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Introduction

Poisson algebras arose from the study of Poisson geometry in the 1970s and
have appeared in an extremely wide range of areas in mathematics and physics,
such as Poisson manifolds, algebraic geometry, operads, quantization theory,
quantum groups, and classical and quantum mechanics. The study of Poisson
algebras also led to other algebraic structures, such as noncommutative Pois-
son algebras [80], generic Poisson algebras [39,41], Poisson bialgebras [50,66],
algebras of Jordan brackets and generalized Poisson algebras [8,9,27,30,61,90],
Gerstenhaber algebras [46], F-manifold algebras [12], Novikov-Poisson algebras
[81], quasi-Poisson algebras [7], double Poisson algebras [75], Poisson n-Lie al-
gebras [10], etc. The study of all possible Poisson structures with a certain Lie
or associative part is an important problem in the theory of Poisson algebras
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[1,31,83]. Recently, a dual notion of the Poisson algebra (transposed Poisson
algebra), by exchanging the roles of the two binary operations in the Leibniz
rule defining the Poisson algebra, has been introduced in the paper [4] of Bai,
Bai, Guo, and Wu. They have shown that the transposed Poisson algebra de-
fined in this way not only shares common properties with the Poisson algebra,
including the closure undertaking tensor products and the Koszul self-duality
as an operad but also admits a rich class of identities. More significantly, a
transposed Poisson algebra naturally arises from a Novikov-Poisson algebra
by taking the commutator Lie algebra of the Novikov algebra. Consequently,
the classic construction of a Poisson algebra from a commutative associative
algebra with a pair of commuting derivations has a similar construction to a
transposed Poisson algebra when there is one derivation. More broadly, the
transposed Poisson algebra also captures the algebraic structures when the
commutator is taken in pre-Lie Poisson algebras and to other Poisson-type
algebras. The Hom- and BiHom-versions of transposed Poisson algebras are
considered in [47,53]. A bialgebra theory for transposed Poisson algebras is
studied in [49]. Some new examples of transposed Poisson algebras are con-
structed by applying the Kantor product of multiplications on the same vector
space [17]. More recently, in a paper by Ferreira, Kaygorodov and Lopatkin, a
relation between %—derivations of Lie algebras and transposed Poisson algebras
has been established [20]. These ideas were used for describing all transposed
Poisson structures on the Witt algebra [20], the Virasoro algebra [20], the al-
gebra W(a, b) [20], the thin Lie algebra [20], the twisted Heisenberg-Virasoro
algebra [84], the Schrodinger-Virasoro algebra [84], the extended Schrodinger-
Virasoro algebra [84], the 3-dimensional Heisenberg Lie algebra [84], Block Lie
algebras and superalgebras [32], Witt type algebras [33], generalized Witt Lie
algebras [34], Lie algebra of upper triangular matrices [35], Lie incidence alge-
bras [36], Schrodinger algebra in (n+1)-dimensional space-time [82], and so on.
The complete algebraic and geometric classification of complex 3-dimensional
transposed Poisson algebras is given in [6].

The structure of the present article is as follows. In Sect. 1, we discuss
some definitions and previous results, give some effective methods for describ-
ing transposed Poisson structures on fixed Lie algebras and apply these meth-
ods to some special types of Lie algebras. In Sect. 2, we establish many relations
between transposed Poisson algebras and other well-known structures, such as
generalized Poisson algebras, Gelfand-Dorfman algebras, F-manifold algebras,
algebras of Jordan brackets, fields of fractions, Poisson n-Lie algebras, etc. In
Sect. 3, we give a list of open questions for future research.

1. Transposed Poisson Algebras and Structures

Although all algebras and vector spaces are considered over the complex field,
many results can be similarly proven for other fields. The definition of trans-
posed Poisson algebra was given in a paper by Bai, Bai, Guo, and Wu [4].
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The concept of %—derivation as a particular case of the notion of d-derivation
was presented in a paper due to Filippov [21] (see also [29,89] and references
therein).

Definition 1 (see [4]). Let £ be a vector space equipped with two nonzero
bilinear operations - and [-,-]. The triple (£, -, [-,+]) is called a transposed Pois-
son algebra if (£,-) is a commutative associative algebra and (£, [-,]) is a Lie
algebra that satisfies the following compatibility condition

2z vyl =z 2 y] + 2,2y

Definition 2. Let (£,[-,:]) be a Lie algebra. A transposed Poisson (algebra)
structure on (£,[,]) is a commutative associative operation - on £ which
makes (£, -, [,]) a transposed Poisson algebra. A transposed Poisson structure
-on £ is called trivial, if x -y = 0 for all z,y € £.

Definition 3. Let (£, [-,-]) be an algebra with a multiplication [, -]. Let ¢ be a
linear map, and let ¢ be a bilinear map. Then ¢ is a %—derivation if it satisfies

olz,y] = 5 ([e(x), y] + [z, 0(y)]);

¢isa %—biderivation if it satisfies

1
o([z,y], 2) = 5 ([0(2,2), 4] + [, 0y, 2)]),
1
Summarizing Definitions 1 and 3, we have the following key Lemma.

