ(i1i2...in;j)(x, z), (5)

for all x = (x1, x2, . . . , xn) ∈ C with xj = xjej
, z ∈ K, j ∈ {1, 2, . . . , n}, p ∈

{1, 2, . . . , j − 1, j + 1, . . . , n}, ip ∈ {1, 2, . . . ,mp}, ij ∈ {1, 2, . . . ,mj − 1}
and ej ∈ {0,mj}, where

δ(i1i2 . . . in; j) :=

{

i1 . . . ij−1(ij + 1)ij+1 . . . in if j ∈ {1, 2, . . . , n − 1},

i1i2 . . . (in + 1) if j = n;
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(γ)

G∗ = G.

Lemma 2. T is well-defined.

Proof. Let f ∈ G∗ and i = (i1, i2, . . . , in) ∈ {1, 2, . . . ,m1 −1}×{1, 2, . . . ,m3 −
1} × · · · × {1, 2, . . . ,mn − 1}.
Let us consider x = (x1, x2, . . . , xn) ∈ Ci ∩ Cδ(i;j) for some j ∈ {1, 2, . . . , n}
with xj = xjej

.
For p ∈ {1, 2, . . . , n}, let us denote x′

p = L−1
pip

(xp).
Viewing x as an entity belonging to Ci, T (f)(x) is

{

Fi

(

x′
1, . . . , xjmj

, . . . , x′
n, f(x′

1, . . . , xjmj
, . . . , x′

n)
)

, if εjij
= 0,

Fi (x′
1, . . . , xj0, . . . , x

′
n, f(x′

1, . . . , xj0, . . . , x
′
n)) , if εjij

= 1

and viewing x as an entity belonging to Cδ(i;j), T (f)(x) is
{

Fδ(i;j) (x′
1, . . . , xj0, . . . , x

′
n, f(x′

1, . . . , xj0, . . . , x
′
n)) , if εj(ij+1) = 0,

Fδ(i;j)

(

x′
1, . . . , xjmj

, . . . , x′
n, f(x′

1, . . . , xjmj
, . . . , x′

n)
)

, if εj(ij+1) = 1.

Taking into account (α) and (β), we conclude that Tf(x) is the same in both
situations.
Now, let us consider

x = (x1, x2, . . . , xn) ∈ Ci ∩ Cδ(i;j) ∩ Cδ(i;j+1) ∩ Cδ∗(i;j),

for some j ∈ {1, 2, . . . , n − 1} with xj = xjij
and xj+1 = x(j+1)ij+1 , where

δ∗(i; j) :=

{

i1 · · · ij−1(ij + 1)(ij+1 + 1)ij+2 · · · in if j ∈ {1, 2, . . . , n − 2},

i1i2 . . . (in−1 + 1)(in + 1) if j = n − 1.

By the previous argument, T (f)(x) is the same if we consider:
– x ∈ Ci and x ∈ Cδ(i;j);
– x ∈ Cδ(i;j+1) and x ∈ Cδ∗(i;j);
– x ∈ Ci and x ∈ Cδ(i;j+1).

Thus, T (f)(x) does not depent an viewing x as an entity of Ci, Cδ(i;j),
Cδ(i;j+1) or Cδ∗(i;j).
By continuing this process, we infer that T (f) : C → K is a well-defined
continuous function.
In view of Lemma 1, we conclude that T (f) ∈ G∗ for all f ∈ G∗. �

5. The Second Instance when T is well-defined

In this section we work under the following supplementary conditions which
are inspired from [12]:
(α) n = 2;
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(β)

εp = (0, 1, 0, 1, . . . ),

for all p ∈ {1, 2};
(γ) Fi1i2 : C × K → K is given by

Fi1i2(x1, x2, z) = αi1i2x1 + βi1i2x2 + γi1i2x1x2 + h(z) + ηi1i2 ,

for all (x1, x2, z) ∈ C × K and (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2},
where αi1i2 , βi1i2 , γi1i2 and ηi1i2 are constants and h : K → K is an
Edelstein contraction;

(δ)

G∗ = G.

