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Abstract. A compact set E ⊂ C
N satisfies the Markov inequality if the

supremum norm on E of the gradient of a polynomial p can be esti-
mated from above by the norm of p multiplied by a constant polynomi-
ally depending on the degree of p. This inequality is strictly related to the
Bernstein approximation theorem, Schur-type estimates and the exten-
sion property of smooth functions. Additionally, the Markov inequality
can be applied to the construction of polynomial grids (norming sets or
admissible meshes) useful in numerical analysis. We expect such an in-
equality with similar consequences not only on polynomially determining
compacts but also on some nowhere dense sets. The primary goal of the
paper is to extend the above definition of Markov inequality to the case of
compact subsets of algebraic varieties in C

N . Moreover, we characterize
compact sets satisfying such a Markov inequality on algebraic hypersur-
faces as well as on certain varieties defined by several algebraic equations.
We also prove a division inequality (a Schur-type inequality) on these sets.
This opens up the possibility of establishing polynomial grids on algebraic
sets. We also provide examples that complete and ilustrate the results.
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1. Introduction

Polynomial inequalities play an exceptional role in approximation and inter-
polation theory as well as in numerical analysis. They give us primary tools in
estimation of approximation errors, e.g. for numerical solutions of differential
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equations. Some of them are strictly related to main approximation theorems.
The best example is the Markov inequality saying that for every polynomial p
of N variables

‖|grad p|‖E ≤ M (deg p)m‖p‖E (1)

where E is a compact subset of KN (K = R or C), ‖·‖E is the maximum norm
on E, grad p is the gradient of p and M,m > 0 are constants independent of
p and of the degree of p. Sets satisfying the above estimate are usually called
Markov sets and property (1) will be called the classical Markov inequality
in the paper. It is worth noting that this inequality is strictly related to the
Bernstein approximation theorem, Pleśniak’s property, Shur-type estimates
and the extension of smooth functions (see e.g. [20]). Moreover, the above
inequality provides a tool for constructing norming sets called also admissible
meshes on E, i.e. such finite sets An ⊂ E that the estimate

‖p‖E ≤ Cn‖p‖An
(2)

holds for all polynomials p of degree at most n, where Cn depends only on E
and n (see [9]). It is easy to guess that norming sets are very useful in computer
calculations.

One can see that the classical Markov inequality is not satisfied if E is
a compact subset of an algebraic variety. However, also on algebraic sets we
expect the consequences of (1) mentioned above. The following basic questions
naturally arise.

Question 1. Let V be an arbitrary algebraic set in C
N . How to extend the

classical Markov inequality (1) in such a way that

(i) it is satisfied on some compact subsets of V and
(ii) it gives the possibility of constructing admissible meshes on V ?

So far, the known admissible meshes on algebraic varieties involve only some
subsets of sphere, torus and certain curves, see [18], [21]. An estimate similar
to (1) studied e.g. in [8] (called a tangential Markov inequality), is considered
only for real algebraic varieties and seems to not satisfy condition (ii).

In the present paper, we extend the classical Markov inequality (1) to
the case of compact subsets of the algebraic variety V (see Def. 3.5). For this
purpose, we use reduced Gröbner basis for V to construct a polynomial space
W⊂ C[z1, ..., zN ]. This space for a fixed arbitrary algebraic variety V ⊂ C

N ,
can be easily found using Singular (a computer algebra system for polynomial
computations). Our definition of Markov inequality on V is strictly related
to the space W and coincides with the classical Markov inequality in the case
V = C

N . Moreover, we present methods that allow one to construct admissible
meshes on all algebraic hypersurfaces and on certain algebraic varieties of
codimension greater than 1, see [5]. In this way we are answering Question
1 in relation to both conditions (i) and (ii) for algebraic varieties mentioned
above.
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The next problem of interest is to indicate compact subsets of algebraic
varieties satisfying our Markov inequality.

Question 2. Let V be an arbitrary algebraic set in C
N . Is it possible to charac-

terise compact subsets of V satisfying the Markov inequality given in Definition
3.5 ?

We present such a characterization for algebraic hypersurfaces V ⊂ C
N .

Namely, we prove that the Markov inequality on a compact set E ⊂ V is
equivalent to the classical Markov inequality (1) on some projection of E into
C

N−1, see Theorem 4.1. All assumptions in this theorem are necessary as we
show in Remark 4.2 and Examples 4.7, 4.8. Moreover, we prove a similar result
for some algebraic varieties of codimension greater than one (Corollary 5.4).
We also show a division inequality, called sometimes a Schur-type inequality
(Def. 3.1), on algebraic sets, see Theorems 4.5 and 5.3. These results seems to
be of independent interest.

The paper is organized as follows. In the second section, just after intro-
duction, we present basic notations and results related to a construction of a
polynomial space W that will be used in the definition of the Markov inequality
on algebraic sets. In the subsequent section, we give definitions of division and
Markov inequalities on algebraic sets and we prove their fundamental proper-
ties. The 4th section deals with results concerning algebraic hypersurfaces and
contains a characterisation of sets satisfying the Markov inequality as well as
two examples. In the last section we study Markov and division inequalities on
algebraic sets of codimension greater than one. We present three results and
two examples related to this case.

2. Preliminaries

Let K be the field R or C and N = {1, 2, 3, . . . }, N0 = {0} ∪ N. The space of
polynomials of N variables with coefficients in K will be denoted by P(KN ).
The space Pn(KN ) consists of polynomials of degree at most n. However,
it is sometimes more convenient to write P(z), z ∈ C

N for P(CN ) and
analogously Pn(z) for Pn(CN ). For an algebraic set V ⊂ C

N we define
P(V ) := P(CN )/I(V ) where I(V ) is the ideal in the ring P(CN ) related to
V defined by I(V ) := {p ∈ P(CN ) : p|V = 0}. As usual, |α| = α1 + · · · + αN

and Dα = ∂|α|

∂x
α1
1 ...∂x

αN
N

for α = (α1, . . . , αN ) ∈ N
N
0 .

Consider a general algebraic hypersurface V (s) ⊂ C
N+1 given by one

polynomial equation s(z, y) = 0, z ∈ C
N , y ∈ C such that degys ≥ 1. Taking

a linear invertible change of variables, if necessary, we can assume that

s(z, y) = yk −
k−1∑

j=0

s̃j(z) yj with k ≥ 1. (3)
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In this particular case, we take the following space of polynomials as a family
of representatives of (classes from) P(V (s))

P(z) ⊗ Pk−1(y) := {p ∈ P(z, y) p(z, y) =
k−1∑

j=0

pj(z)yj ,

pj ∈ P(z) for j = 0, . . . , k − 1}.