Lemma 4. Let (£,-,[,]) be a transposed Poisson algebra, and let z be an ar-
bitrary element from £. Then the right multiplication R, in the commutative
associative algebra (£,-) gives a 5-derivation of the Lie algebra (£,[-,-]), and
the bilinear map - gives a %-biderivation of (£,[-,]).

The main example of %—derivations is the multiplication by an element
from the ground field. Let us call trivial %-derivations to such %—derivations.
As a consequence of the following theorem, we are not interested in trivial
%—derivations.

Theorem 5 (see [20]). Let £ be a Lie algebra without non-trivial % -derivations.
Then every transposed Poisson structure defined on £ is trivial.

1.1. Unital Transposed Poisson Algebras

The present subsection gives a way to relate unital transposed Poisson algebras
to generalized Poisson algebras, algebras of Jordan brackets, and quasi-Poisson
algebras (see Sect. 2). Some theorems known for these types of algebras can
afford interesting results and conjectures for the theory of transposed Poisson
algebras.
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Theorem 6 (see, [4]). Let (A, [-,-]) be a complex transposed Poisson algebra.
Let (A,-) be a unital associative (not necessarily commutative) algebra. Then
there is a derivation ® on (A,-) such that

[2,y] =D(x) -y — - D(y). (1)

In fact, each complex finite-dimensional semisimple commutative asso-
ciative algebra is a direct sum of one-dimensional ideals. On the other hand, it
is known that all derivations of this algebra are trivial and it is unital. Hence,
all transposed Poisson structures on a complex finite-dimensional semisimple
commutative associative algebra (A, -) are trivial.

1.2. Transposed Poisson Structures on Nilpotent n-Lie Algebras
Let us recall the definition of transposed Poisson structures on n-Lie algebras.
Definition 7. Let £ be a vector space equipped with an anticommutative n-

linear operation [-,...,-]. Then (£, [-,...,]) is called an n-Lie algebra if

n

[[‘Tla"'axn]ay%"'vyn} :Z[xla'-'7[xiay27"'ayn]a"'7xn]'
=1

Definition 8 (see, [4]). Let £ be a vector space equipped with two nonzero

operations — a bilinear operation - and an n-linear operation [-...,:]. The
triple (£,+,[-,...,"]) is called a transposed Poisson n-Lie algebra if (£,-) is
a commutative associative algebra and (£,[-,...,"]) is an n-Lie algebra that
satisfies the following compatibility condition
1 n
Z»[l’h...,l‘"}:52[1}17...,Z~Ii,...,$n}. (2)
1=

Theorem 9. Let £ be a nilpotent k-dimensional n-Lie algebra (n < k). Then
£ admits a non-trivial transposed Poisson n-Lie structure.

Proof. In fact, choose the basis {ej,ea,...,ex} of £ in the following way:
e1,€2,...,6, € L\L£2 and e, € Ann(L). It is easy to see that the linear map-
ping o given by p(e1) = ¢(es) = ... = ¢(e,) = ey is a %—derivation of £. Then
the commutative associative multiplication - given by e;-e; = e (1 < ,j7 < n)
gives a non-trivial structure of transposed Poisson n-Lie algebra. O

1.3. Transposed Poisson Structures and Quasi-Automorphisms
Let us recall the definition of quasi-automorphisms on Lie algebras.
Definition 10. Let (£, [-,]) be a Lie algebra, and let ¢ be a linear map. Then ¢
is a quasi-automorphism on (£, [+, -]) if there exist another linear map ¢, such
that

[o(2),0(y)] = o[z, y].

Thanks to [4, Proposition 2.9], each transposed Poisson structure
(£,,[,]) introduces a quasi-automorphism ¢ on (£, [-,]), such that
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o2 [z, y] = [on(x), on(y)], where @, (z) = h - for a fixed element h.

Automorphisms and scalar multiplication maps are trivial quasi-
automorphisms. Hence, we have the following statement.

Proposition 11. If a Lie algebra (£,[-,]) does not admit non-trivial quasi-
automorphisms, then (£,[-,]) does not admit non-trivial transposed Poisson
structures.

Zhou, Feng, Kong, Wang, and Chen gave the classification of quasi-
automorphisms of Borel and parabolic subalgebras of a complex finite-
dimensional simple Lie algebra of rank [. Namely, they proved that in the case
I > 1, each quasi-automorphism is trivial [77,88]. Summarizing with Proposi-
tion 11, we have the following statement.

Lemma 12. Let £ be a complex finite-dimensional simple Lie algebra of rank
Il >1, and let p be an arbitrary Borel or parabolic subalgebra of £. Then p does
not admit non-trivial transposed Poisson structures.

1.4. Transposed Poisson Structures and Hom-Lie Algebra Structures

Let us recall the definition of Hom-structures on Lie algebras.

Definition 13. Let (£, [, ]) be a Lie algebra, and let ¢ be a linear map. Then
(£,[,],¢) is a Hom-Lie structure on (£, [-,]) if

[p(2), ly, 2]] + [p(y), [z, 2]] + [0 (2), [z, y]] = 0.