The ‘join-up’ condition (2) implies

γi1i2 =
1

(xn − x0)(ym − y0)
(

z(i1−ε1i)(i2−ε2j) + z(i1−1+ε1i)(i2−1+ε2j)

− z(i1−ε1i)(i2−1+ε2j) − z(i1−1+ε1i)(i2−ε2j)

− (h(znm) + h(z00) − h(zn0) − h(z0m))) ,

αi1i2 =
(z(i1−ε1i)(i2−1+ε2j)−z(i1−1+ε1i)(i2−1+ε2j))−(h(zn0)−h(z00))−γi1i2y0(xn−x0)

xn−x0
,

βi1i2 =
(z(i1−1+ε1i)(i2−ε2j)−z(i1−1+ε1i)(i2−1+ε2j))−(h(z0m)−h(z00))−γi1i2x0(ym−y0)

ym−y0

and

ηi1i2 = z(i1−ε1i)(i2−ε2j) − αi1i2xn − βi1i2ym − γi1i2xnym − h(znm),

for all (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2}.
The function Fi1i2 : C × K → K can be written as

Fi1i2(x1, x2, z) = h(z) +
∑

(k1,k2)∈{i1−1,i2−1}×{i1,i2}

(

zk1k2 − h(zσ−1
1 (k1)σ

−1
2 (k2)

)
)

Φσ−1
1 (k1)σ

−1
2 (k2)

(x1, x2),

for all (x1, x2, z) ∈ C × K and (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2}, where

σ−1
p (k) :=

{

mpεpip
if k = ip − 1,

mp(1 − εpip
) if k = ip,

for all p ∈ {1, 2} and Φj1j2 : [x10, x1m1 ] × [x20, x2m2 ] → [0, 1] with jp ∈
{0,mp}, p ∈ {1, 2}, are given by

Φ00(x) =
(x1m1 − x1)(x2m2 − x2)

(x1m1 − x10)(x2m2 − x20)
, Φ0m2(x) =

(x1m1 − x1)(x2 − x20)
(x1m1 − x10)(x2m2 − x20)

,

Φm10(x) =
(x1 − x10)(x2m2 − x2)

(x1m1 − x10)(x2m2 − x20)
, Φm1m2(x) =

(x1 − x10)(x2 − x20)
(x1m1 − x10)(x2m2 − x20)

,

for all x = (x1, x2) ∈ [x10, x1m1 ] × [x20, x2m2 ].
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Lemma 3.

Fi1i2(L
−1
1i1

(x1), x2, z) = F(i1+1)i2(L
−1
1(i1+1)(x1), x2, z),

for all (i1, i2) ∈ {1, 2, . . . ,m1 − 1} × {1, 2, . . . ,m2} and (x1, x2, z) ∈ {x1i1} ×
[x2(i2−1), x2i2 ] × K, if m1 �= 1, and

Fi1i2(x1, L
−1
2i2

(x2), z) = Fi1(i2+1)(x1, L
−1
2(i2+1)(x2), z),

for all (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2 − 1} and (x1, x2, z) ∈
[x1(i1−1), x1i1 ] × {x2i2} × K, if m2 �= 1.

Proof. Let us assume m1 �= 1 and (i1, i2) ∈ {1, 2, . . . ,m1 −1}×{1, 2, . . . ,m2}.
Observe that:

(i) If i1 = 2n1 + 1, for some n1 ∈ N, then we have

Fi1i2(x, z) = h(z) + (z(i1−1)(i2−1) − h(z0σ−1
2 (i2−1)))Φ0σ−1

2 (i2−1)(x)

+ (z(i1−1)i2 − h(z0σ−1
2 (i2)

))Φ0σ−1
2 (i2)

(x)

+ (zi1(i2−1) − h(zm1σ−1
2 (i2−1)))Φm1σ−1

2 (i2−1)(x)

+ (zi1i2 − h(zm1σ−1
2 (i2)

))Φm1σ−1
2 (i2−1)(x), (6)

for all (x, z) ∈ C × K;
(ii) If i1 = 2n1, for some n1 ∈ N, then we have

Fi1i2(x, z) =h(z) + (z(i1−1)(i2−1) − h(zm1σ−1
2 (i2−1)))Φm1σ−1

2 (i2−1)(x)

+ (z(i1−1)i2 − h(zm1σ−1
2 (i2)

))Φm1σ−1
2 (i2)

(x)

+ (zi1(i2−1) − h(z0σ−1
2 (i2−1)))Φ0σ−1

2 (i2−1)(x)

+ (zi1i2 − h(z0σ−1
2 (i2)

))Φ0σ−1
2 (i2)

(x), (7)

for all (x, z) ∈ C × K.
Note that

L−1
1i1

(x1i1) = L−1
1(i1+1)(x1i1) =

{

x1m1 if i1 = 2n1 + 1 for some n1 ∈ N,

x10 if i1 = 2n1 for some n1 ∈ N,
(8)

