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Abstract. This paper considers paired operators in the context of the
Lebesgue Hilbert space on the unit circle and its subspace, the Hardy
space H2. The kernels of such operators, together with their analytic
projections, which are generalizations of Toeplitz kernels, are studied.
Results on near-invariance properties, representations, and inclusion rela-
tions for these kernels are obtained. The existence of a minimal Toeplitz
kernel containing any projected paired kernel and, more generally, any
nearly S∗-invariant subspace of H2, is derived. The results are applied
to describing the kernels of finite-rank asymmetric truncated Toeplitz
operators.
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1. Introduction

Let X be a Banach space, P ∈ L(X) a projection, and Q = I − P the com-
plementary projection. An operator of the form AP + BQ or PA + QB with
A,B ∈ L(X) is called a paired operator [16,23,24]. In this paper we con-
sider the case when A = Ma and B = Mb are multiplication operators on
L2 := L2(T), where T denotes the unit circle, with a, b ∈ L∞ := L∞(T), and
we denote by Sa,b and Σa,b the operators defined on L2 by

Sa,bf = aP+f + bP−f , Σa,bf = P+(af) + P−(bf). (1.1)

Paired operators first appeared in the context of the theory of singular
integral equations [25,26]. Consider the canonical example of a singular integral
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operator on L2,

(Lf)(t) = A(t)f(t) + B(t)(STf)(t), (1.2)

with A,B ∈ L∞ and

(STf)(t) =
1
πi

PV
∫
T

f(y)
y − t

dy, t ∈ T. (1.3)

It is well known that, denoting by P± the orthogonal projections from
L2 onto the Hardy spaces H2

+ := H2(D) and H2
− = H2

0 = (H2
+)⊥, respectively,

identified with closed subspaces of L2, we have I = P+ + P− and ST =
P+ − P−, so that the operator L can be expressed as

L = (A + B)P+ + (A − B)P−. (1.4)

We may write this as Sa,b with a = A + B, b = A − B, while its adjoint is a
paired operator of the second type in (1.1),

S∗
a,bf = Σā,b̄. (1.5)

Paired operators are also closely related to Toeplitz operators of the form

Ta = P+aP+
|H2 , (1.6)

where a ∈ L∞ is called the symbol of the operator. If we represent Sa,b in the
form (

P+aP+ P+bP−

P−aP+ P−bP−

)
: H2

+ ⊕ H2
− → H2

+ ⊕ H2
−, (1.7)

we see that paired operators are dilations of Toeplitz operators. If b ∈ GL∞

(that is, invertible in L∞) we can write

Sa,b = aP+ + bP− = b
(a

b
P+ + P−

)
, (1.8)

which is equivalent after extension [2] to the Toeplitz operator Ta/b [4].
However, paired operators and spaces that turn out to be kernels of paired

operators, called paired kernels, also appear in different guises, for instance in
the study of dual truncated Toeplitz operators [7], in the description of scalar-
type block Toeplitz kernels [14], in the characterization of the ranges of finite-
rank truncated Toeplitz operators [5], and in the study of nearly invariant
subspaces for shift semigroups [22].

We shall consider mainly paired operators of the form Sa,b, where the
pair (a, b) is called a symbol pair. These operators have been considered mostly
under particular conditions, such as invertibility in L∞, for a, b or a/b [25,26];
see also [23] and references therein. The operator Sa,b is said to be of normal
type if a, b ∈ GL∞. This is by far the most studied case, but some particular
types of non-normal paired operators have also been considered [9,15,23,24].
We shall assume throughout the paper, more generally, that a, b ∈ L∞ and
the pair (a, b) is nondegenerate; that is, a, b and a − b are nonzero a.e. on T.
We also use the notation P±φ = φ± for φ ∈ L2.
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Here we shall study in particular the properties of kernels of paired op-
erators, called paired kernels, and their projections into H2

+ and H2
−, called

projected paired kernels. Denoting

kera,b = ker Sa,b, ker±
a,b = P±kera,b, (1.9)

we have that ker Ta/b = P+ ker Sa,b =: ker+a,b for the possibly unbounded
Toeplitz operator Ta/b. If a/b ∈ L∞ then ker+a,b is a Toeplitz kernel, i.e., the
kernel of a bounded Toeplitz operator; otherwise it may not be a closed sub-
space of H2

+ := P+L2. However, we can define a one-to-one correspondence
(see Sect. 2) between ker+a,b and kera,b, where the latter is closed because it is
the kernel of a bounded operator. So one can also see paired kernels as being the
natural closed space generalizations of Toeplitz kernels, allowing us to study
the kernels of unbounded Toeplitz operators of the form Ta/b with a/b �∈ L∞

in terms of the bounded operators Sa,b and P+ on L2. It is thus natural to
ask whether some known properties of Toeplitz kernels with bounded symbols
can be extended or related with corresponding properties of paired kernels or
their projections on H2

+. Alternatively one can look at this as studying the
question of how certain properties of a Toeplitz operator extend to a dilation
of the form (1.7).

In the following sections we study several properties of paired kernels
which extend or are in contrast with various known properties of Toeplitz ker-
nels. To compare the case where a/b ∈ L∞ (and ker+a,b is a Toeplitz kernel)
with that where a/b /∈ L∞ and to illustrate some natural questions arising in
the latter case, we start by considering in Sect. 3 an example which appears
in the study of nearly invariant subspaces for shift semigroups [22]. This leads
to the study of near invariance properties of paired kernels (Sect. 4); to the
question of existence of a minimal Toeplitz kernel containing any given ker+a,b

and, more generally, any space of the form b ker Ta, including the closed nearly
S∗-invariant subspaces of H2

+ (Sect. 5); to investigating the relations between
paired kernels for operators with connected symbol pairs (Sect. 6). In Sect. 7
the results are applied to study and describe the kernels of finite rank asymmet-
ric truncated Toeplitz operators [10], showing in particular that, surprisingly,
they do not depend on the range space if the latter is “large” enough.

2. Projected Paired Kernels

Recall that we denote the kernel of a paired operator, which we call a paired
kernel, by

kera,b = ker Sa,b (2.1)

and we call

ker±
a,b = P±kera,b = P± ker Sa,b (2.2)

a projected paired kernel.
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Each function f ∈ L2 belongs to one and only one paired kernel [6, Thm.
4.6]. On the other hand, for any φ+ ∈ H2

+,

φ+ ∈ ker+a,b ⇐⇒ φ+ ∈ ker Ta/b,

where Ta/b is the possibly unbounded Toeplitz operator with symbol a/b de-
fined on the domain

Da/b =
{

φ+ ∈ H2
+ :

a

b
φ+ ∈ L2

}
.