Let us give some special cases of Hom-Lie structures.
o (£,[],¢) is a trivial Hom-Lie structure on (£, [-,]) if ¢ = C - id.
o (£,[,],¢) is a central Hom-Lie structure on (£, [-,-]) if ¢(£) C Z(£).
o (£[-,],¢) is a c-trivial Hom-Lie structure on (£, [, ]) if ¢ is a linear
combination of trivial and central Hom-Lie structures.
Thanks to [4, Proposition 2.9], each transposed Poisson structure
(£, [,]) introduces a Hom-Lie structure ¢p, on (£,[,]), such that ¢p(z) =
h - x for a fixed element h. Hence, we have the following statement.

Proposition 14. If a Lie algebra (£,[-,]) does not admit non-trivial Hom-Lie
structures, then (£,[-,-]) does not admit non-trivial transposed Poisson struc-
tures.

The subsequent list of algebras gives algebras without non-trivial Hom—
Lie structures (known until now):

1. complex finite-dimensional simple Lie algebras (dim # 3) and superalge-
bras [25,78,85];

2. infinite-dimensional Lie superalgebras of vector fields [70,86];

3. infinite-dimensional Cartan algebras W(n > 1), S(n), H(2r), K(2r + 1)
[79].
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Hence, using Proposition 14, we have the following statement.

Lemma 15. Complez finite-dimensional simple Lie algebras (dim # 3) and su-
peralgebras, infinite-dimensional Lie superalgebras of vector fields, and infinite-
dimensional Cartan algebras W(n > 1), S(n), H(2r), K(2r +1) do not admit
non-trivial transposed Poisson structures.

Let us give one more useful trivial observation.

Proposition 16. If a Lie algebra (£,[,-]) with one-dimensional center Z(£)
admits only c-trivial Hom-Lie structures, then (£,[-,-]) does not admit non-
trivial transposed Poisson structures.

By [59], all Hom-Lie structures on affine Kac-Moody algebras are c-
trivial. Hence, summarizing Proposition 16 and results from [59], we have the
following statement.

Lemma 17. Complez affine Kac-Moody algebras do not admit non-trivial trans-
posed Poisson structures.

1.5. Transposed Poisson Structures on Simple Graded Lie Algebras of Finite
Growth

Let us recall the definition of a complex simple graded Lie algebra of finite
growth. A complex graded Lie algebra is a Lie algebra £ endowed with a
decomposition £ = @ £;, such that [£;,£;] C L4, for every 4,5 € Z. We
always assume that every homogeneous component £; is of finite dimension.
A graded Lie algebra £ is called simple graded if £ is not abelian and does not
contain any non-trivial graded ideal. We say that £ is of finite growth if the
function n — dim £,, is bounded by some polynomial. In [62], Mathieu proved
the following theorem, which was conjectured by Kac.

Theorem 18. Let £ be a graded simple Lie algebra of finite growth. Then £ is
isomorphic to one of the following Lie algebras:

1. a finite-dimensional simple Lie algebra;
2. a loop algebra;

3. a Cartan algebra;

4. the Witt algebra W.

Xie and Liu described all Hom—Lie structures on simple graded Lie alge-
bras of finite growth [79]. Summarizing results in [62] and [79], it is possible
to prove the following theorem.

Theorem 19. Let £ be a complex graded simple Lie algebra of finite growth. If
£ admits a non-trivial Transposed Poisson structure, then it is isomorphic to
one of the following Lie algebras:

1. the Witt algebra W, or
2. the Cartan algebra W(1).
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Proof. In fact, thanks to [79], we know that only a loop algebra, the Witt
algebra W and the Cartan algebra W(1) have non-trivial Hom-Lie structures.

o It is easy to see (from the description of Hom-Lie structures), that a loop
algebra does not admit non-trivial Transposed Poisson structures.

e All non-trivial transposed Poisson structures on the Witt algebra are
described in [20, Theorem 20].

e The Cartan algebra W(1) admits the following multiplication table

[ei,ej] = (Z _j)€i+j7 i,j Z —1.
Using the same idea that was used for the description of transposed Pois-
son structures on the Witt algebra [20, Theorem 20], we have that each

transposed Poisson structure on W(1) is given by the following additional
multiplication

€i € = E QtCitj+t,
>0

for a finite set {a;}. On the other hand, each finite set {c;} provides a
structure of transposed Poisson algebra by the given way.

O

Remark 20. Let us note that the Cartan algebra W(1) gives an example of a
simple Lie algebra that admits only non-unital transposed Poisson structures.

2. Relations with Other Algebras

2.1. Quasi-Poisson Algebras
Recently, Billig defined quasi-Poisson algebras [7]. Namely,

Definition 21 (see [7]). Let (A, ) be a unital commutative associative algebra
and (A,{:,-}) be a Lie algebra. (A,-,{-,-}) with a derivation © of (A,-) is
called a quasi-Poisson algebra if

a-(D({b,c}) +{b.c}) = {a- (D(b) +b),c} +{b,a- (D(c) +¢)} +{a, b} (D(c) +¢)
— (@) +b) -{a,c}.

