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N . The space H∞(BN ) of

bounded holomorphic functions on BN is known to have a predual, de-
noted by G∞(BN ). We study the functions in H∞(BN ) that attain their
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1. Introduction

Ando [1] proved that the Banach space H∞(D) of bounded holomorphic func-
tions on the unit disc D has a unique isometric predual. Let us denote it
by G∞(D). By the Bishop-Phelps theorem, the set NA(G∞(D)) of functions
f ∈ H∞(D) which attain their norm as elements of the dual of G∞(D) is a
norm-dense subset of H∞(D). Fisher [6] showed that f ∈ H∞(D), ||f || = 1,
attains its norm as an element of the dual of G∞(D) if and only if the radial
limits f∗(w) of f in the torus T satisfy that the set {w ∈ T : |f∗(w)| = 1}
has positive Lebesgue measure on T. The aim of this article is to investigate
versions of Fisher’s result for the Banach space of bounded holomorphic func-
tions on the N -dimensional ball and the N -dimensional polydisc. Our main
results are Theorems 5 and 8 and Propositions 6 and 7 in the case of the ball.
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The case of the polydisc is treated in Sect. 3. The final section deals with the
Banach space of bounded Dirichlet series.

Let X be a complex Banach space. Its open unit ball is denoted by BX

and its closed unit ball by UX . The space of all holomorphic functions on
BX (i.e. the C−Fréchet differentiable functions f : BX → C) will be denoted
H(BX). The Banach space H∞(BX) of all bounded holomorphic functions f
in H(BX) is endowed with the supremum norm ‖f‖∞ = supx∈BX

|f(x)|. We
denote by τ0 the compact-open topology on H∞(BX), that is, the topology of
uniform convergence on compact subsets of BX . Recall that τ0 is Hausdorff
and coarser than the norm topology. Let UH∞(BX) denote the closed unit ball
of H∞(BX). The vector space G∞(BX), given by

G∞(BX) := {ϕ ∈ H∞(BX)∗ : ϕ|UH∞(BX )
is τ0-continuous}

is a Banach space when endowed with the dual norm. By using the Ng-Dixmier
Theorem [12], Mujica [11], proved that the topological dual of G∞(BX) is
isometrically isomorphic to H∞(BX). We abbreviate this fact by

G∞(BX)∗ 1= H∞(BX).

For each x ∈ BX we denote by δx : H∞(BX) → C the evaluation δx(f) :=
f(x) at the point x. Clearly δx is τ0 continuous. Moreover, the vector space
span{δx : x ∈ BX} is a norm-dense subset in G∞(BX). Indeed, {δx : x ∈
BX} separates points of H∞(BX). Hence span{δx : x ∈ BX} is a subspace
of G∞(BX) that is w(G∞(BX),H∞(BX))-dense in G∞(BX). Thus it is is
also norm-dense subset of G∞(BX). We collect the following consequence for
reference later in the paper.

Lemma 1. If F is a closed subspace of G∞(BX) containing {δx : x ∈ BX},
then F = G∞(BX).

Let Y be a Banach space. The set of norm attaining functionals is defined
to be the following subset of Y ∗ :

NA(Y ) := {y∗ ∈ Y ∗ : there exists y ∈ Y, ‖y‖ = 1 such that ‖y∗‖ = y∗(y)}
The Bishop–Phelps theorem (see, e.g., Theorem 8.11 in [2]) ensures that the
set NA(Y ) of norm attaining functionals is a norm-dense subset of Y ∗. As
a consequence, for each non-trivial, complex Banach space X, there exists
a norm-dense subset NA(G∞(BX)) of H∞(BX), such that for every f ∈
NA(G∞(BX)), there exists an element ϕ ∈ G∞(BX) with ‖ϕ‖ = 1 such
that

‖f‖∞ = ϕ(f).

The aim of this paper is to study those functions f ∈ H∞(BX) that attain their
norm as elements of the dual of G∞(BX), that is, those f ∈ NA(G∞(BX)).
We mainly concentrate on the case X = (CN , ‖.‖2) and hence, BX is the
N -dimensional Euclidean ball which henceforth will be denoted BN .
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In the one dimensional case, BN = D and its boundary is the torus
T = {z ∈ C : |z| = 1}. In this case, by a result by Fatou, there is an isometric
isomorphism between H∞(D) and

H∞(T) :=
{

g ∈ L∞(T) : ĝ(k) =
∫
T

w−kg(w)dm1(w) = 0, k = −1,−2, . . .

}
.

The isometric isomorphism H∞(D) → H∞(T) is given by

H∞(D) −→ H∞(T)
f −→ f∗

where the radial limit

f∗(w) := lim
r→1−

f(rw),

exists almost everywhere on T (with respect to the Lebesgue normalized mea-
sure on T, denoted by dm1(w) = dt

2π , where w = eit.) From this point of view

H∞(D) 1= H∞(T) is a closed subspace of L∞(T), and hence it is a dual space.
In fact, if H1

0 (T) is the closed subspace of L1(T) given by

H1
0 (T)=

{
f ∈ L1(T) : f̂(−n)=

∫
T

f(w)wndm1(w) = 0, for all n=0, 1, 2, . . .