Thus, if i1 = 2n1 + 1, for some n1 ∈ N, then we have

Fi1i2(L
−1
1i1

(x1), x2, z)
(6)
= h(z) + (zi1(i2−1) − h(zm1σ−1

2 (i2−1)))

Φm1σ−1
2 (i2−1)(x1m1 , x2) + (zi1i2 − h(zm1σ−1

2 (i2)
))Φm1σ−1

2 (i2−1)(x1m1 , x2)

and

F(i1+1)i2(L
−1
1(i1+1)(x1), x2, z)

(7)
= h(z) + (zi1(i2−1) − h(zm1σ−1

2 (i2−1)))

Φm1σ−1
2 (i2−1)(x1m1 , x2) + (zi1i2 − h(zm1σ−1

2 (i2)
))Φm1σ−1

2 (i2−1)(x1m1 , x2),

for all (x1, x2, z) ∈ {x1i1} × [x2(i2−1), x2i2 ] × K.
Then we have

Fi1i2(L
−1
1i1

(x1), x2, z) = F(i1+1)i2(L
−1
1(i1+1)(x1), x2, z),
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for all (x1, x2, z) ∈ {x1i1}× [x2(i2−1), x2i2 ]×K, if i1 = 2n1+1 for some n1 ∈ N.

Similar arguments ensure that the above equality is true if i1 = 2n1, for some
n1 ∈ N.
In the similar way, we can prove

Fi1i2(x1, L
−1
2i2

(x2), z) = Fi1(i2+1)(x1, L
−1
2(i2+1)(x2), z),

for all (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2 − 1} and (x1, x2, z) ∈
[x1(i1−1), x1i1 ] × {x2i2} × C. �

Lemma 4. T is well-defined.

Proof. Let f ∈ G∗ and (i1, i2) ∈ {1, 2, . . . ,m1 − 1} × {1, 2, . . . ,m2 − 1}.
Let us consider

(x1, x2) ∈ Ci1i2 ∩ C(i1+1)i2 = {x1i1} × [x2(i2−1), x2i2 ].

We have

Fi1i2

(

L−1
1i1

(x1i1), L
−1
2i2

(x2), f
(

L−1
1i1

(x1i1), L
−1
2i2

(x2)
))

Lemma 3= F(i1+1)i2

(

L−1
1(i1+1)(x1i1), L

−1
2i2

(x2), f
(

L−1
1i1

(x1i1), L
−1
2i2

(x2)
)
)

(8)
= F(i1+1)i2

(

L−1
1(i1+1)(x1i1), L

−1
2i2

(x2), f
(

L−1
1(i1+1)(x1i1), L

−1
2i2

(x2)
))

.

Thus, Tf(x1i1 , x2) is the same if we view (x1i1 , x2) as an element of Ci1i2 and
as an element of C(i1+1)i2 .
In a similar manner, we prove that Tf(x1, x2i2) is the same if we view (x1, x2i2)
as an element of Ci1i2 and as an element of Ci1(i2+1).
By using Lemma 1, we conclude that T (f) ∈ G∗. �

Remark 9. Similarly we can extend this construction to an arbitrary n ∈ N.
Let us choose

εp = (0, 1, 0, 1, . . . ),

for all p ∈ {1, 2, . . . , n}.
Let us consider Fi1i2...in

: C × K → K given by

Fi1i2...in
(x1, x2, . . . , xn, z) =

n
∑

j=1

αi1i2...in
(j)xj +

∑

1≤j1≤j2≤n

αi1i2...in
(j1, j2)xj1xj2

+ · · · +
∑

1≤j1≤j2≤···≤jp≤n

αi1i2...in
(j1, j2, . . . , jp)xj1xj2 . . . xjp

+ · · · + αi1i2...in
(1, 2, . . . , n)x1x2 . . . xn + h(z) + αi1i2...in

=
n

∑

p=1

∑

1≤j1≤j2≤···≤jp≤n

αi1i2...in
(j1, j2, . . . , jp)xj1xj2 . . . xjp

+ h(z) + αi1i2...in
,
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for all xp ∈ Ip, z ∈ K, p ∈ {1, 2, . . . , n} and ip ∈ {1, 2, . . . ,mp}, where αi1i2...in

and αi1i2...in
(j1, j2, . . . , jp)’s are constants, and h : K → K is an Edelstein

contraction.
Then we can prove that

Fi1i2...in
(x, z) = Fδ(i1i2...in;j)(x, z),

for all x = (x1, x2, . . . , xn) ∈ C with xj = L−1
jij

(xjij
) = L−1

j(ij+1)(xjij
), z ∈

K, j ∈ {1, 2, . . . , n}, p ∈ {1, 2, . . . , j − 1, j + 1, . . . , n}, ip ∈ {1, 2, . . . ,mp} and
ij ∈ {1, 2, . . . ,mj − 1}, where