The main example of quasi-Poisson algebras is given by relation (1) [7,
Lemma 6.3].

Corollary 22. Let (A, [,-]) be a unital transposed Poisson algebra. Then
(A,-,[-,]) is a quasi-Poisson algebra with the derivation © obtained by the
method from Theorem 6.
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2.2. Generalized Poisson Algebras and Algebras of Jordan Brackets

Let us now recall the definition of generalized Poisson bracket and Jordan
brackets [8,30].

Definition 23. Let (A,-) be a unital commutative associative algebra.

e An anticommutative product {-,-} : A ® A — A is called a generalized
Poisson bracket (it is also known as the contact bracket [90]) if (A, {-,-})
is a Lie algebra and

{w,y -2y =A{z,y} -2 +y {z,2} —{z,1} -y -2
e An anticommutative product {-,-} : A ® A — A is called a Jordan
bracket (see, [30]) if
{Jf,yZ} = {x,y}z—l—y{m,z}—{x,l}yz,
{z.{y, 21} +{v. {7 2} + {2 {z, y}}
The main example of generalized Poisson brackets and Jordan brackets
is given by relation (1). Hence, we have the following corollary.

Corollary 24. Let (A,-,[,-]) be a unital transposed Poisson algebra. Then
(A, [,]) is a generalized Poisson algebra and an algebra of Jordan brack-
ets.

Martinez, Shestakov, and Zelmanov have shown that all Jordan brackets
are embeddable into Poisson brackets [61]. In this sense, summarizing Corollary
24 and results in [61], we have the following statement.

Corollary 25. Unital transposed Poisson brackets are embeddable into Poisson
brackets.

2.3. Algebras of Jordan Brackets
Let (A,-) be a commutative associative algebra, and let (A, {-,-}) be an an-
ticommutative algebra. (A,-,{-,-}) is called an algebra of Jordan brackets if
the Kantor double of (A, -, {-,-}) is a Jordan superalgebra [27]. If (A, -) is not
a unital algebra, then the conditions of Jordan brackets are equivalent to (see
[28]):
= {%y} : {th} + {yat} ’ {Z,(E} + {t,l’} ’ {Zvy}a
{y-tzp-w+{r,z}by-t={t -z} y+{yz} -t
{t- v,y -z} +{t-yz-z}+{z-y -2t} ={t-y,z} - a+{t-z,z}-y
+x-y-{z,t}.

It is easy to see (for instance, using the identities from [4, Theorem 2.5])

that each transposed Poisson algebra is an algebra of Jordan brackets (see also
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[18]). Let us recall that Poisson algebras have the same property. Hence, the va-
riety of algebras of Jordan brackets is the first “interesting” (i.e., well-known)
variety of algebras which includes all Poisson and all transposed Poisson alge-
bras.

Corollary 26. The Kantor double of a transposed Poisson algebra is a Jordan
superalgebra.

2.4. Gelfand-Dorfman Algebras (GD-algebras) and F-Manifold Algebras

Definition 27. A vector space A with a bilinear product - is called a Novikov
algebra if

(@-y)z-z-(y-2)=(y-2)-2-y- (x-2),
(x-y)-z=(z-2)-y.

Definition 28. Let (A, -) be a Novikov algebra, and let (A, [-,+]) be a Lie alge-
bra. (A, [,]) is called a Gelfand-Dorfmann algebra if

[vy-2] = lzy-al+ly, 2] -2 = [y, 2] e —y - [, 2] = 0.

Definition 29. Let (A, -) be a commutative associative algebra, and let (A, [, -])
be a Lie algebra. (A, -, [-,-]) is called an F-manifold algebra if

2y, z-tl =[xy, 2] - t+[w-y ]l 2+a-ly, 2t +y-[z,2-t] -
(x-z-[ytl+y -z [z, t]+y-t-[z,z]+z -t [y,2]).

Recently, Sartayev proved that the variety of transposed Poisson algebras
coincides with the variety of commutative GD-algebras (i.e., - is commutative)
and each commutative GD-algebra is an F-manifold algebra [68]. Let us note
that each Poisson algebra is also an F-manifold algebra. Hence, the variety of
F-manifold algebras gives the second “interesting” variety of algebras which
includes all Poisson and all transposed Poisson algebras.

2.5. Transposed Poisson PI Algebras

The celebrated Amitsur-Levitsky theorem states that the algebra Maty (R) of
k x k matrices over a commutative ring R satisfies the identity s = 0, where
sk is the standard polynomial:

Sm(xh ) Im) - ZS (71)0‘%0(1) <o Lo(m)-
TES,

Furthermore, every associative PI algebra satisfies (sx)! = 0 by Amitsur’s
theorem. Farkas defined customary polynomials
9= ES: ca’{xa(l)»xa@)} e {xa(%—l)uxo(%)}
TES,

and proved that every Poisson PI algebra satisfies some customary identity
[16]. Farkas’ theorem was established for generic Poisson algebras in [41].
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Kaygorodov found an analog of customary identities for unital generalized
Poisson algebras and unital algebras of Jordan brackets in [30]:

[m/2]
g= Z Z Co‘,i<$a(1)1 wa(2)>'- ce <$a(2171), wa(zi)>' ©($o(2i+1))'- ot Q(Io(m)), (3)

i=0 o€S,,
where (z,y) := {z,y}—(D(2)-y—2-D(y)) and D is the related derivation, i.e.,
D(x) ={z,1}.