}
,

then

H∞(T) 1=
(
L1(T)/H1

0 (T)
)∗

.

Ando in [1] proved that H∞(D) has a unique isometric predual. Accordingly,
L1(T)/H1

0 (T) 1= G∞(D). As far as we know, it is an open question for N ≥ 2
whether there is a unique predual of the corresponding H∞-spaces in the case
of the N -dimensional ball and the N -polydisc. In this paper, we will introduce
another natural predual and show, in Theorems 5 and 10, that it coincides
with G∞(BX).

The characterization of norm attaining elements of f ∈ H∞(D) was ob-
tained by S. Fisher in 1969.

Theorem 2 (Fisher [6, Theorem 2]). Let f be an element of norm one in
H∞(D). The function f attains its norm as an element of the dual of L1(T)/
H1

0 (T) = G∞(D) if and only if f∗(w) = limr→1− f(rw) (a.e. in T) satisfies
that

{w ∈ T : |f∗(w)| = 1}
has positive Lebesgue measure on T.

In this paper, in Sect. 2, we explore several variable versions of Fisher’s
result. We also examine, in Sects. 3 and 4, similar questions for the polydisc
algebra H∞(DN ) and for the space of Dirichlet series D∞(C+).
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2. The Case of the Euclidean Ball

Recall that the Euclidean open unit ball in C
N is:

BN :=
{

z = (z1, . . . , zN ) ∈ C
N : ‖z‖N := 2

√
|z1|2 + · · · + |zN |2 < 1

}
.

The unit sphere in C
N is:

SN :=
{

z = (z1, . . . , zN ) ∈ C
N : ‖z‖N := 2

√
|z1|2 + · · · + |zN |2 = 1

}
.

(Observe that this is not completely standard notation since the usual notation
for the N -dimensional real sphere in R

N is SN−1.)
By σN we denote the unique rotation-invariant positive Borel measure

on SN for which

σN (SN ) = 1.

In other words, σN is the Haar measure of the N -dimensional sphere.
In [15, p.84], the space H∞(BN ), is defined as

H∞(BN ) :=
{

f ∈ H(BN ) : ‖f‖∞ := sup
z∈BN

|f(z)| < ∞
}

.

The ball algebra is the Banach subalgebra of H∞(BN ) given by

A(BN ) := {f : BN → C : f is continuous on BN and holomorphic on BN}.

Finally, by A(SN ) = A(BN ) ∩ C(SN ), we understand the restrictions of the
elements of A(BN ) to the sphere SN , i.e.

A(SN ) := {f|SN
: f ∈ A(BN )}.

By the maximum modulus theorem, the mapping π : A(BN ) → A(SN ) defined
by π(f) := f|SN

is an isometry.
Hardy spaces have a dual definition. The Hardy space H∞(SN ) is the

weak-star closure of A(SN ) in L∞(SN , σN ). i.e.

H∞(SN ) := A(SN )
w(L∞(SN ),L1(SN ))

.

As the polynomials are dense in A(BN ) we have that span{zβ : β ∈ N
N
0 }

is a ‖.‖∞ dense subspace of A(BN ). Hence, span{wβ : β ∈ N
N
0 } is ‖.‖∞ dense

in A(SN ). Thus

H∞(SN ) = span{wβ : β ∈ N
N
0 }w(L∞(SN ),L1(SN ))

.

At this point, we show that H∞(SN ) and H∞(BN ) are isometrically
isomorphic. We need some notation and results that can be found, for example,
in the books [15] and [16]. The invariant Poisson kernel of BN is the kernel
function PN : BN × SN → [0,+∞[

PN (z, w) :=
(1 − |z|2)N

|1− < z,w > |2N
.
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The Poisson integral P (g) of a function g in L1(SN , σN ) is defined, for z ∈ BN ,
by

PN (g)(z) :=
∫

SN

P (z, w)g(w)dσN (w).

We have that PN : H∞(SN ) −→ H∞(BN ) is a linear isometry onto.
To prove that this mapping is onto, the concept of Korányi, or K-limit,

of a holomorphic function on BN is needed. For α > 1 and w ∈ SN we set

Dα(w) :=
{

z ∈ C
N : |w − z| <

α

2
(1 − |z|2)

}
.

Clearly Dα(w) ⊂ BN . We say that a function F : BN → C has K-limit λ ∈ C

at w ∈ SN if the following is true: For every α > 1 and for every sequence (zj)
in Dα(w) that converges to a point w ∈ SN , we have that F (zj) converges to
λ and write

(K − lim F )(w) = λ.

The following result (see e.g. [15, Section 5.4.]) is important and very
useful for our paper.

Theorem 3. If f is a function in H∞(BN ) then f has finite K-limits f∗ σN -
almost everywhere on SN . Moreover, f∗ ∈ H∞(SN ), ‖f∗‖∞ = ‖f‖∞ and

PN (f∗) = f.

In other words, the mapping f → f∗ is a linear isometry from H∞(BN ) onto
H∞(SN ).

We also need the following well known fact, a proof of which is given for
the sake of completeness.