Observe that the mapping

P(z) ⊗ Pk−1(y) 	 p 
→ p|V (s)
∈ P(V (s))

is an isomorphism.
The case of an arbitrary algebraic variety V ⊂ C

N+1 given by several
equations is more complicated. Take n polynomials s1, ..., sn ∈ P(CN+1) such
that

V = V (s1, ..., sn) := {z = (z1, ..., zN+1) ∈ C
N+1 : s1(z) = 0, ..., sn(z) = 0}.

(4)
We assume that V (s1, ..., sn) is not a finite set of points.

Consider the ideal I = I(V ) in the ring of polynomials P(CN+1) re-
lated to V = V (s1, . . . , sn) Fix an ordering � in the family of monomials
T

N+1 :=
{
zα : α ∈ N

N+1
0

}
. By Proposition 6 in [11, Ch.2, §7], we find the

unique reduced Gröbner basis G = {g1, ..., g�} of I(V ) related to �. Taking
into account Proposition 1 in [11, Ch.2, §6], for any polynomial p ∈ P(CN+1)
we can construct the unique rp ∈ P(CN+1) and qp ∈ I(V ) with the following
two properties:

(i) p = qp + rp,
(ii) no term of rp is divisible by any of LT (g1), ..., LT (g�)

where LT (g) is the leading term of polynomial g. We define Wv as the com-
plement of I(V ) in the space P(CN+1) in the sense of condition (i). In other
words, Wv = {rp p ∈ P(CN+1)}. Obviously, Wv is a vector space and
Wv ∩ I(V ) = {0}. The set Wv constructed above is a space of polynomial
representatives of (classes from) P(V ) (related to the ordering �). The linear
mapping

Φ : Wv 	 r 
→ r|V ∈ P(V )

is an isomorphism and the inverse map can be stated as follows

Φ−1 : P(V ) 	 p 
→ rp ∈ Wv (5)

where rp is defined in (i). Moreover, by the definition of Gröbner basis (see
Def.5 in [11, Ch.2, §5]), we have

〈LT (g1), ..., LT (g�)〉 = 〈LT (I)〉
where LT (I) := {LT (p) : p ∈ I}.
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Remark 2.1. The space Wv is a set of linear combinations with coefficients in
C, of monomials, none of which is divisible by any of LT (g1), ..., LT (g�), i.e.

Wv =
{∑′cαzα : cα ∈ C, zα ∈ T

N+1 \ LT (G) · TN+1
}

where
∑′ denotes a sum of any finite number of elements and LT (G) :=

{LT (gi) : i = 1, ..., �}.

Observe that in the case of an algebraic set given by one polynomial
equation s(z, y) = 0 where s is of form (3), we have Wv = P(z) ⊗ Pk−1(y)
for the reverse lexicographical ordering of monomials T

N+1.

Example 2.2. (cf. [1]) Consider

s1(x, y, z) = y2 + z2 − x2 − 1, s2(x, y, z) = z2 + yz − 2y2 + xz − xy + 1

and V = V (s1, s2). Using Singular (a computer algebra system for polynomial
computations), we can find the reduced Gröbner basis of the ideal I(V ) for
the graded lexicographical ordering of monomials T

3:

G = {s1, s2, s3} where s3(x, y, z) = y3 + 1
3y2z − 4

3yz2 + 1
3x − 1

3y − 2
3z.

Observe that the space spanned by s1, s2 is equal to the ideal I(V ), i.e.
〈s1, s2〉 = I. Indeed,

s3(x, y, z) = 1
3 (z − y) s1(x, y, z) + 1

3 (x − 2y − z) s2(x, y, z).

However, {s1, s2} is not a Gröbner basis because LT (s3) = y3 �∈ 〈LT (s1),
LT (s2)〉 = 〈x2, xy〉. We have LT (G) = {x2, xy, y3} and by Remark 2.1,

Wv = {a(z) + b(z)x + c(z)y + d(z)y2 : a, b, c, d ∈ P(C)}
= P(z) ⊗ P1(x) + P(z) ⊗ P2(y).

On the other hand, for the lexicographical ordering we obtain the reduced
Gröbner basis

G = {s3, s4} with s4(x, y, z) = y4 − 2
3y3z − 5

3y2z2 − y2 + 4
3yz3 + z2 + 1

3 .

Moreover, LT (G) = {x, y4} and by Remark 2.1, we get

Wv = P(z) ⊗ P3(y).

If we consider the reverse lexicographical ordering then the reduced Gröbner
basis contains 4 elements and

Wv = P(x) ⊗ P3(y) + P1(x) ⊗ P1(z).

Remark 2.3. The set
{
zα + I : zα ∈ T

N+1 \ LT (G) · TN+1
}

is a basis of the space P(V ).
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The dimension of the space Wv constructed for the algebraic set V =
V (s1, ..., sn) is finite if and only if the dimension of V is zero. Therefore, we
will consider only algebraic sets of a positive dimension.

As an immediate consequence of Remark 2.1, we obtain

Remark 2.4. The space Wv is invariant under derivation. Moreover, Wv is
invariant under homothety, i.e. p ∈ Wv implies p ◦ τ ∈ Wv where τ(z) :=
λz + a with λ ∈ C and a ∈ C

N+1. This property allows to prove invariance of
Markov inequality under homothety, see Section 3.

It is worth noting that the Gröbner basis technique was also used by Cox
and Ma’u in [12] to study Chebyshev constants and the transfinite diameter
on algebraic varieties.

The proposition below shows that our concept presented in the next
sections makes sense.

Proposition 2.5. For a polynomial s of form (3) the projection

π : V 	 (z, y) 
→ z ∈ C
N (6)

is a proper mapping. Consequently, the map V (s1, . . . , sn) 	 (z, y) 
→ z ∈ C
N

is proper provided that at least one of s1, . . . , sn is of form (3).

Proof. It is easy to check that for z ∈ B(0, R) := {w ∈ C
N ‖w‖ ≤ R} we

have

‖y‖ ≤ max{R,
k−1∑

j=0

‖s̃j‖B(0,R)R
−(k−1−j)},

and hence (z, y) is in a compact set.