Theorem 30 (Theorem 13, [30]). If a unital generalized Poisson algebra A sat-
isfies a polynomial identity, then A satisfies a polynomial identity g of type (3).

Consequently, we obtain the following statement.

Theorem 31. 'If a unital transposed Poisson algebra A satisfies a polynomial
identity, then A satisfies polynomial identities g and § of the following types

g(xlv oo 7xm) = Z CU@(mo’(l)) et g(xo(m))a

o€S,,

where ® is a derivation, or

f(z1,.. . 23m) = Z Co szl ([%(i) * Tt 2k—1, Tt 2k

O'ESm

+ [To@) - T2k, $m+2kﬂ> .

Proof. In fact, in our case, (z,y) = 0 and the identity (3) gives the identity g
from our statement. Now multiply the identity (3) by Hizm 41 7; and apply the
following relation, which is a consequence of the transposed Poisson identity
and the generalized Poisson identity,

@(m)~y-z:—%([m-y,z]—k[mw,y]).

Hence, the identity g gives the identity f. O

L An analog of the present theorem was proven in [13]. Namely, the authors proved that if a
unital transposed Poisson algebra satisfies a [, -]-free polynomial identity (depending only on
the multiplication -), then this algebra satisfies an identity of the type ® (z1)-...-®(zm) = 0.
The present results motivate the following interesting question. Open question. Let A be
a commutative associative algebra with a derivation ® satisfying a derivation polynomial
identity (i.e., a functional identity with the derivation ©). Is there a special type of identities
for A?
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2.6. Transposed Poisson Fields
Denote by Q(3) the field of fractions of a commutative associative algebra 3.
The Poisson bracket {-,-} on P can be extended (see, for example, [26,54,58])
to a Poisson bracket on Q() and
a ¢y _ AHa,c}-b-d—{a,d}-b-c—{bc}-a-d+{bd}-a-c

{ b’ d} N b? - d? '

Our aim in the present subsection is to define a similar notion to that of
the transposed Poisson case.

Theorem 32. Let (£,-,[,-]) be a unital transposed Poisson algebra. Then
(Q(£)7 o, II'? ]])a where

a ¢ a-c a cy _la,bl-c-d—a-b-[cd

bod dﬂ@’&ﬂ_ b2 - d2

b%d " b.d™"
s a transposed Poisson field.

Proof. In fact, it is easy to see that e is a commutative associative multipli-
cation and [-,-] is anticommutative. Hence, we should check only two identi-
ties to complete the proof (for simplification of our proof the multiplication-
will be omitted). Thanks to theorem 6, our bracket [z,y] can be written as
[z,y] = D(x)y — 2D (y) for a derivation ©. Hence,

a c e 1 a c e ca e
s le sl -2 (Geas] - [5e7])

[c,d|aef — acdle, f]  |ac,bd]ef — acbd[e, f] + [, d]aebf — cd[ac, bf]

bd2 f2 26242 f2
= (2v%d? %) ! <2ab©(c)de f —2abeD(d)ef — 2abed®D(e) f + 2abedeD(f)
—(D(a)bedef + abD(c)def — aD(b)cdef — abcD(d)ef)
+(abed®(e) f — abede®D(f)) — (abD(c)def — abc®(d)ef)
+(®(a)bedef + abD(c)def — aD(b)edef — abcde@(f))) =0.

Now we should check the Jacobi identity. For a function f(z1, z2, y1, Y2, 21, 22),
we denote

f($17332,y179272172’2) +f(y1792a21722a3317332) +f(2'1a7527$17$2ay1792)

as O f(x1, 22,1, Y2, 21, 22).

Hence,
” |[:cl7 Hm721H — o Hxl’ [yhyz}zwzg—;hyz[zhzz}]]
T2 [[Y2 22 T2 Y325
_0 ([9517552]([3/173/2]2122 - y1y2[21722}))
- 3y373

O (55155%[[%73/2]2122 — Y1921, 22],11%23])
B :
2Y2%2
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We will prove that each part of the last sum is equal to zero. For the first
part of our sum, we have the following.

O (fzr, z2)([yr, y2l 2122 — y1yalz1, 22]))

O = (D(x1)22D(y1)y22122 — 21D (22)D (Y1) y22122 + D (31) 211D (y2) 2122
—210(22)y1D (y2) 2122 — D(21) 2291920 (21) 22 + D (1) 22y1Y221D(22)
—21D(x2)y1y2D(21) 22 + $1@($2)y19221@(22)) =0.