Lemma 4. Let X be a Banach space and let Y be a weak-star closed subspace
of X∗. The subspace

Y⊥ := {x ∈ X : y∗(x) = 0, for all y∗ ∈ Y },

satisfies

Y ⊥
⊥ := {x∗ ∈ X∗ : x∗(x) = 0, for all x ∈ Y⊥} = Y,

and Y is isometrically isomorphic to (X/Y⊥)∗.

Proof. Clearly, by the definition, Y ⊂ Y ⊥
⊥ . Assume that the reverse inclusion

is not true. Hence there exists x∗
0 ∈ Y ⊥

⊥ \Y .
Since Y is w(X∗,X) closed and convex we can find ϕ : X∗ → C,

w(X∗,X)-continuous, such that

ϕ(x∗
0) = 1 and ϕ(y∗) = 0,

for all y∗ ∈ Y . Since ϕ is weak-star continuous, there exists x0 ∈ X such that

ϕ(x∗) = x∗(x0),
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for all x∗ ∈ X∗. Thus, x∗
0(x0) = 1 and y∗(x0) = 0 for all y∗ ∈ Y . Hence x0

belongs Y⊥. But, x∗
0 ∈ Y ⊥

⊥ , which, by definition implies

x∗
0(x0) = 0.

This is a contradiction.
Finally, we have (X/Y⊥)∗ 1= Y ⊥

⊥ = Y , as follows from [10, Theorem
1.10.17] for example. �

Now we define

H1
0 (SN ) =

{
g ∈ L1(SN ) :

∫
SN

g(w)f(w)dσN (w) = 0 for all f ∈ A(SN )
}

.

Since

H∞(SN ) := A(SN )
w(L∞(SN ),L1(SN ))

= span{wβ : β ∈ N
N
0 }w(L∞(SN ),L1(SN ))

,

the subspace H∞(SN ) ⊂ L∞(SN ) is w(L∞(SN ), L1(SN ))-closed in L∞(SN )
and

H1
0 (SN ) =

{
g ∈ L1(SN ) :

∫
SN

g(w)f(w)dσN (w) = 0, for all f ∈ H∞(SN )
}

=
{

g ∈ L1(SN ) : ĝ(−β) :=
∫

SN

g(w)wβdσN (w) = 0, for all β ∈ N
N
0

}
.

In the notation of Lemma 4, with X = L1(SN ), X∗ = L∞(SN ) and Y =
H∞(SN ) (which is weak-star closed in X∗), we have

Y⊥ = H∞(SN )⊥ = H1
0 (SN ),

Y ⊥
⊥ = H1

0 (SN )⊥ = H∞(SN ).

Lemma 4 implies the isometric isomorphism

H∞(SN ) 1=
(
L1(SN )/H1

0 (SN )
)∗

.

Next we show that G∞(BN ) and L1(SN )/H1
0 (SN ) are isometrically iso-

morphic. Thus, these two natural preduals of H∞(BN ) coincide, and so the
extension of Ando’s result on the uniqueness of the predual of H∞(D) to sev-
eral variables is still open.

Theorem 5. For every N ∈ N we have that

L1(SN )/H1
0 (SN ) = G∞(BN )

isometrically.

Proof. First we prove that L1(SN )/H1
0 (SN ) ⊂ G∞(BN ).

Let [ϕ] ∈ L1(SN )/H1
0 (SN ) and g ∈ H∞(SN ). The duality is given by

< [ϕ], g >=
∫

SN

ϕ(w)g(w)dσN (w) =
∫

SN

(ϕ(w) + η(w))g(w)dσN (w),

for every ϕ ∈ L1(SN ) and every η ∈ H1
0 (SN ).
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We identify L1(SN )/H1
0 (SN ) as a subspace of the dual of H∞(SN ) in the

following natural way. Define T[ϕ] : H∞(BN ) −→ C by

T[ϕ](f) :=< [ϕ], f∗ >=
∫

SN

ϕ(w)f∗(w)dσN (w).

We check that T[ϕ] belongs to G∞(BN ) for every equivalence class [ϕ] ∈
L1(SN )/H1

0 (SN ).
Clearly

|T[ϕ](f)| ≤
∫

SN

|ϕ(w)‖f∗‖∞dσN (w) = ‖ϕ‖1‖f‖∞.

Hence, T[ϕ] belongs to H∞(BN )∗. This fact and the equality ‖T[ϕ]‖ = ‖[ϕ]‖ are

consequences of the isometric isomorphism H∞(SN ) 1=
(
L1(SN )/H1

0 (SN )
)∗

and Theorem 3.
Let us check that T[ϕ] is τ0-continuous when restricted to the closed unit

ball UH∞(BN ) of H∞(BN ).
By Theorem 3, we know that if f ∈ H∞(BN ) and f∗ ∈ H∞(SN ) is its

K-limit that exists a.e. in SN , then

f(z) =
∫

SN

PN (z, w)f∗(w)dσN (w)

for all z ∈ BN . Conversely, if h ∈ H∞(SN ), then PN (h) ∈ H∞(BN ) and we
have

PN (h)∗(w) = h(w)

a.e. on SN .
For each z ∈ BN the mapping PN (z, .) : SN →]0,+∞[ is continuous on

SN . Hence PN (z, .) ∈ L1(SN ).
Given (fn) ∪ {f} ⊂ UH∞(BN ) such that (fn) converges to f with re-

spect to the compact-open topology on BN , we have (f∗
n) ∪ {f∗} ⊂ UH∞(SN ).