δ(i1i2 . . . in; j) :=

{

i1 . . . ij−1(ij + 1)ij+1 . . . in if j ∈ {1, 2, . . . , n − 1},

i1i2 . . . (in + 1) if j = n.

The previous equality guarantees that T is well-defined (see Lemma 2 and
Lemma 4).

6. Third Instance when T is well-defined

In this section we work under the following supplementary conditions which
are natural in view of [21,22]:
(α) n = 2;
(β)

zi10 = zi1m2 = z0i2 = zm1i2 := z∗,

for all i1 ∈ {0, 1, 2, . . . ,m1} and i2 ∈ {0, 1, 2, . . . ,m2};
(γ) Fi1i2 : C × K → K is given by

Fi1i2(x1, x2, z) = αi1i2x1 + βi1i2x2 + γi1i2x1x2 + hi1i2(z) + ηi1i2 ,

for all (x1, x2, z) ∈ C × K and (i1, i2) ∈ {1, 2, . . . ,m1} × {1, 2, . . . ,m2},
where αi1i2 , βi1i2 , γi1i2 and ηi1i2 are constants and hi1i2 : K → K is an
Edelstein contraction;

(δ)

G∗ = {f ∈ G | f(x10, x2) = f(x1m1 , x2) = f(x1, x20) = f(x1, x2m2) = z∗

for all x1 ∈ I1, x2 ∈ I2} .

Lemma 5. T is well-defined.

Proof. Let f ∈ G∗ and (i1, i2) ∈ {1, 2, . . . ,m1 − 1} × {1, 2, . . . ,m2 − 1}.
Let us consider

(x1i1 , x2) ∈ Ci1i2 ∩ C(i1+1)i2 = {x1i1} × [x2(i2−1), x2i2 ]

and λ ∈ [0, 1] such that

x2 = (1 − λ)x2(i2−1) + λx2i2 .
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Since L2i2(x2e21) = x2(i2−1) and L2i2(x2e22) = x2i2 , we obtain

L−1
2i2

(x2) = L−1
2i2

((1 − λ)x2(i2−1) + λx2i2) = (1 − λ)L−1
2i2

(x2(i2−1)) + λL−1
2i2

(x2i2)

= (1 − λ)x2e21 + λx2e22 . (9)

Using the notation

e11 =

{

m1 if ε1i1 = 0,

0 if ε1i1 = 1,
e21 =

{

0 if ε2i2 = 0,

m2 if ε2i2 = 1,

e22 =

{

m2 if ε2i2 = 0,

0 if ε2i2 = 1,
e12 =

{

0 if ε1(i1+1) = 0,

m1 if ε1(i1+1) = 1,

treating (x1i1 , x2) as an entity belonging to Ci1i2 , we have

Tf(x1i1 , x2) = Fi1i2

(

L−1
1i1

(x1i1), L
−1
2i2

(x2), f
(

L−1
1i1

(x1i1), L
−1
2i2

(x2)
))

Remark 4, ii)
= Fi1i2

(

x1e11 , L
−1
2i2

(x2), f
(

x1e11 , L
−1
2i2

(x2)
))

(9)
= Fi1i2 (x1e11 , (1 − λ)x2e21 + λx2e22 , z

∗)

= αi1i2x1e11 + βi1i2 ((1 − λ)x2e21 + λx2e22) + γi1i2x1e11 ((1 − λ)x2e21 + λx2e22)

+ hi1i2(z
∗) + ηi1i2

= (1 − λ) (αi1i2x1e11 + βi1i2x2e21 + γi1i2x1e11x2e21 + hi1i2(z
∗) + ηi1i2)

+ λ (αi1i2x1e11 + βi1i2x2e22 + γi1i2x1e11x2e22 + hi1i2(z
∗) + ηi1i2)

= (1 − λ)Fi1i2 (x1e11 , x2e21 , z
∗) + λFi1i2 (x1e11 , x2e22 , z

∗)