We rewrite the second part in a sum of two other sums in the following
way.
O (z123[[y1, yolz122 — y1yela1, 2], 43 23)) =
O (2123 (y1)y22122 — 11D (Y2) 2122 — Y1920 (21) 22 +y1Y221D (22), Y3 23]
=0 2175 ( D(D(y1)y22122)Y325 — D(y1)y22122D (y323)
—D (1D (y2)2122)y325 + Y10 (y2) 212D (y523)
—D (Y1920 (21)22) Y3235 + 112D (21) 22D (y523)
+D (Y1221 (22)) Y323 — Y1y221D (22)D (y323) ).
Hence, the first sub-sum is given by the following terms.
O 21235525 (D(D(y1)y22122) — D(Y1D(y2)2122)
D (112D (21)22) + 5)(919221’9(22)))
=0 2125Y57 (gz(yl)yQleQ +D(y1)D(y2)z122 + D (y1)y2D(21) 22
+D(y1)y221D(22)
—D(y1)D(y2)2122 — 1D (y2) 2122 — 11D (y2)D(21)22 — 11D (y2) 21D (22)
—D(y1)y2D(21)22 — 11D (y2)D(21) 22 — y1y2©2(21)22 — 192D (21)D(22)
+D(y1)y221D(22) + Y10 (y2)21D(22) + Y129 (21)D(22) + y1y221©2(22))
=0 (219%(y1)21 — 215103 (21)) (T2y222)°
+ O (2202 (y2) 22 — 22y2D%(22) ) 213121 (T2Y222)
+2 O (21220 (y1)y221D (22) — 212291 (y2) D (21) 22) (T2y222)
=20 (122D (y1)y221D(22) — 2122910 (y2)D (21) 22) (21222)°.
The second sub-sum is given by the following terms.
O 21259 (y523) (= D(Y1)y2z122 + 11D (Y2) 2122 + Y1920 (21) 22 — Y1y221D(22))
=20 z123(— D(y1)YED(y2)2125 — D(W1)y3 21239 (22) + y1y2(D(y2))* 2125
+195D (y2) 21230 (22) + 11439 (y2)D(21) 25 + 11959 (21)25D (22)
1950 (y2)2123D (22) — 11952125 (D(22))?)
=20 (23(D(y2))*25 — 23y5(D(22))?) B122Y1 Y221 22
—2 0 (21220 (y1)D (y2) 2122 — T122Y1Y2D (21)D(22) ) (T2y222)°
—2 O (212990 (Y1) y221D(22) — 212251 D (y2)D (21) 22) (T2Y222)
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=-20 ($1$2©(y1)y221©(22) - $1$2y1©(y2)®(«21)22)($2y222)2~

To summarize, the sum of these two sub-sums is zero, and the Jacobi
identity holds. This finishes the proof. O

2.7. Transposed Poisson n-Lie Algebras and Poisson n-Lie Algebras

The following result is a direct generalization of a result from [4] for the n-ary
case.

Definition 33. Let £ be a vector space equipped with two nonzero opera-

tions — a bilinear operation - and an n-linear operation [-,...,-]. The triple
(L, [,...,]) is called a Poisson n-Lie algebra if (£, ) is a commutative asso-
ciative algebra and (£,[,...,]) is an n-Lie algebra that satisfies the following
compatibility condition

[T y,20.. .20 =2 [y, 22, ..., 2n] + [T, 22, .., 20] - ¥ (4)
Proposition 34. Let (£,-) be a commutative algebra, and let (£, ..., ]) be an
n-Lie algebra. Then (£,-,[...,]) is both a Poisson n-Lie and a transposed

Poisson n-Lie algebra if and only if

T Yty Yn) =T Y1, yn] = 0.
Proof. In fact, let u,z1,...,z, € £. Substituting Eq. (2) into Eq. (4), we have

n
nT - [y, -, Ynl :Z[yl,...,x~yi,...,yn]
i=1
n n
= w[yn o unl D Ui W Vi1 T it Ul
i=1 i=1

Substituting Eq. (4) again into the above equality, we have

n
0= Zy’b : [yla"'7yi*17xayi+17'~'7yn]
i=1

n i—1
= Z (Z[y17yz 'yt7"~7yi17x7yi+17"'7yn]>

i=1 \t=1
n
+Z[y1,~~-yi—1,yi Ty Yit 1y Yn)
i=1
n n
+Z < Z [yla--'yi—l7x7yi+la"'ayi 'ytv'-')yn]>
i=1 \t=i+1

n
= [ylv"'yi—lvyi 'xvyi-‘rla"'ayn] = ne- [yh'"ayn]'
1

i=

Hence z - [y1,...,yn]) =0 and [z - y1,...,y,] = 0. O
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3. Open Questions

In what follows, we present a list where we have compiled open questions for
future research related to transposed Poisson structures.

Question 1 (Pasha Zusmanovich). Formulate the notion of “transposed” for
any variety of algebras/operads with two n-ary operations. Could this be done
in either operadic or categorical theoretical language? This general notion
should explain the appearance of “scaling by 2” in the definition of transposed
Poisson algebras. What would be the transposed analogs of dendriform, post-
Lie, Novikov-Poisson, etc.? What would be self-transposed algebras/operads?