But UH∞(SN ) is a weak-star closed subset of UL∞(SN ) which, in turn, is a
w(L∞(SN ), L1(SN ))-compact set. Since L1(SN ) is separable, it follows that
UH∞(SN ) is a metrizable compact set with the weak-star topology. Consider
now any subsequence (f∗

nk
) that is w(L∞(SN ), L1(SN ))-convergent to some

h ∈ UH∞(SN ). We will have

PN (h)(z) =
∫

SN

PN (z, w)h(w)dσN (w)

=< PN (z, .), h >= lim
k→∞

< PN (z, .), fnk
>

= lim
k→∞

∫
SN

PN (z, w)f∗
nk

(w)dσN (w)

= lim
k→∞

fnk
(z) = f(z),
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for all z ∈ BN . Hence,

h(w) = PN (h)∗(w) = f∗(w)

a.e in SN . We have just proved that the only weak-star adherent point of (f∗
n)

is f∗. Thus (f∗
n) weak-star converges to f∗. In particular

T[ϕ](f) =
∫

SN

f∗(w)ϕ(w)dσN (w)

=< [ϕ], f∗ >= lim
n→∞ < [ϕ], f∗

n >

lim
n→∞ T[ϕ](fn),

and T[ϕ] is continuous with the compact-open topology when restricted to the
closed unit ball of H∞(BN ); i.e. T[ϕ] ∈ G∞(BN ).

For the other inclusion observe that

δz(f) = PN (f∗)(z) =
∫

SN

PN (z, w)f∗(w)dσN (w) = T[PN (z,.)](f),

for every z ∈ BN and every f ∈ H∞(BN ). Thus

span{δz : z ∈ BN} ⊂ L1(SN )/H1
0 (SN ).

The conclusion follows from Lemma 1. �

Theorem 5 permits us to get a sufficient condition for a function on
H∞(BN ) to attain the norm.

Proposition 6. If f is an element of H∞(BN ) of norm one such that the set

E := {w ∈ SN : |f∗(w)| = 1},

has positive σN measure in SN , then f attains its norm as an element of the
dual of L1(SN )/H1

0 (SN ) = G∞(BN ).

Proof. Define ϕ : SN −→ C by

ϕ(w) =

{ |f∗(w)|
f∗(w)

1
σN (E) , if w ∈ E

0, otherwise.

We have that ϕ is a bounded measurable function on SN . Thus ϕ ∈ L1(SN )
and ∫

SN

|ϕ(w)|dσN (w) =
1

σN (E)

∫
E

dσN (w) = 1.

Define T[ϕ] : H∞(BN ) −→ C by

T[ϕ](g) :=< [ϕ], g∗ >=
∫

SN

ϕ(w)g∗(w)dσN (w).

By Theorem 5, T[ϕ] ∈ L1(SN )/H1
0 (SN ) = G∞(BN ) and

|T[ϕ](g)| ≤ ‖g∗‖∞‖ϕ‖1 = ‖g‖∞‖ϕ‖1 = ‖g‖∞,
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for every g ∈ H∞(BN ). Hence

‖T[ϕ]‖ ≤ 1.

But

T[ϕ](f) =
∫

SN

ϕ(w)f∗(w)dσN (w) =
1

σN (E)

∫
E

|f∗(w)|dσN (w) = 1 = ||f ||.

and f in the dual of G∞(BN ) attains its norm at T[ϕ]. �

A partial converse to the above proposition is the following.

Proposition 7. If f is an element of H∞(BN ) of norm one such that there
exists ϕ ∈ L1(SN ) with ‖ϕ‖1 = 1 and T[ϕ](f) = 1, then

σN ({w ∈ SN : |f∗(w)| = 1}) > 0.

Proof. We denote E = {w ∈ SN : |f∗(w)| = 1}.
Assume that σN (E) = 0.
Let

Kn =
{

w ∈ SN : |f∗(w)| <
n − 1

n

}
.

Clearly SN \ E = ∪∞
n=1Kn.

We have that T[ϕ] ∈ G∞(BN ) and is of norm one since

1 = T[ϕ](f) ≤ ‖[ϕ]‖‖f‖∞ = ‖[ϕ]‖ ≤ ‖ϕ‖1 = 1.

For each n, we get∫
SN\Kn

|ϕ(w)|dσN (w) +
∫

Kn

|ϕ(w)|dσN (w) = 1 =
∫

SN

f(w)ϕ(w)dσN (w)

=
∫

SN\Kn

f(w)ϕ(w)dσN (w) +
∫

Kn

f(w)ϕ(w)dσN (w)

≤
∫

SN\Kn

|f(w)ϕ(w)|dσN (w) +
∫

Kn

|f(w)ϕ(w)|dσN (w)

≤
∫

SN\Kn

|ϕ(w)|dσN (w) +
n − 1

n

∫
Kn

|ϕ(w)|dσN (w).