(2)
= (1 − λ)zi1(i2−1) + λzi1i2

and treating (x1i1 , x2) as an entity belonging to C(i1+1)i2 , similarly, we obtain

Tf(x1i1 , x2) = F(i1+1)i2

(

L−1
1(i1+1)(x1i1), L

−1
2i2

(x2), f
(

L−1
1(i1+1)(x1i1), L

−1
2i2

(x2)
))

= F(i1+1)i2

(

x1e12 , L
−1
2i2

(x2), f
(

x1e12 , L
−1
2i2

(x2)
))

= F(i1+1)i2 (x1e12 , (1 − λ)x2e21 + λx2e22 , z
∗)

= (1 − λ)F(i1+1)i2 (x1e12 , x2e21 , z
∗) + λF(i1+1)i2 (x1e12 , x2e22 , z

∗)

= (1 − λ)zi1(i2−1) + λzi1i2 .

Thus, Tf(x1i1 , x2) is the same in both situations.
In a similar manner, we prove that Tf(x1, x2i2) is the same if we view (x1, x2i2)
as an element of Ci1i2 and as an element of Ci1(i2+1).
By using Lemma 1, we conclude that T (f) ∈ G.
Similar arguments ensure that

Tf(x1e1 , (1 − λ)x2(i2−1) + λx2i2) = (1 − λ)ze1(i2−1) + λze1i2 = z∗

and

Tf((1 − λ)x1(i1−1) + λx1i1 , x2e2) = (1 − λ)z(i1−1)e2 + λzi1e2 = z∗,
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for all λ ∈ [0, 1], i1 ∈ {1, 2, . . . ,m1}, i2 ∈ {1, 2, . . . ,m2}, e1 ∈ {0,m1} and
e2 ∈ {0,m2}.
Consequently

Tf(x1e1 , x2) = Tf(x1, x2e2) = z∗,

for all x1 ∈ I1, x2 ∈ I2, e1 ∈ {0,m1} and e2 ∈ {0,m2}.
Hence, T (f) ∈ G∗ for all f ∈ G∗. �

Remark 10. Let us consider an arbitrary data set

Δ :=
{

(x1i1 , x2i2 , zi1i2) ∈ R
3 | i1 ∈ {0, 1, . . . ,m1}, i2 ∈ {0, 1, . . . ,m2}

}

,

with xp0 < xp1 < · · · < xpmp
for all p ∈ {1, 2}.

Let us choose another data set

Δ̃ :=
{

(x̃1i1 , x̃2i2 , z̃i1i2) ∈ R
3 | i1 ∈ {−1, 0, . . . ,m1 + 1},

i2 ∈ {−1, 0, . . . ,m2 + 1}} ,

such that:
(i) x̃p(−1) < x̃p0 < · · · < x̃p(mp+1) for all p ∈ {1, 2};
(ii) x̃1i1 = x1i1 , x̃2i2 = x2i2 and z̃i1i2 = zi1i2 for all i1 ∈ {0, 1, . . . ,m1} and

i2 ∈ {0, 1, . . . ,m2};
(iii) z̃i1(−1) = z̃i1(m2+1) = z̃(−1)i2 = z̃(m1+1)i2 for all i1 ∈ {−1, 0, . . . ,m1 + 1}

and i2 ∈ {−1, 0, . . . ,m2 + 1}.

Then based on Remark 8 and Lemma 5, for the data Δ̃, we get a contrac-
tive multivariate zipper fractal interpolation function f̃ε : [x̃1(−1), x̃1(m1+1)] ×
[x̃2(−1), x̃2(m2+1)] → K and its restriction to [x10, x1m1 ] × [x20, x2m2 ] interpo-
lates Δ.

7. Examples

Let us consider the data set

{(x1i1 , x2i2 , zi1i2) ∈ R
3 | i1, i2 ∈ {0, 1, 2}}

with

x10 = 0, x11 =
1
4
, x12 = 1, x20 = 0, x21 =

1
2
, x22 = 1

and

z00 = z01 = z02 = z20 = z21 = z22 = z10 = z12 =
1
4
, z11 =

1
2
.