Observe that the above statement is not true in general, e.g., for s(z, y) =
yz. �

3. Division and Markov Inequalities

We start with an inequality that can be easily defined on compact polynomially
determining sets (e.g. [14]) as well as on compact subsets of algebraic varieties.

Definition 3.1. Let K be a compact subset of CN . We say that K satisfies the
division inequality with exponent m if for any polynomial q �≡ 0 on K there
exists a positive constant M such that for all polynomials p ∈ P(CN )

‖p‖K ≤ M(deg p + deg q)m deg q‖pq‖K (7)

where ‖ · ‖K is the sup-norm on the set K. This property is sometimes called
a Schur-type inequality.
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For a polynomial s given in form (3) consider the set

A = A (s) := {z ∈ C
N : Discy (s) = 0} =

{
z ∈ C

N : Resy

(
s, ∂s

∂y

)
= 0

}

(8)
where Discy (s) is the discriminant of s in y and Resy

(
s, ∂s

∂y

)
is the resultant

of s, ∂s
∂y in y.

Remark 3.2. For s given in form (3) and a fixed z ∈ C
N the polynomial

y 
→ s(z, y) of one complex variable y has k roots pairwise distinct if and only
if z ∈ C

N \ A .

We will show (see Proposition 3.4) that irreducibility of s implies C
N \

A �= ∅.
For a compact set K ⊂ C

N , a polynomial vector Q = [q0, ..., qk−1]T ∈(
P(CN )

)k and a polynomial matrix B ∈ (
P(CN )

)k×k, we will use the norms
on K defined as follows

‖Q‖K := max
j=0,...,k−1

{‖qj‖K}, ‖B‖K :=
k−1∑

j=0

‖Colj(B)‖K

where Colj(B) denotes the j-th column of B. As usual, we write I for the
identity matrix. It is easy to show that for two polynomial matrices B1 and
B2 we have ‖B1 B2‖K ≤ ‖B1‖K‖B2‖K .

Proposition 3.3. Let V (s) ⊂ C
N+1 be an algebraic variety defined by a poly-

nomial s in the form s(z, y) = yk − ∑k−1
j=0 sj(z) yj with k ≥ 1, K ⊂ C

N be a
compact set and E := π−1(K) ⊂ V (s) where π denotes the projection (6). If
K satisfies the division inequality with exponent m and K \ A (s) �= ∅ then

‖[p0, ..., pk−1]‖K ≤ M0 (deg p)m0‖p‖E (9)

for any polynomial p written in the form p(z, y) =
∑k−1

j=0 pj(z) yj on V (s)
where M0, m0 ≥ 0 are constants independent of p0, . . . , pk−1 and m0 = m (k−
1) deg s.

Proof. Fix a point z ∈ C
N \A . By Remark 3.2, there exist k pairwise distinct

roots of the polynomial s(z, ·), say y1 = y1(z), ..., yk = yk(z). We have the
system of k linear equations in pk−1(z), ..., p0(z)

pk−1(z) yk−1
� + ... + p1(z) y� + p0(z) = p(z, y�) for � = 1, ..., k.

The matrix of this system is a Vandermonde one and, consequently, the square
of its determinant is a non-zero function W = W (y1, ..., yk) polynomially de-
pending on y1, ..., yk and symmetric in these variables. By the fundamental
theorem of symmetric polynomials, W has a unique representation

W (y1, ..., yk) = Q(e1(y1, ..., yk), ..., ek(y1, ..., yk))
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where e1(y1, ..., yk), ..., ek(y1, ..., yk) are elementary symmetric polynomials
and Q is a polynomial of k variables of degree at most degy1

W (see e.g.,
Theorem 8.4 and its proof in [23, Sec. 8.2]). Thanks to Vieta’s formulas, we
obtain

e1(y1, ..., yk) = sk−1(z), ..., ek(y1, ..., yk) = (−1)k+1s0(z),

and so

W (y1, ..., yk) = Q(sk−1(z), ..., (−1)k+1s0(z)) =: Q̃(z).

Observe that {z ∈ C
N : Q̃(z) = 0} = A . Since K \A �= ∅, we see that Q̃ �≡ 0

on K. Solving the above system of linear equations, for any z ∈ C
N \ A and

j ∈ {0, ..., k − 1} we have

p2j (z) = [q1j(y1, ..., yk) p(z, y1) + ... + qkj(y1, ..., yk) p(z, yk)]2/W (y1, ..., yk)

where q1j , ..., qkj are polynomials of k variables independent of p.
Take a point z0 ∈ K where the norm ‖p2j Q̃‖K is attained and such

that Q̃(z0) �= 0 (in the case pj = 0 on K). Consequently,

‖p2j Q̃‖K =|p2j (z0)W (y1(z0), ..., yk(z0))|
=|q1j(y1, ..., yk) p(z0, y1) + ... + qkj(y1, ..., yk) p(z0, yk)|2
≤‖q1j(y1, ..., yk) p(z, y1) + ... + qkj(y1, ..., yk) p(z, yk)‖2K .

Since the projection π given by (6) is a proper mapping, the set E = π−1(K)
is compact and

‖q1j(y1, ..., yk) p(z, y1) + ... + qkj(y1, ..., yk) p(z, yk)‖K ≤ C̃ ‖p‖E

with a constant C̃ independent of p. By means of the division inequality,

‖p2j‖K ≤ C(deg Q̃ + 2 deg pj)m deg Q̃‖p2j Q̃‖K

≤ C C̃2(deg Q̃ + 2 deg pj)m deg Q̃‖p‖2E ≤ M (deg p)m deg Q̃‖p‖2E
for j = 0, ..., k − 1. Since deg Q ≤ degy1

W , we have deg Q̃ ≤ deg s degy1
W =

2(k − 1) deg s and inequality (9) holds with m0 = m (k − 1) deg s.