Analogously, for the dual Toeplitz operator [7]

Ťb/a : Ďb/a =
{

φ− ∈ H2
− :

b

a
φ− ∈ L2

}
→ H2

−,

defined by

Ťb/aφ− = P− b

a
φ−,

we have that ker−
a,b = ker Ťb/a.

If a/b ∈ L∞ then Da/b = H2
+ and we say that ker+a,b is a Toeplitz kernel,

i.e., the kernel of a bounded Toeplitz operator.
Paired kernels and their projections into H2

± can be related as follows.

Proposition 2.1. The operators

P+ : kera,b → ker+a,b, P+φ =
b

b − a
φ (2.3)

and

Ma/b : ker+a,b → ker−
a,b, Ma/bφ+ =

a

b
φ+ (2.4)

are well-defined and bijective with inverses

(P+)−1 : ker+a,b → kera,b , (P+)−1φ+ =
(
1 − a

b

)
φ+ (2.5)

and

M−1
a/b : ker−

a,b → ker+a,b , M−1
a/bφ− =

b

a
φ−, (2.6)

and we have P+φ = P+φ, and Ma/b(P+φ) = P−φ for φ ∈ kera,b.

Corollary 2.2. dim kera,b < ∞ ⇐⇒ dim ker+a,b < ∞ ⇐⇒ dim ker−
a,b < ∞

and, if these dimensions are finite, then they are equal.

The following is also an immediate consequence of Proposition 2.1, noting
that if φ+ = 0 (or similarly for φ−) on a set of positive measure then, by the
Luzin–Privalov theorem, it is 0 a.e. on T.

Corollary 2.3. If φ ∈ kera,b then φ = 0 ⇐⇒ φ+ = 0 ⇐⇒ φ− = 0.
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Note that, although P+ is bounded and bijective, its inverse is not neces-
sarily bounded when b �∈ GL∞, since ker+a,b may not be closed in H2

+, as shown
in an example in the next section.

Just as we can relate the kernels of Toeplitz operators with those of dual
Toeplitz operators, we can also reduce the study of ker−

a,b to that of ker+
b̄,ā

, as
the next proposition shows.

Proposition 2.4. ker−
a,b = z̄ker+

b̄,ā
.

Proof. For φ− ∈ H2
− we have

φ− ∈ ker−
a,b ⇐⇒ aφ+ + bφ− = 0 for some φ+ ∈ H2

⇐⇒ ā(z̄φ+) + b̄(z̄φ−) = 0 for some φ+ ∈ H2

⇐⇒ b̄(z̄φ−) + āψ− = 0 for some ψ− ∈ H2
0

⇐⇒ z̄φ− ∈ ker+
b̄,ā

⇐⇒ φ− ∈ z̄ker+
b̄,ā

.

�
From now on we shall mainly focus on the properties of the projected

paired kernels ker+a,b. To compare the case where b ∈ GL∞ with that where
b �∈ GL∞, we start by considering a particular example of the latter, which is
used in [22].

3. An Example and Questions it Raises

Let θ be the singular inner function θ(z) = exp
z − 1
z + 1

for z ∈ T and let a = θ̄,

b(z) = z + 1. The kernel of Sθ̄,z+1 is described by

θ̄φ+ + (z + 1)φ− = 0, i.e.,
φ+

z + 1
= −θφ−. (3.1)

Since the left-hand side of this last equation represents a function in the
Smirnov class N+ and the right-hand side represents a function in L2, we
have that both belong to H2

+ and thus, from

θ̄
φ+

z + 1
= −φ−, (3.2)

we conclude that φ+/(z + 1) ∈ Kθ, where Kθ denotes the model space H2
+ 	

θH2
+ = ker Tθ̄. It follows that ker+

θ̄,z+1
⊆ (z + 1)Kθ and the converse inclusion

is easily seen to be true, so

ker+
θ̄,z+1

= (z + 1)Kθ. (3.3)

Clearly kerθ̄,z+1 =
(
1 − θ̄

z+1

)
ker+

θ̄,z+1
is a closed subspace of L2, since Sθ̄,z+1

is bounded, but

P+kerθ̄,z+1 = ker+
θ̄,z+1

= (z + 1)Kθ (3.4)
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is not closed [22, Prop 3.2], so P+ does not have a bounded inverse.
Note that, while ker+

θ̄,z+1
is not closed, it is nevertheless contained in

a (closed) minimal Toeplitz kernel, by which we mean a Toeplitz kernel that
contains ker+

θ̄,z+1
and is itself contained in any other Toeplitz kernel containing

ker+
θ̄,z+1

. Indeed, on the one hand,

(z + 1)Kθ = ker+
θ̄,z+1

� Kzθ = ker Tz̄θ̄. (3.5)

On the other hand it was shown in [11] that for any nonzero φ+ ∈ H2
+ there

exists a minimal Toeplitz kernel to which φ+ belongs. Now, kerTz̄θ̄ is the
minimal kernel containing the function

f = (z + 1)
θ − θ(0)

z
∈ ker+

θ̄,z+1
,

since we have

z̄θ̄f = z̄
z + 1

z
(1 − θ(0)θ̄) = z̄(z + 1)(1 − θ(0)θ),

where (z + 1)(1 − θ(0)θ) is an outer function in H2
+ (see [12, Thm, 2.2]). Thus

Kzθ is the minimal Toeplitz kernel containing ker+
θ̄,z+1

.
These results naturally raise several questions, especially when compared

with some known results for Toeplitz kernels.
Question 3.1. Having shown that ker+

θ̄,z+1
is not a Toeplitz kernel, one

may ask whether there is any Toeplitz kernel contained in that space. The
answer is negative, due to the near invariance properties of Toeplitz kernels
[11]; these imply in particular that no Toeplitz kernel can be contained in

(z+1)H2
+, since Toeplitz kernels are nearly

1
z + 1

invariant [11] and ker+
θ̄,z+1

=

(z + 1)Kθ. This equality also shows that, in contrast with Toeplitz kernels,

projected paired kernels may not be nearly
1

z + 1
invariant. But do other near

invariance properties of Toeplitz kernels extend to projected paired kernels?
This is studied in Sect. 4, comparing the two cases where a/b ∈ L∞ and a/b �∈
L∞.

