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Abstract. We study the topology of all possible subsums of the generalized
multigeometric series k1f(x)+k2f(x)+· · ·+kmf(x)+· · ·+k1f(xn)+· · ·+
kmf(xn)+ . . . , where k1, k2, . . . , km are fixed positive real numbers and f
runs along a certain class of non-negative functions on the unit interval.
We detect particular regions of this interval for which this achievement
set is, respectively, a compact interval, a Cantor set and a Cantorval.
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1. Introduction

Let E(zn) denote the set of all possible sums of elements of the sequence {zn},
or equivalently, all possible subsums of the series

∑
n≥1 zn. That is,

E(zn) =

{ ∞∑

n=1

cnzn, cn ∈ {0, 1}
}

=

{
∑

n∈A

zn, A ∈ N

}

.

Also known as the achievement set of the sequence {zn} [7,9,11], it was
first considered by Kakeya [8] who conjectured that, for a convergent positive
series, this set is either a finite union of compact intervals or a Cantor set. This
conjecture was refuted in [5] by means of the following result whose proof was
completed in [13].

Theorem 1.1. The achievement set of a summable positive sequence is either:
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(i) a finite union of closed bounded intervals,
(ii) homeomorphic to the Cantor set, or
(iii) homeomorphic to a Cantorval.

Recall that a (symmetric) Cantorval can be formally defined as a none-
mpty compact real subspace which is the closure of its interior and the end-
points of any nontrivial component of this set are accumulation points of trivial
components. All Cantorvals are homeomorphic to [0, 1]\∪n≥1B2n in which Bn

is the union of the 2n−1 open intervals which are eliminated at the nth stage of
the construction of the Cantor set, which can be seen as E( 2

3n ). In particular,
any Cantorval is homeomorphic to the Guthrie-Nymann Cantorval given by
E(zn), with z2n = 2/4n and z2n−1 = 3/4n, the one originally considered in
(iii) of the above Theorem. Cantorvals also appear as attractors associated to
some iterated function systems [2], and an analogous result to Theorem 1.1
holds to describe the topology of the algebraic difference of certain Cantor sets
[1,10,12].

In this paper we consider a class of positive functions f defined on the
interval (see next section) and study the topological behavior, depending on
x, of the set all possible subsums of the series

k1f(x) + · · · + kmf(x) + k1f(x
2) + · · · + kmf(x2) + . . .

+k1f(x
n) + · · · + kmf(xn) + . . . , (1.2)

where k1, . . . , km are fixed positive scalars. Following the nomenclature in [4]
we call this a generalized multigeometric series. We show that, whenever x
varies along some particular regions, the achievement set of the associated
sequence is a compact interval (Theorem 2.8 and Corollary 2.9), a Cantor set
(Theorem 2.14), or a Cantorval (Corollary 2.12).

This extends the main results of [14] where f(x) = sin(x), and those in
[3] and [4] where f(x) = x, i.e., the considered series is the multigeometric,

k1 + · · · + km + k1q + · · · + kmq + · · · + k1q
n−1 + · · · + kmqn−1 + . . . ,

(1.3)

where k1, k2, . . . km are fixed positive integers and q ∈ (0, 1).
Finally, notice that the achievement set for the sequence associated to

the multigeometric series (1.2) equals the arithmetic sum of the achievement
sets associated to the different multigeometric series given by any partition of
the scalars k1, . . . , km. Therefore the results here can also be seen as criteria
to determine the topological nature of the arithmetic sum of the achievement
sets of the multigeometric sequences.
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2. The Achievement Set of Some Generalized Multigeometric
Sequences

Observe that the generalized multigeometric series given in (1.2), associated
to a given function f and to positive real numbers k1, . . . , km, can be written
as

∑

n≥1

wn(x) with wn(x) = kg(n)f(x� m+n−1
m �), (2.1)

where, as usual, � · � denotes the integer part function and

g(n) = 1 +
(
(n − 1) mod m

)
.

Observe also that the achievement set for this sequence at a given x is

E
(
wn(x)

)
=

{ ∞∑

n=1

αnf(xn), αn ∈ A

}

where A =

{
m∑

i=1

ciki, ci ∈ {0, 1}
}

.