Note that for k = 1 we have m0 = 0 that is a direct consequence of
inequality (9) or of the formula m0 = m (k − 1) deg s. �

Proposition 3.4. If a polynomial w ∈ P(z, y) (with z ∈ C
N , y ∈ C) of

degree k ≥ 1 in y is irreducible in the ring P(z, y) then for some z0 ∈ C
N the

polynomial y 
→ w(z0, y) has k roots pairwise distinct, i.e. CN \ A (w) �= ∅.
Proof. Here we will use the algebraic notation C[z] for the ring of polynomials
and C(z) for the field of rational functions. If the polynomial w is irreducible
in P(z, y) = C[z][y] then by the Gauss lemma (see e.g., Corollary 4.4 and
Theorem 4.7 in [19]), w is irreducible in C(z)[y] too. Consequently, w and
∂w
∂y are coprime in C(z)[y]. By Bézout’s identity, a w + b ∂w

∂y = 1 for some
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a, b ∈ C(z)[y]. Therefore, for some � ∈ N0 and a0, ..., a�, ã0, ..., ã� ∈ C[z] we
can write the function a in the following form: a(z, y) =

∑�
j=0

aj(z)
ãj(z)

yj . And
similarly, we can do the same for b. Considering common denominators in a
and b, we can find c, d ∈ C[z][y] and g ∈ C[z], g �≡ 0 satisfying the formula
c w + d ∂w

∂y = g. For any point z ∈ C
N such that g(z) �= 0 and for any y ∈ C

we have
c(z, y) w(z, y) + d(z, y) ∂w

∂y (z, y) = g(z).

Therefore, it is impossible that w(z, y0) = ∂w
∂y (z, y0) = 0 for some y0. �

By Proposition 3.4 irreducibility is sufficient for w to have the prop-
erty C

N \ A (w) �= ∅. However, this is not a necessary condition, because the
polynomial w(z, y) = y2 − z2, z, y ∈ C has two distinct roots y1, y2 for any
z ∈ C\{0}.

Lemma 3.9 will show that condition (9) is equivalent to a Markov type
estimate in y. Before stating it, we give a definition of Markov inequality.

Let W be an infinite dimensional subspace of P(CN ) which is invariant
under derivation.

Definition 3.5. A compact set K ⊂ C
N satisfies the Markov inequality for

polynomials from W with exponent m > 0 (cf. [4, Def.20]) if there exists a
constant M > 0 such that for all p ∈ W

‖|grad p|‖K ≤ M (deg p)m‖p‖K . (10)

A set K with the above property is called a W-Markov set.

It is worth noting that for a specific algebraic hypersurface V = {(z, y) ∈
C

N−1 × C : yk = s(z)}, where s ∈ C[z1, ...zN−1], the Markov inequality for
polynomials of variables (z, y) ∈ C

N of degree at most k − 1 in y satisfies
conditions (i) and (ii) of Question 1, as it was observed in [4]. This agrees with
our general construction of the space W presented in this paper, if we take a
Gröbner basis for the reverse lexicographic ordering in the family of monomials.
The Markov inequality introduced in [4] for these specific hypersurfaces was
applied to polynomial approximation in [3], cf. [2] and [16].

Remark 3.6. If K is a W-Markov set then for all α ∈ N
N
0 and p ∈ W we have

‖Dαp‖K ≤ M |α|(deg p)m|α|‖p‖K .

Consequently, the set K is determining for the space W, i.e. any polynomial
from W \ {0} does not vanish identically on K.

We can see that if W is invariant under homothety and K is a W-Markov
set, then so is λK + a for any λ ∈ C and a ∈ C

N .
The most interesting case concerns the space W = Wv constructed in

Sect. 2 for an algebraic variety V = V (s1, . . . , sn) ⊂ C
N , because the space Wv

contains a representative of each class from P(V ) and the mapping Wv 	
p 
→ p|V ∈ P(V ) is an isomorphism. Moreover, Wv is invariant under
derivation and homothety.
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Corollary 3.7. If a compact subset E of an algebraic variety V = V (s1, . . . , sn)
⊂ C

N is a Wv-Markov set then E is determining for polynomials from P(V ).

Clearly, Definition 3.5 is a generalization of Markov inequality (1), it
is sufficient to take W = P(CN ). In this case, estimate (10) is often called
the classical Markov inequality and was studied by Baran, Bos, Goetgheluck,
Goncharov, Milman, Pleśniak and many others. A set K ⊂ C

N satisfying the
classical Markov inequality is polynomially determining sets and it is some-
times called a Markov set.

Theorem 3.8 ([4, Th.3, Corol.6]). Every Markov set satisfies the division in-
equality. More precisely, inequality (10) with W = P(CN ) and exponent m
implies division inequality (7) with the same exponent m. Moreover, if K is
a Markov set in C

N and B ∈ (
P(CN )

)k×k is a polynomial matrix whose
determinant is a non-zero polynomial then

‖P‖K ≤ M(n + deg detB)m deg detB‖BP‖K

where M > 0 is independent of P ∈ (
Pn(CN )

)k.

Lemma 3.9. Let W be an infinite dimensional subspace of P(CN ), invariant
under derivation. If F is a compact subset of C

N+1 and m > 0 then the
following conditions are equivalent:
(i) for all polynomials p ∈ W ⊗ Pk−1(y),

∥∥∥ ∂p
∂y

∥∥∥
F

≤ C(deg p)m‖p‖F

with constants C,m independent of p,
(ii) for all p ∈ W ⊗ Pk−1(y) in the form p(z, y) =

∑k−1
j=0 pj(z) yj,

max
j=0,...,k−1

‖pj‖π(F ) ≤ M (deg p)μ‖p‖F

where M,μ are positive constants independent of p and π is the projection
C

N+1 	 (z, y) 
→ z ∈ C
N .

Proof. Fix a polynomial p ∈ W⊗Pk−1(y) in the form p(z, y) =
∑k−1

j=0 pj(z) yj

with pj ∈ W. First, we prove (i) ⇒ (ii). Consider the column polynomial
vector P := [p0, . . . , pk−1]T and the invertible matrix

A :=

⎡

⎢⎢⎢⎢⎢⎣

1 y y2 . . . yk−1

0 1 2y . . . (k − 1)yk−2

0 0 2 . . . (k − 1)(k − 2)yk−3

...
. . .

...
0 0 0 · · · (k − 1)!

⎤

⎥⎥⎥⎥⎥⎦
.
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For any j ∈ {0, ..., k − 1} we can write

‖pj‖F ≤‖P‖F = ‖A−1AP‖F ≤ ‖A−1‖F ‖AP‖F

=‖A−1‖F max{‖p0 + yp1 + y2p2 + ... + yk−1pk−1‖F ,

‖p1 + 2y p2 + 3y2p3 + ... + (k − 1)yk−2pk−1‖F , ..., ‖(k − 1)!pk−1‖F }
=‖A−1‖F max{‖p‖F , ‖ ∂p

∂y ‖F , ..., ‖ ∂k−1p
∂yk−1 ‖F }.