Question 3.2. On the other hand, there exists a minimal Toeplitz kernel
containing ker+

θ̄,z+1
, which is Kθz. Is there a minimal Toeplitz kernel containing

any given nontrivial ker+a,b? We answer this question in the affirmative, and in
a more general setting, in Sect. 5, by showing that the closure of any projected
paired kernel admits a representation of the form f ker Tg with f ∈ H2

+ and
g ∈ L∞, and we discuss the existence of such a representation for projected
paired kernels. Note that not only can every Toeplitz kernel be written as a
product of the form f ker Tg [20], but we also have the same property for other
projected paired kernels: for instance, ker+

θ̄,z+1
= (z + 1)Kθ.

Question 3.3. The relation (3.5) can be rewritten as ker+
θ̄,z+1

� ker+
θ̄z̄,1

,
raising the question of what may be the inclusion relations between the two
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projected paired kernels when we multiply the two elements of the symbol pair
(a, b) by certain functions. For Toeplitz operators we have, for instance, that

h− ∈ H∞ =⇒ ker Tg ⊆ ker Th−g,

where the inclusion is strict if the inner factor of h− is non-constant [8] and
an equality if h− is outer in H∞; also,

h+ ∈ H∞ =⇒ h+ ker Th+g ⊆ ker Tg,

where the inclusion is strict if h+ has a non-constant inner factor [8] and an
equality if h+ is invertible in H∞. We study how analogous inclusion rela-
tions can be established for general projected paired kernels, and whether the
inclusion is strict or an equality, in Sect. 6.

The results are applied to study kernels of (asymmetric) truncated
Toeplitz operators in Sect. 7.

4. Near Invariance Properties

A subspace S ⊆ H2
+ is said to be nearly S∗-invariant if and only if

f+ ∈ S, f+(0) = 0 =⇒ S∗f+ ∈ S. (4.1)

Here S∗ denotes the backward shift on H2
+, i.e., S∗ = Tz̄.

Noting that f+(0) = 0 means that z̄f+ ∈ H2
+ and, in that case, S∗f = z̄f ,

it is clear that (4.1) is equivalent to

f+ ∈ S, z̄f+ ∈ H2
+ =⇒ z̄f+ ∈ S (4.2)

and we say, equivalently, that S is nearly z̄-invariant [11]. More generally, if η
is a complex-valued function defined a.e. on T we say that S ⊆ H2

+ is nearly
η-invariant if and only if

f+ ∈ S, ηf+ ∈ H2
+ =⇒ ηf+ ∈ S. (4.3)

In this case if η ∈ L∞ we can also say that S is nearly Tη-invariant.
Toeplitz kernels are closed nearly S∗-invariant spaces. Furthermore, in

[11] a large class of functions η was described for which all Toeplitz kernels
are nearly η-invariant, and which includes all functions in H∞ and all rational
functions without poles in D

e ∪ {∞}, where D
e = {z ∈ C : |z| > 1}.

In particular, Toeplitz kernels are nearly θ̄-invariant and nearly 1
z−z0

-
invariant, where θ is any inner function and z0 ∈ T ∪ D. As a consequence
of this, we conclude that no Toeplitz kernel can be contained in θH2

+ or in
(z − z0)H2

+ for z0 ∈ T ∪ D.
It is clear from the examples of Sect. 3 that the latter property cannot be

extended to projected paired kernels in general. Other near invaiance proper-
ties of Toeplitz kernels, however, are shared with projected paired kernels.

The following results are simple consequences of the definitions at the
beginning of this section. We assume that ker+a,b �= {0}.
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Proposition 4.1. ker+a,b is nearly η-invariant for every η ∈ H∞.

Corollary 4.2. ker+a,b is nearly θ̄-invariant for every inner function θ, and
therefore there exists a function φ+ ∈ ker+a,b such that φ+ �∈ θH2

+.

Corollary 4.3. ker+a,b is nearly R-invariant for every rational function R
bounded at ∞ whose poles lie in D.

Naturally, if a/b ∈ L∞, this property can be extended to every rational
R without poles in D

e ∪ {∞}, since in that case ker+a,b is a Toeplitz kernel.
It follows from Proposition 4.1, in particular, that projected paired ker-

nels are nearly S∗-invariant subspaces of H2
+, and so are their closures, by the

following result.

Proposition 4.4. If S ⊂ H2
+ is nearly S∗-invariant, then its closure is also

nearly S∗-invariant.

Proof. Clearly we may assume without loss of generality that S �= {0}. In that
case, since S is nearly S∗-invariant, there must exist h ∈ S with h(0) = 1.
Now if f ∈ S̄ with f(0) = 0, then there is a sequence (fn) in S with fn → f in
norm and hence fn(0) → f(0) = 0. Thus for each n we have that fn − fn(0)h
is a function in S vanishing at 0, so fn − fn(0)h = zgn for some gn ∈ S, and
lim fn = f = lim zgn. Hence (gn) converges to a function g ∈ S̄ such that
f = zg. �

The closed nearly S∗-invariant subspaces of H2
+ admit a representation

as a product of the form uKθ, where u ∈ H2
+ and Kθ is a model space, which

will be considered in the next section. In the case of the closure of ker+a,b, u
must be outer by Corollary 4.2.

The notion of near η-invariance can naturally be extended to ker−
a,b, re-

placing H2
+ by H2

−. The following proposition shows that it is enough to con-
sider the problem of near invariance for ker+a,b.

Proposition 4.5. ker−
a,b is nearly η̄-invariant in H2

− if and only if ker+
b̄,ā

is
nearly η-invariant in H2

+.

Proof. This is a consequence of Proposition 2.4. Suppose that ker−
a,b is nearly

η̄-invariant in H2
−, i.e.,

φ− ∈ ker−
a,b, η̄φ− ∈ H2

− =⇒ η̄φ− ∈ ker−
a,b,

and let

φ+ ∈ ker+
b̄,ā

, ηφ+ ∈ H2
+.