For i1, i2 ∈ {1, 2}, let us consider hi1i2 : [−1, 1] → [−1, 1], given by

h11(z) =
1
2
z, h12(z) =

1
2
z2, h21(z) =

1 + z

2 + z
, h22(z) =

1
4
z,

for all z ∈ [−1, 1].
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The first example

For ε1 = ε2 = (0, 0), we consider

L11(x1, x2) =
(

1
4
x1,

1
2
x2

)

,

F11(x1, x2, z) =
1
4
x1x2 + h11(z) +

1
8
,

L12(x1, x2) =
(

1
4
x1,

1
2
x2 +

1
2

)

,

F12(x1, x2, z) =
1
4
x1 − 1

4
x1x2 + h12(z) +

7
32

,

L21(x1, x2) =
(

3
4
x1 +

1
4
,
1
2
x2

)

,

F21(x1, x2, z) =
1
4
x2 − 1

4
x1x2 + h21(z) +

−11
36

,

L22(x1, x2) =
(

3
4
x1 +

1
4
,
1
2
x2 +

1
2

)

,

F22(x1, x2, z) = −1
4
(x1 + x2 − x1x2) + h22(z) +

7
16

,

for all x1, x2 ∈ [0, 1] and z ∈ [−1, 1].

The second example

For ε1 = (0, 1) and ε2 = (1, 0), we consider

L11(x1, x2) =
(

1
4
x1,

−1
2

x2 +
1
2

)

,

F11(x1, x2, z) =
1
4
x1 − 1

4
x1x2 + h11(z) +

1
8
,

L12(x1, x2) =
(

1
4
x1,

1
2
x2 +

1
2

)

,

F12(x1, x2, z) =
1
4
x1 − 1

4
x1x2 + h12(z) +

7
32

,

L21(x1, x2) =
(−3

4
x1 + 1,

−1
2

x2 +
1
2

)

,

F21(x1, x2, z) =
1
4
x1 − 1

4
x1x2 + h21(z) − 11

36
,

L22(x1, x2) =
(−3

4
x1 + 1,

1
2
x2 +

1
2

)

,

F22(x1, x2, z) =
1
4
x1 − 1

4
x1x2 + h22(z) +

3
16

,

for all x1, x2 ∈ [0, 1] and z ∈ [−1, 1].
Note that, for both examples, we have
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Figure 1. The graphical representation for the first example

–

Fi1i2(x1, x2, z) ∈ [−1, 1],

for all x1, x2 ∈ [0, 1], z ∈ [−1, 1];
– Fi1i2 ’s satisfy the condition (2);
– Fi1i2 ’s are Lipschitz with respect to x1 and x2;
– Fi1i2 ’s are Edelstein contractions with respect to z;
– F12 and F21 are not Banach contractions with respect to z;
– the condition β) from Sect. 6 is satisfied.

Therefore, according with Remark 8, there exist contractive multivariate zip-
per interpolation functions (which are called contractive fractal interpolation
surfaces). Their graphical representations are given in Fig. 1 and Fig. 2.

The third example Let us consider:
– the data set

{(x1i1 , x2i2 , zi1i2) ∈ R
3 | i1, i2 ∈ {0, 1, 2}}

with

x10 = 0, x11 = 1, x12 = 2, x20 = 0, x21 = 1, x22 = 2

and

z00 =
1
2
, z01 =

3
4
, z02 =

1
4
, z10 =

1
4
, z11 = 1, z12 =

1
2
, z20 = 1, z21 =

3
4
, z22 = 1,

– the signatures ε1 = ε2 = (0, 1),
– the Edelstein contraction map h : [0, 2] → [0, 2], given by

h(z) =
z

1 + z
,
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Figure 2. The graphical representation for the second example

for all z ∈ [0, 2],
–

L11(x1, x2) =
(x1

2
,
x2

2

)

, F11(x1, x2, z) =
−5x1

24
+

23x2

120
+

11x1x2

120

+ h(z) +
1
6
,

L12(x1, x2) =
(

x1

2
,
−x2

2
+ 2

)

, F12(x1, x2, z) =
x1

24
+

19x2

60
− x1x2

30

+ h(z) − 1
12

,

L21(x1, x2) =
(−x1

2
+ 2,

x2

2

)

, F21(x1, x2, z) =
−11x1

24
− 7x2

120
+

13x1x2

60

+ h(z) +
2
3
,

L22(x1, x2) =
(−x1

2
+ 2,

−x2

2
+ 2

)

, F22(x1, x2, z) =
−x1

3
− 7x2

120
+

37x1x2

240

+ h(z) +
2
3
,

for all x1, x2 ∈ [0, 1] and z ∈ [0, 2]. Since all the conditions from Sect. 5
are satisfied, there exists a continuous contractive fractal interpolation
surface whose graphical representation is given in Fig. 3.
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Figure 3. The graphical representation for the third example
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