Applying (i) we get

‖pj‖F ≤ Ck−1‖A−1‖F (deg p)(k−1)m‖p‖F .

Since every element of the matrix A−1 is equal to zero or to a yj with some
a ∈ [−1, 1] and j ∈ {0, ..., k − 1}, we have

‖A−1‖F ≤
k−1∑

j=0

Rk−1 = k Rk−1

where R := max{1,max{|y| : y ∈ πy(F )}}, πy(F ) := {y ∈ C : (z, y) ∈
F for some z ∈ C

N}. This easily implies condition (ii).
To show (ii) ⇒ (i) observe that from (ii) we obtain

∥∥∥ ∂p
∂y

∥∥∥
F

≤
k−1∑

j=1

‖pj‖π(F ) j‖yj−1‖F ≤
k−1∑

j=1

j‖yj−1‖F M(deg p)μ‖p‖F

which gives (i) with C = M
∑k−1

j=1 j‖yj−1‖F , m = μ. �

4. Inequalities on Algebraic Hypersurfaces

Let V = V (s) be an algebraic hypersurface given by a polynomial s ∈ P(z, y),
z ∈ C

N , y ∈ C. We can assume, taking a linear change of variables if necessary,
that s is in form (3). Consider the reverse lexicographical ordering in the family
of monomials T

N+1. In this section we denote by W the space of polynomial
representatives of P(V )

W = Wv = P(z) ⊗ Pk−1(y)

that is invariant under derivative and homothety.
One of the most important consequences of Proposition 3.3 is the Markov

inequality on algebraic hypersurfaces.

Theorem 4.1. Let E be a compact subset of V (s) and π be the projection given
by (6). Assume that CN \ A (s) �= ∅ and E = π−1(π(E)). Then

E is a W-Markov set on V (s) if and only if π(E) is a Markov set in C
N .



  135 Page 12 of 22 L. Bialas-Ciez et al. Results Math

Proof. Let K := π(E) ⊂ C
N be a Markov set. By Theorem 3.8, K satisfies the

division inequality. Since every Markov set is polynomially determining and
A is an algebraic set in C

N , we obtain K \ A �= ∅. From Proposition 3.3 and
Lemma 3.9 we get (9) and Markov inequality for derivative with respect to y
for polynomials from W. Regarding derivatives with respect to z, we have

∥∥∥∥
∂p

∂zl

∥∥∥∥
E

≤
k−1∑

j=0

∥∥∥∥
∂pj

∂zl

∥∥∥∥
K

‖yj‖E

≤ kM1(deg p)m‖[p0, . . . , pk−1]‖K ≤ kM0M1(deg p)m+m0‖p‖E

for l = 1, . . . , N , p(z, y) =
∑k−1

j=0 pj(z)yj ∈ W. This gives the Markov inequal-
ity for polynomials from W on the set E.

The converse is obvious. �
Recall that if s is irreducible then C

N \ A (s) �= ∅, see Proposition 3.4.

Remark 4.2. The condition C
N \ A (s) �= ∅ is a necessary assumption for the

Markov inequality for polynomials from W = Wv = P(z) ⊗ Pk−1(y). The
simplest example showing this is given by s(z, y) = (y − z)2, E = {(z, y) ∈
V (s) z ∈ [−1, 1]} ⊂ C

2, because for the polynomial p(z, y) = y − z the norm
of p on E vanishes while

∥∥∥ ∂p
∂y

∥∥∥
E

= 1.

Remark 4.3. Examples given at the end of this section show that the assump-
tion π−1(π(E)) = E in Theorem 4.1 is necessary for the Markov inequality on
E for polynomials from W. This is true not only for reducible (see Example
4.7) but also for irreducible algebraic sets (Example 4.8).

Regarding the division inequality on algebraic hypersurfaces, we have the
following

Theorem 4.4. Let K be a compact subset of CN and s be an irreducible poly-
nomial in form (3). If K is a Markov set then E = π−1(K) ⊂ V (s) satisfies
the division inequality and is a W-Markov set in V (s).

This is an easy consequence of Theorem 4.1, Proposition 3.4 and of the
next result which does not require s to be irreducible.

Theorem 4.5. Let E ⊂ V (s) be a compact set. Assume that C
N \ A (s) �= ∅

and E = π−1(π(E)). If π(E) is a Markov set in C
N then for every polynomial

q ∈ P(z, y) coprime to s such that q|E �≡ 0 there exist M,m > 0 such that

‖p‖E ≤ M(deg p + deg q)m deg q‖pq‖E (11)

for all polynomials p ∈ P(CN+1).

Proof. Fix a polynomial q ∈ P(z, y), q|E �≡ 0, coprime to s. Find q ∈ W such
that q = q on V (s) and write it in the form q(z, y) =

∑k−1
j=0 qj(z)yj . Observe

that

deg q ≤ deg q · deg s.
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Fix also a polynomial p ∈ P(z, y) and find p ∈ W such that p = p on V (s)
and p(z, y) =

∑k−1
j=0 pj(z) yj . Let P := [p0, ..., pk−1]T . Consider the matrix Ms

q

such that for (z, y) ∈ V we have

p(z, y) q(z, y) = [1, y, ..., yk−1] Ms
q P(z).

The determinant of Ms
q is a polynomial only in z and is equal to the re-

sultant Res y(q, s) (see e.g. [10, Prop.1.5, Chap.3]). Since q is coprime with
s, Resy (q, s) = Resy (q, s) is a non-zero polynomial in C

N and so is detMs
q.

Thanks to the Markov inequality on K := π(E), by Theorem 3.8, we have

‖p‖E ≤
k−1∑

j=0

‖pj‖K‖y‖j
E ≤‖P‖K

k−1∑

j=0

‖y‖j
E

≤c(deg det Ms
q + max

j=0,...,k−1
deg pj)m deg det Ms

q‖Ms
qP‖K

k−1∑

j=0

‖y‖j
E .

Observe that

deg det Ms
q ≤k deg q + (k−1)k

2 deg s

≤k deg s deg q + (k−1)k
2 deg s = k deg s (deg q + k−1

2 ).

On the other hand,

‖Ms
q P‖K = ‖[u0, ..., uk−1]‖K where (pq)(z, y) =

k−1∑

j=0

uj(z) yj on V (s).