Thus,
∫

Kn
|ϕ(w)|dσN (w) = 0. Since n is arbitrary, we get∫

SN\E

|ϕ(w)|dσN (w) = 0.

But, by hypothesis σN (E) = 0 and finally we arrive at the contradiction

1 =
∫

SN

|ϕ(w)|dσN (w) = 0.

�
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A subset E of SN is called a peak set if there exists f ∈ A(BN ) such that
f(z) = 1 for every z ∈ E and |f(z)| < 1 for every z ∈ BN \ E. Every peak set
is a null set.

A result by Fatou states that every compact subset of T of Lebesgue
measure zero is a peak set of A(D), a fact which is instrumental in the proof
of Fisher’s Theorem 2. On the other hand, there are null sets on SN (respec-
tively in T

N ), which are not peak sets [15, 10.1.1 and 11.2.5] (respectively [14,
Theorem 6.3.4, p. 149-150]). We do not know if the converse of Proposition 6
is true or not. But, if we restrict ourselves to functions in A(BN ) that attain
their norm, we get the following characterization in terms of peak sets.

Theorem 8. Let f be an element of A(BN ) of norm one. The function f attains
its norm as an element of H∞(BN ) if and only if the set

E(f) = {w ∈ SN : |f(w)| = 1}
is not a peak set.

Before presenting the proof we need some notation and a lemma.
We recall that a complex Borel measure μ on SN is a Henkin measure

(See [15, 9.1.5, p. 186]) if

lim
n→∞

∫
SN

fn(w)dμ(w) = 0,

for every sequence (fn) contained in the closed unit ball UA(BN ) of A(BN ) that
converges uniformly to 0 on the compact subsets of BN , that is, converges to 0
in the τ0 topology in BN . (By the Montel theorem, a sequence (fn) contained
in UA(BN ) converges to 0 in τ0 if and only if converges to 0 pointwise on BN ).

Lemma 9. (1) For every Henkin measure μ there is T ∈ G∞(BN ) such that

T (f) =
∫

SN

f(w)dμ(w)

for each f ∈ A(BN ), and ‖μ‖ ≥ ‖T‖.
(2) If T ∈ G∞(BN ), then there is a Henkin measure μ on SN such that

T (f) =
∫

SN

f(w)dμ(w)

for each f ∈ A(BN ), and ‖μ‖ = ‖T‖.
Proof. (1) Define T1 : A(BN ) −→ C by

T1(g) :=
∫

SN

g(w)dμ(w).

Clearly, T1 is a continuous linear form on A(BN ) which is τ0-continuous
on UA(BN ) and

‖T1‖ ≤ ‖μ‖.
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Given f ∈ H∞(BN ), the function fr(z) := f(rz), 0 ≤ r < 1, belongs
to A(BN ). In addition, (fr) converges to f uniformly on the compact
subsets of BN and

‖fr‖ ≤ ‖f‖, ‖f‖ = sup
r

‖fr‖. (1)

By [15, 11.3.1], since μ is a Henkin measure, the limit

lim
r→1−

∫
SN

fr(w)dμ(w) = lim
r→1−

T1(fr) ∈ C,

exists for every f ∈ H∞(BN ).
We define T : H∞(BN ) −→ C, by

T (f) := lim
r→1−

T1(fr).

T is linear and T ∈ (H∞(BN ))∗, since

|T (f)| ≤ sup
r

|T1(fr)| ≤ ‖T1‖‖f‖,

for every f ∈ H∞(BN ). Moreover, ‖T‖ = ‖T1‖.
We claim that the restriction of T1 to UA(BN ) is τ0-uniformly continuous.

Indeed, given ε > 0 there are a compact subset K of BN and δ > 0 such that
|T1(g)| < ε if g ∈ UA(BN ) and supz∈K |g(z)| < δ. Hence, if g, h ∈ UA(BN ) and
supz∈K |g(z) − h(z)| < δ, then

|T1(g) − T1(h))| = |2T1(
g − h

2
)| < 2ε.

Since UA(BN ) is τ0-dense in UH∞(BN ), there exists a unique T̃1 : UH∞(BN )

−→ C that is τ0-continuous and such that

T̃1(g) = T1(g),

for all g ∈ UA(BN ). Given f ∈ UH∞(BN ), then (fr) ⊂ UA(BN ), and (fr) con-
verges to f in τ0 as r → 1−. Thus

T̃1(fr) → T̃1(f),

in C. But T̃1(fr) = T1(fr) for each r ∈ [0, 1[ and T1(fr) converges to T (f) by
definition. This implies T̃1(f) = T (f) for each f ∈ UH∞(BN ). We have obtained
that the restriction of T to UH∞(BN ) is τ0 continuous. This, by definition,
implies that T belongs to G∞(BN ).