Thanks to [20, Theorem 8], we know that if a Lie algebra does not admit
non-trivial %—derivations, then it does not admit non-trivial %—biderivations
and non-trivial transposed Poisson structures. All algebras which admit non-
trivial 1-derivations (from the present paper and [20,84]) also admit non-trivial
%—biderivations and non-trivial transposed Poisson structures. The last results
motivate the following question.

Question 2. %Is there a Lie algebra that admits non-trivial %—derivations and
does not admit non-trivial %—biderivations? Is there a Lie algebra that admits
non-trivial %-derivations and %—biderivations, but does not admit non-trivial
transposed Poisson structures?

One of the first examples of non-trivial transposed Poisson algebras was
given for the Witt algebra [20, Theorem 20]. The central extension of the
Witt algebra is the Virasoro algebra and it has no non-trivial %—derivations,
non-trivial %—biderivations and non-trivial transposed Poisson structures [20,
Theorem 27]. Thanks to [79] we know that the Cartan (infinite-dimensional)
algebras S,, and H,, do not have non-trivial transposed Poisson structures (and
%—derivations, %—biderivations). It is easy to see that if the dimension of the
annihilator of an algebra is greater than 1, then it admits non-trivial trans-
posed Poisson structures (and %—derivations, %—biderivations). Dzhumadildaev
proved that the dimensions of annihilators of central extensions of S,, and H,
are greater than 1 in [14]. It follows that there are infinite-dimensional Lie
algebras without non-trivial transposed Poisson structures (and %—derivations,
%—biderivations), but whose central extensions admit these non-trivial struc-
tures. The last results motivate the following question.

Question 3. Is there a Lie algebra that does not admit non-trivial transposed
Poisson structures (%—derivations, %—bidelrivatioms)7 but whose (indecompos-
able) one-dimensional central extension admits them?

2From [37], there is a 6-dimensional perfect non-semisimple Lie algebra with non-trivial
%—derivations and without non-trivial transposed Poisson algebra structures.
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There are no non-trivial transposed Poisson structures defined on a com-
plex finite-dimensional semisimple Lie algebra [20, Corollary 9]. On the other
hand, the Schrodinger algebra, which is the semidirect product of a simple and
a nilpotent algebra, also does not have non-trivial transposed Poisson struc-
tures (other perfect non-simple Lie algebras without non-trivial %—derivations,
also known as Galilean algebras, can be found in [38]). Theorem 9 states that
each finite-dimensional nilpotent Lie algebra has a non-trivial transposed Pois-
son structure (3-derivations, 1-biderivations). Results from [38] state that each
finite-dimensional solvable non-nilpotent Lie algebra has a non-trivial trans-
posed Poisson structure (%—derivations, %—biderivations). The last results mo-
tivate the following question.

Question 4. ® “Is there a non-perfect (non-solvable) Lie algebra that does not
admit non-trivial transposed Poisson structures (%—derivations, %—biderivations)?
Is there a perfect (non-semisimple) Lie algebra that admits non-trivial trans-
posed Poisson structures (3-derivations, 3-biderivations)?

The description of %—derivations gives a good criterion for the detection
of Lie algebras that do not admit non-trivial transposed Poisson structures.
Another criterion can be given by using Hom-Lie structures on Lie algebras
(Proposition 14). However, the last criterion is not sufficient: the simple 3-
dimensional algebra sl; has non-trivial Hom-Lie structures [78], but it does
not admit non-trivial transposed Poisson structures [20, Corollary 9]. Filippov
proved that each d-derivation (6 # 0,1) gives a non-trivial Hom-Lie algebra
structure [21, Theorem 1]. The last results motivate the following question.

Question 5. Describe Lie algebras such that each Hom-Lie algebra structure
gives a %—derivation. Which types of Hom—Lie structures can guarantee the

existence of non-trivial transposed Poisson structures on a Lie algebra?

Let us denote the associative algebra generated by %—derivations of £ as
Ay (£). The Witt algebra W has the following interesting property: Det(A 1

(W)) 2 W [20, Theorem 19]. The last results motivate the following question.
Question 6. Is there a Lie algebra £ (% W) such that Der(A1(£)) = £7

Thanks to [20, Corollary 9], there are no non-trivial transposed Pois-
son structures defined on a complex finite-dimensional semisimple Lie algebra;
Theorem 6 establishes that there are no non-trivial transposed Poisson struc-
tures defined on a complex semisimple commutative associative algebra. On
the other hand, there are simple Lie algebras (the Witt algebra W and the
Cartan algebra W(1)) that admit non-trivial transposed Poisson structures,

3From [37], there is a 6-dimensional perfect non-semisimple Lie algebra with non-trivial
L_derivations.

Z?From [82], there is a 9-dimensional non-perfect non-solvable Lie algebra with non-trivial
%—derivations and non-trivial transposed Poisson structures.
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but, in these cases, the associative part is not simple (Theorem 19). The last
results motivate the following question.