Since K is a Markov set, it is polynomially determining and consequently,
K\A �= ∅ and K satisfies the division inequality. By Proposition 3.3,

‖[u0, ..., uk−1]‖K ≤ M0(deg(pq))m0‖pq‖E

≤ M0(deg s)m0(deg p + deg q)m0‖pq‖E

and the proof is complete. �

Remark 4.6. Example 4.7 given below shows that if E is a compact subset of
an algebraic variety V then (in general) the Wv-Markov inequality does not
imply the division inequality. This is in marked contrast to the classical case
of polynomial determining sets where every Markov set satisfies the division
inequality, see Theorem 3.8. However, for any irreducible algebraic variety
V = V (s) if E ⊂ V , π−1(π(E)) = E and E is a Wv-Markov set then E
satisfies the division inequality. This is a consequence of Theorems 4.1 and 4.4.

For reducible algebraic sets we have a weak version of division inequality,
see Theorem 4.5. Example 4.7 shows that irreducibility in Theorem 4.4 and
the assumption of coprime polynomials in Theorem 4.5 cannot be omitted.

Moreover, two examples given below show that the assumption π−1(π(E))
= E is necessary in Theorem 4.1. The first of them concerns a reducible case
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and the next one is more complicated because deals with an irreducible alge-
braic set.

Example 4.7. Consider the set E = E1 ∪ E2 ⊂ C
2 where

E1 := {(t, t) t ∈ [−1, 1]} and E2 := {(t,−t) t ∈ [−1, 1]}.

By means of Theorems 4.1 and 4.5, we can show that E satisfies the Markov
inequality for polynomials from P(z)⊗P1(y) as well as for P1(z)⊗P(y). In-
deed, we see that E = {(z, y) ∈ C

2 : s(z, y) := y2−z2 = 0, z∈ [−1, 1]}, A (s) =
{0} and [−1, 1] is a Markov set. Consequently, for the reverse lexicographical
ordering in the family of monomials T2 we get the Markov inequality on E for
polynomials from P(z)⊗P1(y). Analogously, E = {(z, y) ∈ V (s) : y∈ [−1, 1]}
and for the lexicographical ordering we obtain the Markov inequality on E for
P1(z) ⊗ P(y).

On the other hand, we can observe that E1 (and E2 analogously) does not
satisfy the Markov inequality neither for P(z)⊗P1(y) nor for P1(z)⊗P(y).
To see this, it is sufficient to consider p(z, y) = z − y ∈ (P(z) ⊗ P1(y)) ∩
(P1(z) ⊗ P(y)).

Regarding the division inequality, we can show that (7) does not hold on
E. Indeed, if we consider q(z, y) = z + y, p(z, y) = z − y then q �≡ 0 on E,
‖p‖E = ‖p‖E2 = 2 and ‖pq‖E = 0. Therefore, we see that the polynomials q
and s have to be coprime in the assumption of Th. 4.5.

Example 4.8. Fix two coprime numbers α, β ∈ N and let

V = V (α, β) = {(tβ , tα) : t ∈ C}, F = Fα,β = {(tβ , tα) : t ∈ [0, 1]}.

By Bézout’s identity, we can show that

V = V (sα,β) for sα,β(z, y) = zα − yβ , and
F = {(z, y) ∈ V (sα,β) : z, y ∈ [0, 1]}.

Consider also the set

E = Eα,β = {(z, y) ∈ V (sα,β) : z ∈ [0, 1]}.

The polynomial sα,β is irreducible and for the reverse lexicographical ordering
in T

2, by Theorem 4.4, we see that E satisfies the Markov inequality for poly-
nomials from Wβ := P(z) ⊗ Pβ−1(y) that is the space of representatives of
P(V ).

We will compare the Markov inequality for polynomials from Wβ with
the tangential Markov inequality that was studied only for some real analytic
sets, see e.g. [7]. Therefore, we are interested here in the real part of Eα,β , i.e.

Eα,β ∩ R
2 = {(z, y) zα = yβ , z ∈ [0, 1], y ∈ [−1, 1]}.

For any even β we have Eα,β ∩R
2 =

{
(z, y) z ∈ [0, 1], y = ±z

α
β

}
and if β is

odd then

Eα,β ∩ R
2 =

{
(z, y) z ∈ [0, 1], y = z

α
β

}
= Fα,β .
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The set Eα,1 = Fα,1 satisfies the Markov inequality for polynomials from P(z).
To deal with the case β ≥ 2, we recall Gonchar’s result (see e.g., [22]):

dist[0,1](xδ,Rnn) ≤ e−c(δ)
√

n for δ > 0, n ∈ N

where dist[0,1](xδ,Rnn) is the distance on [0, 1] of the function f(x) = xδ from
the set of rational functions u/v with u, v ∈ Pn(R) and c(δ) is a positive
constant depending only on δ.

For β ≥ 2 and n ∈ N take the rational function u/v which is the best
approximation of x

α
β from Rnn. We will show that Fα,β does not satisfy the

Markov inequality for Wβ . Consider the polynomial p(z, y) = u(z) − v(z) y ∈
Wβ . Suppose, contrary to our claim, that the Markov inequality holds

‖v‖[0,1] = ‖v‖Fα,β
=

∥∥∥∥
∂p

∂y

∥∥∥∥
Fα,β

≤ M(n + 1)m‖p‖Fα,β

= M(n + 1)m max
z∈[0,1]

∣∣∣u(z) − v(z) z
α
β

∣∣∣ .

Take such a point z0 ∈ [0, 1] where the maximum is attained. Observe that
v(z0) �= 0, because otherwise, the inequality

e−c(δ)
√

n ≥
∥∥∥∥zα/β − u(z)

v(z)

∥∥∥∥
[0,1]

≥
∣∣∣∣z

α/β
0 − u(z0)

v(z0)

∣∣∣∣

implies u ≡ 0 and v ≡ 0 that is impossible. Consequently,

‖v‖[0,1] ≤ M(n + 1)m
∣∣∣u(z0) − v(z0) z

α
β

0

∣∣∣ = M(n + 1)m |v(z0)|
∣∣∣∣
u(z0)
v(z0)

− z
α
β

0

∣∣∣∣

≤ M(n + 1)m ‖v‖[0,1] max
z∈[0,1]

∣∣∣∣
u(z)
v(z)

− z
α
β

∣∣∣∣ ≤ M(n + 1)m ‖v‖[0,1] e−c(δ)
√

n,

and we get a contradiction. Hence the set Fα,β does not satisfy the Markov
inequality for polynomials from Wβ .