(2) If T ∈ G∞(BN ), the restriction of T to UH∞(BN ) is τ0 continuous. If we
define T1 : A(BN ) −→ C, by T1(g) := T (g), then T1 is continuous for the
sup-norm, ‖T1‖ ≤ ‖T‖ and T1 is τ0-continuous on UA(BN ). By (1), we
have

|T (f)| = lim
r→1−

|T (fr)| = lim
r→1−

|T1(fr)| ≤ ‖T1‖ sup
r<1

‖fr‖ = ‖T1‖‖f‖,
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for every f ∈ H∞(BN ). Thus, ‖T1‖ = ‖T‖. We can consider T1 :
A(SN ) −→ C. By the Riesz theorem, there is a complex Borel measure
μ on SN such that

T1(h) :=
∫

Sn

h(w)dμ(w),

for every h ∈ A(BN ) with ‖T1‖ = |μ|(SN ) = ‖μ‖.

The properties of T1 imply that μ is a Henkin measure. �

Now we give the proof of Theorem 8:

Proof. Assume that f ∈ A(BN ), ‖f‖ = 1 and that E(f) is not a peak set. By
[15, 10.1.1] there exists a Borel measure ρ, such that ρ(E(f)) �= 0 such that

h(0) =
∫

SN

h(w)dρ(w), (2)

for every h ∈ A(BN ).
Define

g(z) =

{
0 if z ∈ SN \ E(f)

f(z)
|ρ|(E(f)) if z ∈ E(f) .

Since g is bounded and measurable, g ∈ L1(|ρ|). Hence, the measure g|ρ|
defined by g|ρ|(M) =

∫
M

gd|ρ| for Borel measurable sets M is absolutely con-
tinuous with respect to ρ. The measure ρ is Henkin (this fact is a direct con-
sequence of (2) and the definition of Henkin measure as given in [15, p. 187]),
and so g|ρ| is also a Henkin measure by [15, 9.3.1]. We set T1 : A(BN ) −→ C.

T1(h) =
∫

SN

h(w)g(w)d|ρ|(w).

We have

T1(f) =
∫

SN

f(w)g(w)d|ρ|(w) = 1,

and

|T1(h)| ≤
∫

SN

|h(w)||g(w)|d|ρ|(w) ≤ |ρ|(E(f))
|ρ|(E(f))

= 1,

for every h ∈ A(BN ) with ‖h‖ ≤ 1, and we have g|ρ| a Henkin measure such
that

T1(f) = 1 and ‖T1‖ = 1.

By Lemma 9.(1), there is T ∈ G∞(BN ) with ‖T‖ = ‖T1‖ = 1 such that

T (h) = T1(h),

for every h ∈ A(BN ).
In particular, T (f) = 1 and f attains its norm on G∞(BN ).



Vol. 79 (2024) Norm Attaining Elements of the Ball Algebra Page 13 of 20 82

Suppose now that f ∈ A(BN ), ‖f‖ = 1, satisfies that E(f) is a peak set
and that there is T ∈ G∞(BN ), ‖T‖ = 1 with T (f) = 1. To get a contradic-
tion we are going to give an argument that follows closely the one given in
Proposition 7:

By Lemma 9.(2) there exists μ a Henkin measure such that

T (h) =
∫

SN

h(w)dμ(w),

for every h ∈ A(BN ) and

‖T‖ = ‖T∣∣A(BN )
‖ = |μ|(SN ) = 1.

By [15, 9.3.1] |μ| is also a Henkin measure. Hence, by [15, Lemma 11.3.3] (see
also [15, Lemma 11.3.1]), |μ|(E(f)) = 0. Let

Kn =
{

w ∈ SN : |f(w)| <
n − 1

n

}
.

Clearly SN \ E(f) = ∪∞
n=1Kn.

We have that, for each n,

|μ|(SN \ Kn) + |μ|(Kn) = |μ|(SN ) = 1 = T (f) =
∫

SN

|f(w)|d|μ|(w)

=
∫

SN\Kn

|f(w)|d|μ|(w) +
∫

Kn

|f(w)|d|μ|(w)

≤
∫

SN\Kn

d|μ|(w) +
n − 1

n

∫
Kn

d|μ|(w)

= |μ|(SN \ Kn) +
n − 1

n
|μ|(Kn).

This implies |μ|(Kn) = 0 for each n and |μ|(SN\E(f)) = 0.
Therefore, 1 = |μ|(SN ) = |μ|(SN \ E(f)) + |μ|(E(f)) = 0, a

contradiction. �

3. The Case of the Polydisc

For a fixed N ∈ N, the N -dimensional Poisson kernel [14, p. 17] PN : DN ×
T

N → (0,∞) is defined as

PN (z, w) :=
N∏

j=1

P1(zj , wj) =
N∏

j=1

1 − |zj |2
|1 − zjwj |2 .

It is well known ( [14, Theorem 3.3.3, p.45]) that if f ∈ H∞(DN ) then the
limit

f∗(w) = lim
r→1−

f(rw)
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exists almost everywhere in T
N , and

f(z) =
∫
TN

PN (z, w)f∗(w)dmN (w) (3)

for all z ∈ D
N . As a consequence there exists an isometric isomorphism

H∞(DN ) −→ H∞(TN )
f −→ f∗

where H∞(TN ) := A(TN )
w(L∞(TN ),L1(T

N ))
,

A(DN ) = {f : D
N → C : f is continuous on D

N
and holomorphic on D

N}
and

A(TN ) := {f|TN : f ∈ A(DN )}.