Then z̄φ+ ∈ ker−
a,b, η̄z̄φ+ ∈ H2

−, so η̄z̄φ+ ∈ ker−
a,b by near invariance which,

by Proposition 2.4, implies that ηφ+ ∈ ker+
b̄,ā

. So ker+
b̄,ā

is nearly η-invariant
in H2

+. The converse is proved analogously. �
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Since ker+a,b is nearly z̄-invariant in H2
+ (equivalently, nearly S∗-invariant),

it follows that ker−
a,b is nearly z-invariant in H2

−. Therefore, if ker±
a,b �= {0},

there exists φ+ ∈ ker+a,b with φ+(0) �= 0 and there exists φ− ∈ ker−
a,b such that

(zφ−)(∞) �= 0 (i.e., ψ+(0) �= 0, where ψ+ = z̄φ−). Analogously, since ker+a,b is
nearly 1

z−z0
-invariant for any z0 ∈ D, there exists, for any z0 ∈ D, φ+ ∈ ker+a,b

with φ+(z0) �= 0 and ψ− ∈ ker−
a,b such that ψ−(1/z0) �= 0.

5. Minimal Toeplitz Kernels and Representations of Projected
Paired Kernels

If a/b ∈ L∞, then ker+a,b is a Toeplitz kernel; but, in general, ker+a,b may not
even be a closed subspace of H2

+, as in the case studied in Sect. 3. There it was
also shown that, although ker+

θ̄,z+1
is not a Toeplitz kernel, one can nevertheless

determine a minimal Toeplitz kernel containing it. It is thus natural to ask if
such a property holds for every projected paired kernel. The answer is in the
affirmative, as one of the consequences of the following theorem.

Recall that a maximal function φm for a Toeplitz kernel kerTg is one
such that ker Ta is the minimal kernel to which φm belongs (see [11]). Every
Toeplitz kernel possesses a maximal function.

Theorem 5.1. Let a ∈ L∞\{0} and b ∈ H2
+ such that ker Ta �= {0} and

b ker Ta ⊂ H2
+. Then there exists a minimal Toeplitz kernel containing b ker Ta,

which is ker Tab̄/bo
, where bo is the outer factor of b. Moreover, if φm is a max-

imal function for ker Ta, then bφm is a maximal function for ker Tab̄/bo
.

Proof. If ker Ta �= {0}, let φm be a maximal function of kerTa, and write
φm = I+O+ with I+ inner and O+ outer in H2

+. Then

ker Ta = ker Tz̄I+O+/O+
(5.1)

[11, Thm. 5.1]. On the other hand, there exists a minimal kernel for bφm ∈
b ker Ta ⊂ H2

+ which, if b = bibo is an inner–outer factorization of b with bi

inner and bo outer, is given by

Kmin(bφm) = ker T
z̄I+biboO+

boO+

= ker T
z̄bφm

boO+

. (5.2)

Let us show that

Kmin(bφm) ⊃ b ker Ta. (5.3)



120 Page 10 of 23 M. C. Câmara and J. R. Partington Results Math

Let ψ+ be any non-zero element of ker Ta; then (see (5.1))
z̄I+O+

O+
ψ+ ∈ H2

−
and

z̄I+O+bibo

O+bo︸ ︷︷ ︸
∈L∞

(bψ+)︸ ︷︷ ︸
∈H2

+

= bo︸︷︷︸
∈H2

+

z̄I+O+

O+
ψ+

︸ ︷︷ ︸
∈H2

−=z̄H2
+

∈ z̄H1 ∩ L2 ⊂ z̄H2
+ = H2

−. (5.4)

Thus bψ+ ∈ Kmin(bφm) as defined in (5.2), and (5.3) holds. On the other hand,
since bφm ∈ b ker Ta, any Toeplitz kernel containing b ker Ta must also contain
Kmin(bφm), so the latter is the minimal kernel containing b ker Ta. Finally,
from ker Ta = ker Tz̄I+O+/O+

we conclude that

a =
z̄I+O+

O+
h− =

z̄φm

O+
h−

for some h− ∈ GH∞ (by [13, Cor. 7.8]. Therefore,

a
b̄

bo
=

z̄bφm

boO+
h−

and it follows from (5.2) that Kmin(bφ+) = ker Tab̄/bo
. �

Corollary 5.2. Every subspace of H2
+ of the form uKθ, where u ∈ H2

+ and θ is
an inner function, is contained in a minimal Toeplitz kernel.

As an example, take the example of Sect. 3, namely (z + 1)Kθ. By The-
orem 5.1 we have that the minimal kernel containing (z + 1)Kθ is

ker T
θ̄ z+1

z+1
= ker Tθ̄z̄ = Kθz,

as shown before.
A well-known theorem by Hitt [21] describes the closed nearly S∗-invariant

subspaces of H2
+ as having the form M = uK, where u ∈ H2

+ has unit norm,
u(0) > 0, u is orthogonal to all elements of M vanishing at the origin, K is
an S∗-invariant subspace, and the operator of multiplication by u is isometric
from K into M . Naturally, one can have K = {0} or K = H2

+, but the most
interesting cases are those in which K is a model space Kθ = ker Tθ̄.

Corollary 5.3. For every nondegenerate (a, b) there exists a minimal kernel
containing ker+a,b, which coincides with ker+a,b if a/b ∈ L∞.

Proof. By Proposition 4.4, the closure of ker+a,b is nearly S∗-invariant, so we
have that the closure of ker+a,b is uK, where u ∈ H2

+ is outer, by Corollary
4.2, and K = H2

+ or K = Kθ with θ inner. In the latter case, the result
follows from Proposition 4.1, Proposition 4.4, Hitt’s theorem, and Corollary
5.2. If K = H2

+, then, since uH2
+ ⊆ H2

+ is closed and u is outer, we must have
u ∈ GH∞ and uK = H2

+. �
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Hayashi showed in [20] that the kernel of every Toeplitz operator Tg can
be written as uKθ where u is outer, u2 is rigid (an exposed point of the unit
ball of H1), θ is inner with θ(0) = 0, and u multiplies Kθ isometrically onto
the Toepliz kernel. It may happen that u ∈ GH∞ and, in that case, we can
write

uKθ = u ker Tθ̄ = ker Tθ̄u−1 = ker+
θ̄,u

. (5.5)

Other representations of a similar form can be found for Toeplitz kernels.
For instance, if g ∈ L∞ admits a Wiener–Hopf factorization of the form g =
g−θ̄g+ with g− ∈ GH∞, g+ ∈ GH∞ and θ inner, then

ker Tg = g−1
+ ker Tθ̄ = g−1

+ Kθ = ker+
θ̄,g−1

+
. (5.6)

Another example where

ker+a,b = b ker Ta (5.7)

is the case studied in Sect. 3, which is not a Toeplitz kernel. It is thus natural
to ask for conditions under which (5.7) holds and, in general, what is the
relation between ker+a,b and b ker Ta for a, b ∈ L∞ nondegenerate. We have the
following.