We will study the topology of this set for a particular class of functions:

Definition 2.2. A function f is locally increasing and power bounded (at 0) if
there exist ε ∈ (0, 1), and a, b, r ∈ R

+ such that f is monotone increasing in
[0, ε] and

a · xr ≤ f(x) ≤ b · xr

for every x ∈ [0, ε]. We denote by M the class of locally increasing at 0 and
power bounded functions.

The following shows that differentiable functions abound in M:

Proposition 2.3. Let f ∈ Cr+1
(
[0, 1)

)
such that f i)(0) = 0 for 0 ≤ i < r and

fr)(0) > 0. Then f ∈ M.

Proof. With f as in the statement there exists ε ∈ (0, 1) such that fr)([0, ε]) ⊂
R

+, and therefore f(x) is monotone increasing in [0, ε].
On the other hand, define

a =
1
r!

min
{
fr)(ζ), ζ ∈ [0, ε]

}
and b =

1
r!

max
{
fr)(ζ), ζ ∈ [0, ε]

}
,

and consider, for any λ ∈ R, the function hλ(x) = f(x) − λxr. We then use
the Taylor (r − 1)th-approximation together with the error formula of hλ at 0
to conclude that

hλ(x) =
(

fr)(ζ)
r!

− λ

)

xr for some ζ ∈ [0, x). (2.4)

In particular, for any x ∈ [0, ε], ha(x) = f(x) − axr ≥ 0 while hb(x) =
f(x) − bxr ≤ 0. �
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Example 2.5. (1) Note that the identity f(x) = x is trivially in M by choosing
a = b = r = 1 and any ε. (2) By the well known Jordan inequality,

2x

π
≤ sin x ≤ x, |x| ≤ π

2
,

we see that the function f(x) = sinx is in M by choosing a = 2
π , b = 1 and

ε = π
2 . Nevertheless, as f ′(x) = cos x, Proposition 2.3 provides a = cos 1,

b = r = ε = 1. The same applies, for instance, to the function f(x) = tan x
choosing r = ε = 1:

x ≤ tan x ≤ x

cos2(1)
, x ∈ [0, 1].

(3) Consider the function f(x) = x · ln(x + 1) in which f(0) = f ′(0) = 0 and
f ′′(x) = x+2

(x+1)2 > 0 for x ∈ [0, 1]. Then f ∈ M choosing r = 2, ε = 1, a = 3
8

and b = 1. Another example covered by Proposition 2.3 and providing r = 2
is, for instance, f(x) = ex − x − 1. Here ε = 1, a = 1

2 and b = e
2 .

We also need:

Lemma 2.6. Let f ∈ M and let k1 ≥ k2 ≥ · · · ≥ km > 0 be positive scalars.
Define

ε = min

{

r

√
akm

bk1
, ε

}

.

Then, the associated generalized multigeometric series
∑

n≥1 wn(x) is conver-
gent for any x ∈ [0, ε]. Moreover, wn(x) ≥ wn+1(x) for any n ∈ N and any
x ∈ [0, ε].

Proof. If we write K =
∑m

i=1 ki, we deduce that
∞∑

n=1

wn(x) ≤ b ·
∞∑

n=1

Kxnr =
bKxr

1 − xr
, x ∈ [0, ε],

and therefore, this series converges since 0 ≤ ε ≤ ε < 1.
On the other hand, as k1 ≥ k2 ≥ · · · ≥ km, it follows that kif(xn) ≥

ki+1f(xn) for i = 1, . . . ,m − 1. Moreover, if x > 0,

kmf(xn) ≥ akm(xn)r (since f ∈ M and 0 < x ≤ ε ≤ ε)

≥ akm(xn+1)r

xr

≥ akm(xn+1)r

(
r

√
akm

bk1

)r

(

since 0 < x ≤ ε ≤ r

√
akm

bk1

)

≥ bk1(xn+1)r

≥ k1f(xn+1) (since f ∈ M and 0 < x ≤ ε ≤ ε) .