By the maximum modulus theorem A(DN ) and A(TN ) are isometrically iso-
morphic. By Fejer’s theory for the polydisc we have

H∞(TN ) :=

{
g ∈ L∞(T) : ĝ(α)

=
∫
TN

w−αg(w)dmN (w) = 0, for all α ∈ Z
N \ N

N
0

}
.

On the other hand, by applying Lemma 4,

H∞(TN ) 1= (L1(TN )/H1
0 (TN )

)∗
,

where

H1
0 (TN ) =

{
f ∈ L1(TN ) : f̂(−β) =

∫
T

f(w)wβdmN (w) = 0, for all β ∈ N
N
0

}

= span{w−α : for all α ∈ ZN \ N
N
0 }.

Very similar arguments to the ones given for the N -dimensional Euclidean
ball can be given for the N -polydisc to obtain the following results.

Theorem 10. For every N ∈ N we have

L1(TN )/H1
0 (TN ) 1= G∞(DN ).

Proposition 11. Let f be an element of H∞(DN ) of norm one such that the
set

E := {w ∈ T
N : |f∗(w)| = 1},

has positive Lebesgue measure (in T
N ). Then f attains its norm as an element

of the dual of L1(TN )/H1
0 (TN ).
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Proposition 12. If f is an element of H∞(DN ) of norm one such that there
exists ϕ ∈ L1(TN ) with ‖ϕ‖1 = 1 and T[ϕ](f) = 1, then the set

{w ∈ T
N : |f∗(w)| = 1},

has positive Lebesgue measure in the polytorus T
N .

Example 13. The following example, which is inspired by [3, Theorem 3.1],
shows that a polydisc (for N > 1) version of Theorem 8 does not hold. Let
f : D × D → C be the function f(z, w) := (1/2)(1 + z), which belongs to
A(D×D). This function does not attain its norm on G∞(D×D). Indeed, if it
did, the function g(z) = (1/2)(1 + z), as an element of H∞(D), would attain
its norm on G∞(D), because H∞(D) is canonically isometrically contained
in H∞(D × D). But the function g does not attain its norm on G∞(D) by
Fisher’s Theorem 2, because {z ∈ T | |g(z)| = 1} = {1}. On the other hand,
E(f) = {(z, w) ∈ T × T | |f(z, w)| = 1} = {1} × T, as it is easy to check.
The set E(f) is not a peak set of A(D×D). Otherwise, it would be a zero set;
see [14, 6.1.2. Theorem, p.132]. But if a function h ∈ A(D × D) vanishes on
E(f), then h(1, w) ∈ A(D) vanishes on T. The maximum principle then implies
that h vanishes on {1} × D, and therefore, there is no function h ∈ A(D × D)
vanishing only in E(f). Observe that E(f) is a null set in T × T which is not
a peak set.

4. The Case of the Space of Dirichelt Series D∞(C+)

Let D∞(C+) denote the Banach space of the Dirichlet series D(s) =
∑∞

n=1
an

ns

convergent and bounded on the right half plane C+ endowed with the supre-
mum norm. We refer the reader to [4] and [13] for detailed information about
this space.

The space D∞(C+) is a closed subspace of the Banach space H∞(C+) of
all bounded holomorphic functions in the right half plane C+ endowed with
the supremum norm. Since, by the Montel theorem, the closed unit ball of
H∞(C+) is τ0-compact, we can apply the Dixmier-Ng theorem [12] to obtain
that

G∞(C+) :={R ∈ H∞(C+)∗ : the restriction of R to UH∞(C+) is τ0 continuous},

is a predual of H∞(C+).
It is well-known that the spaces H∞(C+) and H∞(D) are isometrically

isomorphic. We are going to show that their preduals are also isometrically
isomorphic.

Proposition 14. H∞(C+) is isometrically isomorphic to H∞(D), and G∞(C+)
is isometrically isomorphic to G∞(D).
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Proof. It is enough to consider the Cayley transformation ϕ : C \ {1} →
C \ {−1} defined by

ϕ(z) =
1 + z

1 − z

The Cayley transformation is a biholomorphic mapping with inverse

ϕ−1(s) =
s − 1
s + 1

.

Actually it is also biholomorphic from D onto C+, and it is a homeomor-
phism from T \ {1} onto {ti : t ∈ R}. Clearly the composition operator
Tϕ : H∞(C+) → H∞(D) defined by

Tϕ(g) = g ◦ ϕ,

for g ∈ H∞(C+) is an isometry with inverse (Tϕ)−1 = Tϕ−1 . Its adjoint T ∗
ϕ :

H∞(D)∗ → H∞(C+)∗ is also an isometric isomorphism with

(T ∗
ϕ)−1 = T ∗

ϕ−1 .