Proposition 5.4. For a, b ∈ L∞ we have that b ker Ta ∩ H2
+ ⊆ ker+a,b and

ker+a,b = b ker Ta ∩ H2
+ if and only if ker+a,b ⊆ bH2

+. (5.8)

Proof. We have a ker Ta ⊆ H2
−, so, for any φ+ ∈ ker Ta such that bφ+ ∈ H2

+,

a (bφ+)︸ ︷︷ ︸
∈H2

+

+b (−aφ+)︸ ︷︷ ︸
∈H2

−

= 0,

and it follows that bφ+ ∈ ker+a,b. So b ker Ta ∩ H2
+ ⊆ ker+a,b.

Now, it is clear that b ker Ta ∩ H2
+ = ker+a,b implies that ker+a,b ⊆ bH2

+.
Conversely, suppose that ker+a,b ⊆ bH2

+. Then, for any φ+ ∈ ker+a,b we have
φ+ = bψ+ with ψ+ ∈ H2

+, and therefore, for some φ− ∈ H2
−,

aφ+ + bφ− = 0 ⇐⇒ abψ+ + bφ− = 0
⇐⇒ b(aψ+ + φ−) = 0.

We have the standing assumption that b �= 0 a.e. on T, so aψ+ = −φ−.
We conclude that ψ+ ∈ ker Ta, so φ+ ∈ b ker Ta ∩ H2

+, and it follows that
ker+a,b ⊆ b ker Ta ∩ H2

+. �

An immediate consequence of Proposition 5.4 is the following.

Corollary 5.5. If b ∈ H∞ then b ker Ta ⊆ ker+a,b.

It is clear from the invariance results of Sect. 4 that we can have ker+a,b ⊆
bH2

+, with b ∈ H∞, only if b is outer. Moreover, we have the following.
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Corollary 5.6. If b ∈ H∞ is outer and either (i) a ∈ GL∞ or (ii) b ∈ GH∞,
then ker+a,b = b ker Ta.

Proof. If b ∈ GH∞ then bH2
+ = H2

+ and the equality follows from (5.8). If
a ∈ GH∞ then

aφ+ + bφ− = 0 ⇐⇒ φ+

b︸︷︷︸
∈N+

= −φ−
a︸ ︷︷ ︸

∈L2

∈ N+ ∩ L2 = H2
+,

so φ+ ∈ bH2
+ and again the equality in Corollary 5.6 follows from (5.8). �

6. Inclusion Relations

As in the case of Toeplitz kernels [11], the near invariance properties of pro-
jected paired kernels imply certain lower bounds for the dimension of a paired
kernel containing a given function. For instance, if φ ∈ kera,b and φ+(0) = 0,
then kera,b must also contain the function ψ ∈ L2 with ψ+ = z̄φ+ (note that
this defines ψ by Proposition 2.1). As another example, using a similar rea-
soning, if there exists φ ∈ kera,b such that φ+ ∈ θH2

+ or φ− ∈ θ̄H2
− where θ is

inner but not a finite Blaschke product, then kera,b is infinite-dimensional.
On the other hand, it is easy to see that, if θ1 and θ2 are inner functions,

then

ker+
aθ1,bθ2

⊆ ker+a,b, (6.1)

We may then ask if the inclusion is strict and, in that case, how much “smaller”
ker+

aθ1,bθ2
is with respect to ker+a,b and, in particular, when it is {0}. More

generally, one may ask what are the relations between two paired kernels, or
two projected paired kernels, whose symbol pairs are related by multiplication
operators.

Note that, since a nontrivial paired kernel cannot be contained in a differ-
ent one, and indeed their intersection is {0} (see [6]), obtaining, for example,
a paired operator analogue of the property kerTθg � ker Tg (valid for g ∈ L∞

and θ inner, nonconstant) is possible only by saying that kerθa,b is isomorphic
to a proper subspace of kera,b. Alternatively, taking Proposition 2.1 into ac-
count, we can say it in an equivalent and simpler way as ker+θa,b � ker+a,b (cf.
Proposition 6.1).

In the following propositions we present several inclusion relations be-
tween projected paired kernels which generalise similar properties valid for
Toeplitz kernels, using in particular the near invariance properties of Sect. 4
to establish strict inclusions.

We recall that, for any η ∈ L∞, kera,b = keraη,bη, so ker+a,b = ker+aη,bη.

Proposition 6.1. (i) If h− ∈ H∞ then ker+a,bh− ⊆ ker+a,b ⊆ ker+ah−,b.
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(ii) If h− is outer, then

(a) ker+a,bh− = ker+a,b if
a

bh−
∈ L∞,

(b) ker+ah−,b = ker+a,b if
a

b
∈ L∞.

(iii) If h− has a non-constant inner factor, then

ker+a,bh− � ker+a,b � ker+ah−,b.

Proof. (i) aφ+ + bh−φ− = 0 =⇒ aφ+ + b(h−φ−) = 0 and
aφ+ + bφ− = 0 =⇒ (ah−)φ+ + b(h−φ−) = 0.

(ii) Let now h− be outer. We start by proving the second equality (ii)(b).
We have

ah−φ+ + bφ− = 0 ⇐⇒ φ−
h−

= −a

b
φ+ ⇐⇒ φ−

h−
= −a

b
φ+.

Since the left-hand side of the last equation is in the Smirnov class N+ when
h− is outer and the right-hand side is in L2 if a/b ∈ L∞, we have under these

assumptions that φ−/h− ∈ H2
−, so φ+ ∈ ker+a,b since aφ+ + b

φ−
h−

= 0, and thus

ker+ah−,b ⊆ ker+a,b. The equality follows from (i).

Next, we have that

aφ+ + bφ− = 0 =⇒ aφ+ + bh−
φ−
h−

= 0 =⇒ φ−
h−

= − a

bh−
φ+,

and we conclude analogously that
φ−
h−

∈ H2
− so ker+a,b ⊆ ker+a,bh− . Again the

equality (ii)(a) follows from (i).

(iii) Suppose that h− has a non-constant inner factor. If ker+a,b ⊆ ker+a,bh−
then, for any φ ∈ L2 such that aφ++bφ− = 0 we must also have ψ− ∈ H2

− such
that aφ+ + bh−ψ− = 0. Thus φ− = h−ψ−. This implies that ker−

a,b ⊆ h−H2
−,

which is impossible by Corollary 4.2 because h− has a nonconstant inner factor.
So ker+a,bh− � ker+a,b.