Hence wn(x) ≥ wn+1(x) for any n ∈ N and any x ∈ [0, ε]. �
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In what follows we fix an arbitrary function f ∈ M, thus constants
ε ∈ (0, 1], and a, b, r ∈ R

+ are those given in Definition 2.2. We choose positive
real numbers k1 ≥ k2 ≥ · · · ≥ km > 0, let ε ∈ (0, 1] be defined as in Lemma
2.6, and consider the associated generalized multigeometric series

∑
n≥1 wn(x)

for x ∈ [0, ε). We also fix the following notation:

K =
m∑

i=1

ki, Uj =
m∑

i=j+1

ki, Lj =
j∑

i=1

ki = K − Uj ,

Also, for any series
∑

n≥1 zn and any � ≥ 1 we denote by Z� =
∑

n>� zn the
�th tail of the series. In particular, we write W�(x) =

∑
n>� wn(x).

On the other hand, we will strongly use the following foundational result
of Kakeya, rediscovered and extended by Hornich:

Theorem 2.7 [6,8]. Let
∑

n≥1 zn be a convergent positive series with non-
increasing terms, i.e., zn ≥ zn+1 for any n ∈ N. Then, the achievement set
E(zn) is:

(i) a finite union of bounded closed intervals if and only if zn ≤ Zn for all
but finitely many n ∈ N;

(ii) a compact interval if and only if zn ≤ Zn for every n ∈ N;
(iii) homeomorphic to the Cantor set if zn > Zn for all but finitely many

n ∈ N.

With the notation above define

dI = r

√

max
1≤j≤m

{
bkj − aUj

bkj + aLj

}

.

Our first result extends and refines [14, Theorem 3.1]:

Theorem 2.8. Whenever dI ≤ ε, the achievement set E
(
wn(x)

)
is a compact

interval for any x ∈ [dI , ε].

Proof. According to the Theorem 2.7.(ii), it is enough to show that wn(x) ≤
Wn(x) for every n ∈ N and any x ∈ [dI , ε). Since f ∈ M,

wn(x) = kg(n)f(x� m+n−1
m �) ≤ b · kg(n)x

� m+n−1
m �r,

while

Wn(x) =
∑

�>n

w�(x) ≥ a·
∑

�>n

kg(�)x
� m+�−1

m �r = a·x� m+n−1
m �r

(

Ug(n) + K
xr

1 − xr

)

,

for n ∈ N and x ∈ [0, ε]. Therefore wn(x) ≤ Wn(x) whenever

b · kg(n)x
� m+n−1

m �r ≤ a · x� m+n−1
m �r

(
Ug(n) + K

xr

1 − xr

)
.

For x = 0 this trivially holds and, for x > 0 this is the case when

b · kg(n) ≤ a ·
(

Ug(n) + K
xr

1 − xr

)

,
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that is, whenever

x ≥ r

√
bkg(n) − aUg(n)

bkg(n) + aLg(n)

for all n. As the function g(n) takes the values 1, 2, . . . ,m, this happens for all
x ∈ [dI , ε). �

As a consequence, denoting

dIM := r

√
b

b + a
,

we obtain:

Corollary 2.9. Whenever dIM ≤ ε, the achievement set E
(
wn(x)

)
is a compact

interval for any x ∈ [dIM , ε].

Proof. Simply note that

dI = r

√

max
1≤j≤m

{
bkj − aUj

bkj + aLj

}

= r

√

max
1≤j≤m

{
b − aUj/kj

b + aLj/kj

}

≤ r

√
b

a + b
= dIM

and apply Theorem 2.8. �

On the other hand, denoting

dNI = r

√
akm

bK + akm
,

we prove the following that extends [14, Theorem 3.3], which in turn is inspired
by [3, Theorem 2.1] generalized in [4, Theorem 2.2(ii)]:

Theorem 2.10. The achievement set E
(
wn(x)

)
is not a finite union of closed

bounded intervals for 0 < x < min{ε, dNI}.
Proof. According to Theorem 2.7.(i) it is sufficient to show that w�m(x) >
W�m(x) for any � ∈ N and 0 < x < min{ε, dNI}. Observe that, for any
x ∈ (0, ε),

w�m(x) = kmf(x�) ≥ a · kmx�r,

while

W�m(x) = K ·
∑

j>�

f(xj) ≤ b · Kx(�+1)r

1 − xr
.

Therefore w�m(x) > W�m(x) as long as

W�m ≤ b · Kx(�+1)r

1 − xr
< a · kmx�r ≤ w�m.

That is, whenever

x < r

√
akm

bK + akm
= dNI .