Corollary 4.9. The set Eα,β satisfies the Markov inequality for polynomials
from Wβ while Fα,β does not for β ≥ 2. Therefore, the condition π−1(π(E))
is a necessary assumption in Theorem 4.1. Moreover, for β = 2 the set Eα,β is
contained in R

2, so Fα,2 gives a counterexample showing that this assumption
is necessary also for the real version of Theorem 4.1.

It is worth considering here the curves Fr := {(x, y) : y = xr, 0 ≤ x ≤ 1}
where r ∈ [1,∞). Bloom, Levenberg, Milman and Taylor proved in [8] that for
r = q

p with positive integers q > p in the lowest terms, the set Fr admits the
tangential Markov inequality with exponent � = 2p that is optimal. In 2005
Gendre generalized this example and proved that every algebraic curve in R

N

admits a local tangential Markov inequality at each of its point (even singular)
with some exponent �, see [13]. In [17] we can find an example showing that
the best exponent � depends on the location of singularities. Namely, if q ≥ 3
is an odd number then Eq = {(t2, tq) : t ∈ [−1, 1]} admits the tangential
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Markov inequality with exponent 2 and this is the best possible. It is easy to
see that this exponent is two times smaller than the exponent for F q

2
⊂ Eq.

One might expect that the tangential Markov inequality with exponent greater
than one would characterize semialgebraic sets with singularities but there are
examples of exponential curves which admit the tangential Markov inequality
with exponent 4 that is optimal (see [6]).

5. Inequalities on Algebraic Sets of Codimension Greater than
One

Let V ⊂ C
N+1 be an algebraic set of codimension greater than one. Assume

that V can be defined (after a linear change of variables, if necessary) by n+1
polynomials s, s1, ..., sn ∈ P(CN+1) such that s1, ..., sn are polynomials of
z = (z1, ..., zN ) and

s(z, y) = yk +
k−1∑

j=0

s̃j(z) yj .

In other words,

V = {(z, y) ∈ C
N+1 : z ∈ V0, s(z, y) = 0} and

V0 = {z ∈ C
N : s1(z) = ... = sn(z) = 0}. (12)

Consider the projection π given by (6). Observe that π(V ) = V0. Let W⊂ P(z)
be a space of representatives of P(V0) constructed as in Section 2. We can
easily prove that W ⊗ Pk−1(y) is a space of representatives of P(V ).

Proposition 5.1. Let E be a compact subset of V given by (12) such that E =
π−1(π(E)). If V0\A (s) �= ∅ and π(E) satisfies the division inequality and the
W-Markov inequality then E satisfies the Markov inequality for W⊗Pk−1(y).

Proof. Let K = π(E) satisfy the division inequality and the Markov inequality
for polynomials from W ⊂ P(CN ). Taking into account Corollary 3.7 we see
that K \A (s) �= ∅. Applying the same reasoning as in the proof of Proposition
3.3 we obtain inequality (9) for polynomials p ∈ W ⊗ Pk−1(y). By Lemma
3.9, we get inequality (i), i.e. the Markov inequality for the derivative of p
with respect to y. Regarding the derivatives with respect to z we proceed as
in the proof of Theorem 4.1 and we obtain the Markov inequality on E for
polynomials from W ⊗Pk−1(y). �

To write an analogous result to Theorems 4.4 and 4.5, we give a definition
of coprime and irreducible polynomials on an algebraic set.

Definition 5.2. Let V ⊂ C
N be an algebraic set and q, s ∈ P(z, y) where

z ∈ C
N , y ∈ C. We say that polynomials q and s are coprime (or relatively

prime) on V if Resy(q, s) �≡ 0 on V . The polynomial s is said to be irreducible
on V if it is relatively prime on V with any polynomial q ∈ P(z, y), q �≡ 0 on
V .
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The irreducibility of s on V implies that Resy

(
∂s
∂y , s

)
�≡ 0 on V as far as

s is a non-constant polynomial in y. Consequently, V \ A (s) �= ∅. Repeating
the proof of Theorem 4.5 we obtain the following result.

Theorem 5.3. Let E be a compact subset of V given by (12) such that E =
π−1(π(E)). If V0 \ A (s) �= ∅ and π(E) satisfies the division inequality and
the W-Markov inequality then for every polynomial q ∈ P(z, y) coprime to s
on V0, q|E �≡ 0 there exist M,m > 0 such that

‖p‖E ≤ M(deg p + deg q)m deg q‖pq‖E (13)

for all polynomials p ∈ P(CN+1).

Corollary 5.4. Let E be a compact subset of V given by (12) such that E =
π−1(π(E)). If s is an irreducible polynomial on V0 then E is a W⊗Pk−1(y)-
Markov set and satisfies the division inequality if and only if π(E) is a W ⊗
Pk−1(y)-Markov set and satisfies the division inequality.

It is perhaps worth remarking that the above corollary is a generalization
of Theorem 4.4 because if we take V0 = C

N then W = P(z).
The above results have an easy form for some algebraic sets of codi-

mension two. To show this, consider an algebraic set V ⊂ C
N+2 given by

polynomials s1 and s2 in the following forms

s1(z, y1) = yd1
1 +

d1−1∑

j=0

s̃1,j(z) yj
1, s2(z, y1, y2) = yd2

2 +
d2−1∑

j=0

s̃2,j(z, y1) yj
2

(14)
with z ∈ C

N , y1, y2 ∈ C, s̃1,0, ..., s̃1,d1−1 ∈ P(CN ) and s̃2,0, ..., s̃2,d2−1 ∈
P(CN+1). Observe that in this case dim V = N . Let

V1 = {(z, y1)∈ C
N+1 : s1(z, y1) = 0},

V = {(z, y1, y2)∈ C
N+2 : s1(z, y1) = 0, s2(z, y1, y2) = 0},

π1 : V1 	 (z, y1) 
→ z ∈ C
N , π2 : V 	 (z, y1, y2) 
→ (z, y1) ∈ V1

Assume that s1 is an irreducible polynomial and s2 is irreducible on V1. Fix a
compact set K ⊂ C

N and consider

E1 := π−1
1 (K) ⊂ V1, E := π−1(E1) ⊂ V.