A similar argument shows that ker+a,b � ker+ah−,b. �

Proposition 6.2. Suppose that a/b ∈ L∞ and z0 ∈ T. Then ker+a(z−z0),b
=

ker+az,b.

Proof. ker+a(z−z0),b
= ker+az(z−z0)/z,b = ker+az,b by Proposition 6.1(ii), since (z−

z0)/z ∈ H∞ and its conjugate is 1 − z0z, an outer function in H∞. �

As an immediate corollary we have:
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Corollary 6.3. Let g ∈ L∞ and z0 ∈ T. Then ker Tg(z−z0)n = ker Tgzn .

Remark 6.4. This corollary allows us to generalize several results from [8, Sec.
6], in particular Theorems 6.2 and 6.7 in [8], which deal with the relations
between ker Tg and ker Tθg, for a finite Blaschke product θ, to the case where
the symbol has zeros of integer order on T.

Proposition 6.5. (i) If h+ ∈ H∞ then

h+ker+ah+,b ⊆ ker+a,b and h+ker+a,b ⊆ ker+a,bh+
.

(ii) If h+ ∈ GH∞, then

h+ker+ah+,b = ker+a,b = h−1
+ ker+a,bh+

.

(iii) If h+ has a non-constant inner factor, then

h+ker+ah+,b � ker+a,b and h+ker+a,b � ker+a,bh+
.

Proof. (i) We can write (ah+)φ+ + bφ− = 0 as a(h+φ+) + bφ− = 0, from
which h+ker+ah+,b ⊆ ker+a,b; then if φ+ ∈ ker+a,b we have aφ+ + bφ− = 0 for
some φ− ∈ H2

−, so, since a(h+φ+) + (bh+)φ− = 0, we have h+φ+ ∈ ker+a,bh+
.

(ii) If h+ ∈ GH∞, then from aφ+ + bφ− = 0 we obtain ah+(φ+h−1
+ ) +

bφ− = 0, so ker+a,b ⊆ h+ker+ah+,b and we have equality from (i). The second
equality follows from h−1

+ ker+
ah−1

+ ,b
= h−1

+ ker+a,bh+
.

(iii) If h+ has a non-constant inner factor, we cannot have ker+a,b ⊆ h+H2
+

nor ker+a,bh+
⊆ h+H2

+ by the near-invariance result of Corollary 4.2. �

As a consequence of Proposition 6.1 (ii) and Proposition 6.5 (ii) we have
the following.

Proposition 6.6. Let B = B−gB+ ∈ L∞, where B±1
− ∈ H∞ and B±1

+ ∈ H∞.
Then

ker+aB,b = B−1
+ ker+ag,b and ker+a,Bb = B+ker+a,gb.

Proof.

φ+ ∈ ker+aB,b ⇐⇒ ∃φ− : aBφ+ + bφ− = 0,

that is, aB−gB+φ+ + bφ− = 0.
We write this as ∃φ− : ag(B+φ+) + b(φ−B−1

− ) = 0. Equivalently, ∃ψ− :
ag(B+φ+) + bψ− = 0.

Finally, this holds if and only if B+φ+ ∈ ker+ag,b, i.e., φ+ ∈ B−1
+ ker+ag,b.

The other identity is proved similarly. �

Corollary 6.7. If h− ∈ GH∞ then ker+a,b = ker+ah−,b = ker+
a,h−1

− b
= ker+a,h−,b.
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Proof. We have ker+a,b ⊆ ker+ah−,b; conversely,

ah−φ+ + bφ− = 0 =⇒ aφ+ + b(h−1
− φ−) = 0

=⇒ φ+ ∈ ker+a,b,

so ker+a,b = ker+ah−,b = ker+
a,bh−1

−
and, replacing h− by h−1

− we conclude that

ker+a,b = ker+a,bh− . �

Since the inclusion in (6.1) is strict when θ1 or θ2 is not constant or,
equivalently, ker+aθ,b � ker+a,b when θ is a non-constant inner function, one may
ask whether the dimensions of those two spaces can be compared, as in the
case of Toeplitz kernels. The following theorem generalises analogous results
obtained in [3, Sec. 2] and [8, Sec. 6] for Toeplitz kernels, and can be proved
in a similar way.

Theorem 6.8. Let θ be a non-constant finite Blaschke product. Then
(i) ker+aθ,b is finite-dimensional if and only if ker+a,b is finite-dimensional.

Similarly for ker+a,θb.
(ii) If dim ker+a,b = d < ∞ and dim Kθ ≥ d then ker+aθ,b = {0}.
(iii) If dim ker+a,b = d < ∞ and dim Kθ = k < d, then dim ker+aθ,b = d − k.

Note that by Proposition 2.1 and Corollary 2.2 the same result holds if
we replace ker+a,b by kera,b etc. When ker+a,b is not finite-dimensional, one can
still compare it with ker+aθ,b by means of the following decomposition.

Theorem 6.9. Let θ be a non-constant finite Blaschke product. If θ has k zeros
in D, counting multiplicities, in which case we can write θ = B−zkB+ with
B±1

− ∈ H∞ and B±1
+ ∈ H∞, then there exist ψj+ ∈ H2

+ (j = 0, . . . , k − 1) with
ψj+(0) = 1, for each j such that the following direct sum decomposition holds:

ker+a,b = zkB+ker+aθ,b + span{ψ0+, zψ1+, . . . , zk−1ψ(k−1)+}
= zkker+azk,b + span{ψ0+, zψ1+, . . . , zk−1ψ(k−1)+}.

Proof. By Proposition 6.6 it is enough to consider ker+azk,b. Since ker+a,b is
nearly S∗-invariant, there exists ψ0+ ∈ ker+a,b with ψ0+(0) = 1; let ψ0− be
given by aψ0+ + bψ0− = 0. Then for any φ+ ∈ ker+a,b,

aφ+ + bφ− = 0 ⇐⇒ az
φ+ − φ+(0)ψ0+

z
+ aφ+(0)ψ0+ + bφ− = 0

⇐⇒ az
φ+ − φ+(0)ψ0+

z
+ b(φ− − φ+(0)ψ0−) = 0,

so

φ̃+ :=
φ+ − φ+(0)ψ0+

z
∈ ker+az,b

and φ+ = zφ̃+ + φ+(0)ψ0+.
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Therefore ker+a,b = zker+az,b ⊕ span{ψ0}.
Proceeding analogously with ker+az,b, ker+az2,b, . . . , ker+azk−1,b, we get

ker+a,b = zkker+azk,b ⊕ span{ψ0+, zψ1+, . . . , zk−1ψ(k−1)+},

where ψj+ ∈ H2 and ψj+(0) = 1 for all j = 0, 1, . . . , k − 1. �

We now obtain a description of some related projected paired kernels that
will be used in the next section to study truncated Toeplitz operators: ker+p1,p2

,
ker+αp1,p2

and ker+p1,αp2
= ker+ᾱp1,p2

, where p1 and p2 are polynomials of degrees
n1 and n2 respectively without common zeros, and α is an inner function. Note
that ker+p1,p2

can be related to a new class of Toeplitz-like operators introduced
in [17–19]: see [6].