It is enough to check that T ∗
ϕ(G∞(D)) = G∞(C+) to prove that G∞(D) and

G∞(C+) are isometrically isomorphic.
Let R ∈ G∞(D). We have

T ∗
ϕ(R)(g) = R(Tϕ(g)) = R(g ◦ ϕ)

for all g ∈ H∞(C+). Let K ⊂ D be a compact set. The set ϕ(K) is a compact
subset of C+. Take (gn) and g in the closed unit ball of H∞(C+) such that
(gn) converges with respect to the compact open topology on C+ to g. Since
(gn) converges to g uniformly on ϕ(K), we have (gn ◦ ϕ) converges to g ◦ ϕ
uniformly on K = ϕ−1(ϕ(K)), for every K. Thus, (gn ◦ ϕ) converges to g ◦ ϕ
with respect to the compact open topology on D. Hence, (R(gn ◦ϕ)) converges
to R(g ◦ ϕ) and we get

T ∗
ϕ(R) ∈ G∞(C+).

Analogously we obtain T ∗
ϕ−1(G∞(C+)) ⊂ G∞(D), from which it follows that

G∞(C+) = T ∗
ϕ ◦ T ∗

ϕ−1(G∞(C+)) ⊂ T ∗
ϕ(G∞(D)).

�

Remark 15. Recall that for any fixed α > 1 and w ∈ T the Stolz region is
S(α,w) = {z ∈ D : |z − w| < α(|1 − |z|)} ( [9, Definition 8.1.9. ]). Since w is
an accumulation point of S(α,w) it makes sense to speak about the limit at w
of any function f : S(α,w) → C. Actually, in [9, Theorem 8.1.11], it is proved
that if f ∈ H∞(D) the following equality holds on T

f∗(w) = lim
z∈S(α,w)→w

f(z),

almost everywhere with respect to the Lebesgue measure.
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In [4, p. 286 and 287] it is observed that if g ∈ H∞(C+), then there exists
a Lebesgue null set A ⊂ R such that the limit

lim
r→0+

g(r + it) := g∗(it)

exists for every t ∈ R \ A and actually that

g∗(it) = lim
z∈S(α,ϕ−1(it))→ϕ−1(it)

Tϕ(g)(z).

In other words, the “horizontal” limits of g exist a.e. and coincide with the
Fatou radial limits of its associated function Tϕ(g) belonging to H∞(D).

We can now get the following consequence of Ando’s Theorem [1] and
Fisher’s Theorem 2.

Corollary 16. The space H∞(C+) has a unique predual. Moreover,
g ∈ H∞(C+) with ‖g‖C+ = 1 is norm attaining if and only if the set

E := {t ∈ R : |g∗(it)| = 1}
has positive (including +∞) Lebesgue measure.

Proposition 17. D∞(C+) is a dual space.

Proof. By a result of F. Bayart (see e.g. [4, Theorem 3.11]), it is known that if
(Dn) is a bounded sequence in D∞(C+) then there exists a subsequence (Dnk

)
and a Dirichlet series D ∈ D∞(C+) such that for every σ > 0 the sequence
(Dnk

) converges to D uniformly on Cσ := {s ∈ C ; Res ≥ σ}. Thus, if we
denote by τ+ the topology of uniform convergence on these half planes Cσ,
Bayart’s result says that the closed unit ball of D∞(C+) is a compact set.
Now the Dixmier-Ng theorem [12] implies that

G∞(C+) := {R ∈ D∞(C+)∗ : the restriction of R to UD∞(C+) is τ+ continuous}, (4)

endowed with the topology induced by D∞(C+)∗ is a predual of D∞(C+).
�

We can now get a positive result about norm attaining elements of
D∞(C+) with respect to that predual.

Proposition 18. Consider the space D∞(C+) as the dual of G∞(C+). Given
D ∈ D∞(C+) of norm one, if the set

E := {t ∈ R : |D∗(it)| = 1}
has positive (including +∞) Lebesgue measure, then D is norm attaining.

Proof. As D∞(C+) is a closed subspace of H∞(C+), we can consider D ∈
H∞(C+). By Corollary 16, we know that there exists R ∈ G∞(C+) such that

‖R‖ = 1 = R(D).
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Recall that R ∈ H∞(C+)∗ and satisfies that the restriction of R to UH∞(C+)

is τ0 continuous. We denote by S the restriction of R to D∞(C+). Since
UD∞(C+) ⊂ UH∞(C+) we have that S is τ0 continuous when restricted to
UD∞(C+). The theorem of Bayart [4, Theorem 3.11] implies that UD∞(C+) is
a compact set with respect to τ+. The compact open topology τ0 on C+ is
Hausdorff and weaker than τ+ on that ball. Hence both topologies coincide on
UD∞(C+) and S ∈ G∞(C+). Moreover

1 = ‖R‖ ≥ ‖S‖ ≥ |S(D)| = S(D) = R(D) = 1,

and D attains its norm. �
It is natural to ask whether the converse of Proposition 18 holds. Actually,

by the Hahn-Banach theorem one can extend R in G∞(C+) to an element T
belonging to H∞(C+)∗ with the same norm. But we don’t know if it is possible
to choose an extension T in G∞(C+).
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