By Theorem 4.4, if K is a Markov set in C
N then the set E1 satisfies the

Markov inequality for polynomials from P(z) ⊗ Pd1−1(y1) and the division
inequality. From Corollary 5.4 the set E satisfies the Markov inequality for
polynomials from P(z) ⊗Pd1−1(y1) ⊗Pd2−1(y2) and the division inequality.

Corollary 5.5. Let V = V (s1, s2) ⊂ C
N+2 be an algebraic set given by polyno-

mials s1 and s2 of forms (14) and π be the projection π : V 	 (z, y1, y2) 
→
z ∈ C

N . Assume that s1 is an irreducible polynomial and s2 is irreducible on
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V1. If K is a Markov set in C
N then E = π−1(K) ⊂ V satisfies the divi-

sion inequality and the Markov inequality for polynomials from W = P(z) ⊗
Pd1−1(y1) ⊗ Pd2−1(y2) that is a space of representatives of P(V ).

Finding a Gröbner basis containing polynomials of a convenient form is
possible for a wide class of algebraic sets. Let V = V (s1, . . . , sn) ⊂ C

N be an
algebraic variety and L be a linear change of N complex variables, by L∗(V )
we denote the algebraic variety defined by polynomials s1 ◦L, . . . , sn ◦L. From
Noether normalization theorem (see e.g. [15, Th.3.4.1]), for any algebraic set
V there exists a linear invertible change of N complex variables L such that
in the ideal I(L∗(V )) related to L∗(V ) there exist polynomials

gj(x1, . . . , xd, y1, . . . , yN−d)

= y
dj

j +
dj−1∑

k=0

gjk(x1, . . . , xd, y1, . . . , yj−1)yk
j for j = 1, . . . , N − d (15)

where d is the dimension of the algebraic variety L∗(V ). Denote VN−d =
V (g1, . . . , gN−d) and G = {g1, . . . , gN−d}. Then L∗(V ) ⊂ VN−d and the di-
mension of VN−d equals d. Moreover, taking the grevlex ordering and using
Buchberger’s algorithm we can show that G is a Gröbner basis of VN−d. Indeed,
for the leading terms of functions from G we have

LT (gj) = y
dj

j = LM(gj), j ∈ {1, . . . , N − d}
where LM(g) denotes the leading monomial of g. For any j, k ∈ {1, . . . , N −d},
j �= k the least common multiple of y

dj

j , ydk

k is y
dj

j ydk

k , so the leading monomials
of gj and gk are relatively prime. From [11, Prop.4, §9, chap.2], S-polynomial
of gj and gk reduces to zero modulo G for all j �= k. Hence, by [11, Th.3, §9,
chap.2], G is a Gröbner basis of VN−d.

If VN−d is an irreducible algebraic set then G is a Gröbner basis of L∗(V ).
In this situation we can prove the Markov and division inequalities for compact
subsets E ⊂ L∗(V ) such that Π(E) is Markov set in C

d and E = Π−1(Π(E))
where Π is the projection L∗(V ) into C

d.
In [15] we can find some algorithms (see e.g. Algorithm 3.4.5 and Singu-

lar Example 3.4.6) to construct a linear change of variables L guaranteed by
Noether normalization. An algebraic set of dimension 0 < n < N in C

N de-
fined by N −n polynomial equations is usually called a (set-theoretic) complete
intersection.

Example 5.6. Take two polynomials

q1(x, y, z) = 5x2 + 3z2 + y2 + 6xz + 2yz − 4,

q2(x, y, z) = 4y2 + 4xz + 8yz + 7z2 − 10x − 10z + 4.
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They give an algebraic curve V = V (q1, q2) in C
3 but they are not of form

(14). We can take the linear invertible change of variables

L(x, y, z) = (−x + z,−2x + y + z, 2x − z).

Then L∗(V (q1, q2)) is an algebraic set defined by the polynomials:

(q1 ◦ L)(x, y, z) = x2 + y2 + z2 − 4,

(q2 ◦ L)(x, y, z) = 4x2 + 4y2 − z2 − 10x + 4.

Since (q2 ◦ L)(x, y, z) = 5(x2 + y2 − 2x) − x2 − y2 − z2 + 4, we see that
L∗(V (q1, q2)) = V (g1, g2) where

g1(x, y, z) = x2 + y2 + z2 − 4, g2(x, y, z) = x2 + y2 − 2x.

Consider the set E = {(x, y, z) ∈ V (g1, g2) : x ∈ [0, 2]} and observe that it is
an entirely real curve called Viviani’s window. The set {z2 + 2x − 4, y2 + x2 −
2x} is the reduced Gröbner basis of form (14) for the reverse lexicographical
ordering in the family of monomials T

3. By Corollary 5.5, the set E satisfies
the Markov inequality for polynomials from P(x)⊗P1(y)⊗P1(z). Moreover,
the set E satisfies the division inequality.

Example 5.7. Consider

V = V (yz + 1, x3 − xz2 − y2) ⊂ C
3 and E = {(x, y, z) ∈ V : |z| = 1}.

The form of polynomials determining V does not admit a direct use of Corol-
lary 5.5. However, we can write the set E in the form

E ={(x, y, z) ∈ C
3 : 1

4 (y + z)2 − 1
4 (z − y)2 + 1 = 0, x3 − xz2 − y2 = 0, |z| = 1}

={(x, y, z) ∈ C
3 : 1

4 (y + z)2 − 1
4 (z − y)2 + 1 = 0, x3 − xz2 − y2 = 0,

1
2 (z − y) ∈ [−1, 1]},

because 1
2 (z − y) = 1

2 (z + 1
z ) on V and for the Joukowski transform ϕ(z) =

1
2 (z + 1

z ) we have |z| = 1 if and only if ϕ(z) ∈ [−1, 1]. Therefore,

E = {(x, u, w) ∈ C
3 : u2 − w2 + 1 = 0,

x3 − x(u + w)2 − (u − w)2 = 0, w ∈ [−1, 1]}
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where u = 1
2 (y + z), w = 1

2 (z − y). By Corollary 5.5, the set E satisfies
the Markov inequality for polynomials from P2(x) ⊗ P1(u) ⊗ P(w) and the
division inequality. Since the Markov inequality is invariant under linear change
of variables (i.e. the constant m is invariant), the set E satisfies the Markov
inequality for polynomials from P2(x)⊗P1(y + z)⊗P(z − y) that is a space
of representatives of P(V ).
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