Proposition 6.10. Let p1 and p2 satisfy the assumptions above, and let more-
over pi = piDpiTpiE, for i = 1, 2, where the zeros of piD, piT and piE are in D, T
and E = D

e, respectively, and we denote by niD, niT and niE the corresponding
degrees. Then

(i) ker+p1,p2
= {0} if n2 ≤ m := n2T + n1T + n2E + n1D;

(ii) ker+p1,p2
= p1Tp2Tp1Dp2EPn2−m−1, where P�, for l ∈ N ∪ {0}, denotes the

space of all polynomials of degree less than or equal to �, and

dim ker+p1,p2
= n2 − m = n2D − n1D − n1T

if n2 > m.

Proof.

p1φ+ + p2φ− = 0 ⇐⇒ p1φ+ = −p2φ− = − p2Tp2Ep2D︸ ︷︷ ︸
degree n2

φ− = qn2−1,

where qn2−1 is a polynomial of degree less than or equal to n2−1. Since
qn2−1

p2
∈

H2
− and

qn2−1

p1
∈ H2

+, qn2−1 must be of the form qn2−1 = p2Tp2Ep1Tp1Dq, where

q is a polynomial. Thus if n2 − 1 < m then qn2−1 = 0 and (i) holds. Also, if
n2 > m then (ii) holds. �

Proposition 6.11. With the same assumptions and notation as in Proposition
6.10, let α be a nonconstant inner function. In the case that α is a finite
Blaschke product, let deg α denote the number of zeros of α, counting multi-
plicity. Let d = n2D − n1D − n1T > 0.

(i) ker+αp1,p2
= {0} if α is not a finite Blaschke product or deg α ≥ d > 0.

(ii) dim ker+αp1,p2
= d−deg α if α is a finite Blaschke product with deg α < d.

In this case, factorizing α = B−zdeg αB+ with B±1
− ∈ H∞ and B±1

+ ∈
H∞, we have that ker+αp1,p2

= B−1
+ ker+zdeg αp1,p2

, where the projected paired
kernel on the right-hand side is described in Proposition 6.10
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Proof. (i) If α is not a finite Blaschke product or deg α ≥ d, then (i) holds
by Theorem 6.8.
(ii) If deg α < d then

ker+αp1,p2
= ker+B−zdeg αB+p1,p2

= B−1
+ ker+zdeg αp1,p2

by Proposition 6.6.
�

Analogously, we have:

Proposition 6.12. With the same assumptions and notation as in Proposition
6.11, and assuming that dim ker+p1,p2

= d = n2D − n1D − n1T > 0, we have

ker+ᾱp1,p2
= B−1

− ker+z̄deg αp1,p2
= B−1

− ker+p1,zdeg αp2
,

where α = B−zdeg αB+ as in Proposition 6.11 and ker+p1,zdeg αp2
is described in

Proposition 6.10.

Proof. The first equality follows from Proposition 6.6 and the second from the
definition of ker+. �

7. Kernels of Finite-Rank Asymmetric Truncated Toeplitz
Operators

Paired operators can also be defined in the matricial setting. They appear in
the literature [7,16,23] as operators on (L2)n with n × n matricial coefficients
A,B ∈ L((L2)n).

In most cases A and B are multiplication operators and in that case the
paired operator takes the form

TA,B = AP+ + BP− with A,B ∈ (L∞)n×n. (7.1)

One can, however, consider other possible generalizations of scalar paired op-
erators, for instance

TA,B : (L2)n → L2, TA,B = AP+ + BP− with A,B ∈ L((L2)n, L2)
(7.2)

or, considering in particular multiplication operators,

TA,B = AP+ + BP− : (L2)n → L2 with A,B ∈ (L∞)1×n,

A = [ai]Ti=1,...,n, B = [bi]Ti=1,...,n. (7.3)

The kernels of operators of this form are defined by the Riemann–Hilbert
problem

n∑
i=1

aiφi+ = −
n∑

i=1

biφi−, φi± ∈ H2
±. (7.4)

The latter have appeared in recent works: see, for instance, [1] and [14].
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We apply here the results of the latter, together with those of previous
sections, to study the kernels of finite-rank asymmetric truncated Toeplitz
operators (ATTO for short) of the form

Aθ,α
φ : Kθ → Kα, Aθ,α

φ = PαφPθ|Kθ
, (7.5)

where θ, α are inner functions, Pθ and Pα denote the orthogonal projections
from L2 onto Kθ and Kα respectively, and φ ∈ L∞ is called the symbol of the
ATTO.

Indeed, if we define P1 to be the projection P1(x, y) = x, then we have

ker Aθ,α
φ = P1 ker TG, (7.6)

where G has the matrix symbol

G =
[
θ̄ 0
φ α

]
. (7.7)

Now it was shown in [14, Thm. 3.1 and Cor. 3.4] that the kernels of block
Toeplitz operators with symbols of the form (7.7) are of so-called scalar type,
i.e., can be described as scalar multiples of a fixed vector function, and can be
obtained from a pair of functions f, g ∈ F2, where F consists of all complex-
valued functions defined a.e. on T, provided that f and g satisfy the relation
Gf = g.

To present the results from [14] that will be used here, it is useful to settle
some notation, as follows:
(i) if f = (f1, f2) ∈ F2, then we say that f is left-invertible in F if and only

if there exists f̃ ∈ F2 such that f̃T f = 1, and, in that case, f̃T is called
the left inverse of f in F ;

(ii) we define HX = {h ∈ H : Xh ∈ H} for any subspace H ⊆ (L2)n and any
X ∈ Fn×n;

(iii) for any matricial coefficients A,B with elements in F let us define TA,Bf =
AP+f + BP−f for f ∈ (L2)n and write sA,B = A(H2

+)n ∩ B(H2
−)n.