�
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The next result extends [3, Theorem 2.1], [4, Theorem 2.2(i)] and [14,
Theorem 3.4]. We follow a strategy similar to the proofs of these references.

Theorem 2.11. Choose λ, μ ∈ R
+ and s ∈ N such that every number μ, μ +

λ, μ + 2λ, . . . , μ + sλ, is a subsum of the (finite) series
∑m

i=1 ki, and write

dCI = r

√
b

s · a + b
.

Then, whenever dCI < ε, E
(
wn(x)

)
contains a compact interval for any x ∈

[dCI , ε).

Proof. Let define k1 = k2 = · · · = ks = λ > 0, and consider the convergent
positive series

∑
n≥1 wn(x) where

wn(x) = kg(n)f(x� n+s−1
s �),

with g(n) = 1 +
(
(n − 1) mod s

)
. Then, according to Theorem 2.8, E

(
wn

)
is

a compact interval for all x ∈ [dI , ε) where now

dI = r

√

max
1≤j≤s

{
bkj − aUj

bkj + aLj

}

= r

√

max
1≤j≤s

{bλ − aλ(s − j)
bλ + aλj

}

= r

√

max
1≤j≤s

{
1 − as

aj + b

}

= r

√

1 − as

as + b

= r

√
b

b + sa
.

We finish the proof by showing that the interval
{ ∞∑

n=1

μf(xn)

}

+ E
(
wn(x)

)

is contained in E
(
wn(x)

)
.

Indeed, if z ∈ {∑∞
n=1 μf(xn)} + E

(
wn(x)

)
, write

z =
∞∑

n=1

(
μ + snλ)f(xn),

where sn ∈ {0, 1, . . . , s}. Therefore, there exist cn,i ∈ {0, 1} such that μ+snλ =∑m
i=1 cn,iki, and thus
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z =
∞∑

n=1

(
m∑

i=1

cn,iki

)

f(xn) ∈ E(wn).

�

The following recovers [4, Theorem 2.2(iii)] and generalizes [14, Corollary
3.5]. Under the hypothesis of the previous theorem we have:

Corollary 2.12. Whenever dCI < dNI , the achievement set E
(
wn(x)

)
is a

Cantorval for any x ∈ [dCI , dNI).

Proof. Let x ∈ [dCI , dNI). Then

(i) According to the Theorem 2.11, if x ≥ r

√
b

sa+b , then E
(
wn(x)

)
contains

an interval.
(ii) An analogous argument to the one in the proof of Theorem 2.10 shows

that if x < r

√
akm

akm+bK , then wmi(x) > Wmi(x) for every i ∈ N and E(wn)
cannot be a finite union of closed and bounded intervals.

Therefore, E
(
wn(x)

)
must be a Cantorval. �

Remark 2.13. Observe that dCI < dNI only if

b < a

√
skm

K
.

Therefore, as a ≤ b,

1 <
skm

K
is a necessary condition for Corollary 2.12.

Finally, let

dC = r

√

min
1≤j≤m

{akj − bUj

akj + bLj

}
.

Our last result extends and refines [14, Theorem 3.7]:

Theorem 2.14. Whenever dC > 0, the achievement set E
(
wn(x)

)
is homeo-

morphic to the Cantor set for 0 < x < min{ε, dC}.
Proof. According to Theorem 2.7.(iii), it is enough to show that wn(x) >
Wn(x) for all but finitely many n ∈ N and x ∈ [0, dC ]. Observe that, for any
x ∈ (0, ε),

wn(x) = kg(n)f(x� m+n−1
m �) ≥ a · kg(n)

(
x� m+n−1

m �r
)

while

Wn(x) =
∑

�>n

w� ≤ b ·
∑

�>n

kg(�)

(
x� m+�−1

m �r
)

= b · x� m+n−1
m �r

(
Ug(n) +

Kxr

1 − xr

)
.
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Therefore, wn(x) > Wn(x) as long as

a · kg(n)x
� m+n−1

m �r > b · x� m+n−1
m �r

(
Ug(n) +

Kxr

1 − xr

)
,

and since x > 0, whenever

·kg(n) > b ·
(
Ug(n) +

Kxr

1 − xr

)
.

That is, when

x < r

√
akg(n) − bUg(n)

akg(n) + bLg(n)

for all n and the theorem follows. �
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