With this notation we can formulate Corollary 3.4 in [14] as follows.

Theorem 7.1. Let f = (f1, f2) and g = (g1, g2) belong to F2 and such that
Gf = g with G ∈ (L∞)2×2. If S := s(detG)fT ,−gT = {0}, then ker Aθ,α

φ = Kf1,
where

K = f̃T [(H2
+)2]ff̃T ∩ g̃T [(H2

−)2]gg̃T . (7.8)

We now apply Theorem 7.1 and the results of the previous sections to
study the behaviour of an ATTO of the form (7.5) with finite rank. As ex-
plained in [10, Sec. 3] we are led to take the symbol to be

φ = θ̄R+ − αR− +
N∑

j=1

θ̄Pα
nj−1(tj) − αP θ̄

nj−1(tj)
(z − tj)nj

, (7.9)

where
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(i) R± are rational functions vanishing at ∞, such that R− has no poles
in D

e ∪ T and R+ has no poles in D ∪ T;
(ii) tj ∈ T (j = 1, . . . , N) are regular points for θ and α, i.e., θ and α

are analytic in a neighbourhood of each tj (in which case θ̄, which can be
extended to a definition outside D by θ̄(z) = θ(1/z̄) for |z| > 1, is also analytic
in a neighbourhood of tj);

(iii) Pα
nj−1 and P θ̄

nj−1 are the Taylor polynomials of order nj −1, relative
to the point tj , for α and for θ̄, respectively.

Defining

R+
2 = R+ +

N∑
j=1

Pα
nj−1(tj)

(z − tj)nj
=

Q2

ED2+
, (7.10)

R−
1 = R− −

N∑
j=1

P θ̄
nj−1(tj)

(z − tj)nj
=

Q1

ED1−
, (7.11)

where

E =
N∏

j=1

(z − tj)nj , with deg E = nT :=
N∑

j=1

nj , (7.12)

and Q1, Q2 are polynomials, D2+ is the denominator of R+, with n− zeros
(including multiplicities) in D

e, and D1− is the denominator of R−, with n+

zeros in D, we can write, from (7.9),

φ = θ̄R2+ − αR1−. (7.13)

Then G in (7.7) takes the form

G =
[

θ̄ 0
θ̄R2+ − αR1− α

]
(7.14)

and one can verify that f, g ∈ F2, defined by

f =
[
f1
f2

]
=

[
θ

θR1−

]
= θ

[
1

Q1
ED1−

]
,

g =
[
g1
g2

]
=

[
1

R2+

]
=

[
1

Q2
ED2+

]
, (7.15)

satisfy Gf = g and have left inverses, respectively,

f̃T = [θ̄ 0], g̃T = [1 0]. (7.16)

To apply Theorem 7.1, we start by showing that the assumption S = {0}
in Theorem 7.1 is satisfied when Kα is “large enough”.

Proposition 7.2. Let G be given by (7.14) with α such that dim Kα ≥ m :=
n+ + n− + nT, and let f, g be defined as in (7.15). Then S = s(detG)fT ,−gT =
{0}.
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Proof. We have det G = αθ̄ and S is defined by

α

(
φ1+ +

Q1

ED1−
φ2+

)
= φ1− +

Q2

ED2+
φ2−

⇐⇒ α

D1−
(ED1−φ1+ + Q1φ2+)︸ ︷︷ ︸

ψ+

=
zn−+nT

D2+

ED2+φ1− + Q2φ2−
zn−+nT︸ ︷︷ ︸

ψ−

⇐⇒ αD2+ψ+ = zn−+nTD1−ψ−, (7.17)

where ψ± ∈ H2
±. So ψ = ψ+ + ψ− ∈ sαD2+,−zn−+n

TD1− = {0}, by Corollary
2.3 and Proposition 6.11 (i) (with p1 = D2+, p2 = −zn−+nTD1−, n2D =
n+ + n− + nT and n1T = n1D = 0) and it follows that the left-hand side of
(7.17) is

α

(
φ1+ +

Q1

ED1−
φ2+

)
=

α

ED1−
ψ+ = 0

and, of course, analogously for the right-hand side of (7.17), so S = {0}. �

Next we characterise the spaces [(H2
+)2]ff̃T and [(H2

+)2]gg̃T in (7.8). Note
that

ff̃T =
[

1 0
R1− 0

]
and gg̃T =

[
1 0

R2+ 0

]
, (7.18)

so

(φ1+, φ2+) ∈ [(H2
+)2]ff̃T ⇐⇒ R1−φ1+ ∈ H2

+ ⇐⇒ φ1+ ∈ ED1−H2
+

(7.19)

and

(φ1−, φ2−) ∈ [(H2
−)2]gg̃T ⇐⇒ R2+φ1− ∈ H2

− ⇐⇒ φ1− ∈ ED2+

zn−+nT

H2
−.

(7.20)

We can now formulate the main result of this section.

Theorem 7.3. Let φ be given by (7.13) and (7.10)–(7.12), and let dim Kα ≥
m := n+ + n− + nT. Then ker TG and ker Aθ,α

φ do not depend on α and we
have

ker TG = ED1−D2+ ker Tθ̄zm

[
1

R1−

]
and ker Aθ,α

φ = ED1−D2+ ker Tθ̄zm .

This holds, in particular, for any infinite-dimensional Kα.
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Proof. By (7.8), (7.19) and (7.20)

K = [θ̄ 0]
[ED1−H2

+

H2
+

]
∩ [1 0]

[ ED2+

zn−+n
T
H2

−
H2

−

]

= θ̄ED1−H2
+ ∩ ED2+

zn−+nT

H2
−

= θ̄ED1−ker+
θ̄D1−,− D2+

z
n−+n

T

= θ̄ED1−ker+
θ̄D1−zn−+n

T ,−D2+

= θ̄ED1−D2+ker+
θ̄zn++n−+n

T ,−1

= θ̄ED1−D2+ ker Tθ̄zm ,

where we used Proposition 6.12, and the result follows from Theorem 7.1. �

Note that, if zm divides θ then kerTθ̄zm is the model space Kθ/zm , so
ker Aθ,α

φ is isomorphic to Kθ/zm .
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Verlag, Basel-Boston, Mass. (1981)

[17] Groenewald, G.J., ter Horst, S., Jaftha, J., Ran, A.C.M.: A Toeplitz-like operator
with rational symbol having poles on the unit circle I: Fredholm properties.
Operator theory, analysis and the state space approach, 239–268, Oper. Theory
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