Question 7. Is there a (not necessarily commutative) transposed Poisson alge-
bra (£,-,[-,-]) such that its Lie and associative parts are simple (semisimple,
prime, semiprime) algebras?

Combining results from Theorem 6 and [17, Proposition 28|, we have
that the Kantor product of a unital transposed Poisson algebra gives a new
transposed Poisson algebra. Furthermore, the Kantor product of transposed
Poisson algebras constructed on the Witt algebra gives new transposed Poisson
algebras [17, Proposition 27]. The last results motivate the following question.

Question 8. Is there a transposed Poisson algebra such that the algebra con-
structed by the Kantor product of multiplications (see [17]) is not a transposed
Poisson algebra?

The Kantor double gives a way for the construction of Jordan superalge-
bras from Poisson algebras and from algebras of Jordan brackets [27]. As we
can see from Corollary 24, each unital transposed Poisson algebra, by the Kan-
tor double process, gives a Jordan superalgebra. Moreover, the Kantor double
of the commutator of a Novikov-Poisson algebra is a Jordan superalgebra [87].
Thanks to [18], each transposed Poisson superalgebra under the Kantor double
process gives a Jordan superalgebra. The last results motivate the following
question.

Question 9. Describe and study the class of superalgebras (= a subvariety of
Jordan superalgebras) obtained by the Kantor double process from transposed
Poisson algebras.

The celebrated Amitsur-Levitsky theorem states that the algebra Maty
of k x k matrices over a commutative ring R satisfies the identity so; = 0. Fur-
thermore, every associative PI algebra satisfies (s;)! = 0 by Amitsur’s theorem.
Farkas defined customary Poisson polynomials and proved that every Poisson
PT algebra satisfies some customary identity [16]. Recently, the Farkas’ theo-
rem was established for generic Poisson algebras in [41], for unital generalized
Poisson algebras in [30] and unital transposed Poisson algebras (Theorem 31).
The last results motivate the following question.

Question 10. Is there a special type of polynomial identities for (not necessarily
unital) transposed Poisson algebras satisfying a polynomial identity?

In 1972, Regev proved that the tensor product of two associative PI
algebras is an associative PI algebra. Recently, a similar result was obtained
for Poisson algebras [64]. The last results motivate the following question.

Question 11. Is a tensor product of two transposed Poisson PI algebras a trans-
posed Poisson PI algebra?
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It is known that the tensor product of two Poisson algebras gives a Poisson
algebra [64], the tensor product of two transposed Poisson algebras gives a
transposed Poisson algebra [4], and the tensor product of two anti-pre-Lie
Poisson algebras gives an anti-pre-Lie Poisson algebra [48]. In the case of the
standard multiplication of tensor Poisson algebras, it is not true for F-manifold
algebras [51]. On the other hand, in the case of generalized Poisson algebras,
their tensor product does not necessarily give a new generalized Poisson algebra
[90]. The last results motivate the following question.

Question 12 (Pasha Zusmanovich). Find identities for algebras formed by the
tensor product of a transposed Poisson algebra and a Poisson algebra.

As it was mentioned in Sects. 2.3 and 2.4, all Poisson and all transposed
Poisson are algebras of Jordan brackets and F-manifold algebras. Hence, Pois-
son and transposed Poisson algebras are at the intersection of the varieties of
F-manifold algebras and algebras of Jordan brackets. The last results motivate
the following question.

Question 13. Characterize the variety of algebras obtained as the intersection
of F-manifold algebras and algebras of Jordan brackets. Find a minimal variety
of algebras that includes Poisson and transposed Poisson algebras.

The notion of a depolarized Poisson algebra (i.e., a binary algebra such
that the commutator and the anticommutator products give a Poisson algebra)
was introduced and studied in [24,60]. The last results motivate the following
question.

Question 14. ®Define and study the variety of depolarized transposed Poisson
algebras.

In 1950, Hall constructed a basis for free Lie algebras. Later on: Shes-
takov constructed a basis for free Poisson algebras; Shestakov and Zhukavets
constructed a basis for free Poisson-Malcev superalgebra with one generator;
Kaygorodov, Shestakov, and Umirbaev constructed a basis for free generic
Poisson algebras in [39]; and Kaygorodov constructed a basis for free unital
generalized Poisson algebras in [30]. The last results motivate the following
question.

Question 15. ®Construct a basis for free transposed Poisson algebras.

In 1930, Magnus proved one of the most important theorems of the com-
binatorial group theory. Let G = (x1,x2,...,x, | r = 1) be a group defined by

5 Askar Dzhumadildaev proved that weak Leibniz algebras give the depolarization of trans-
posed Poisson algebras [15].

6Roughly speaking, a basis of a free Poisson algebra is a basis of a polynomial ring on a free
Lie algebra. Our first impression (Chengming Bai mentioned, in one of his talks, that it was
also the first impression of his team) was that a basis of a free transposed Poisson algebra
can be found as a free Lie algebra on a polynomial ring, but this is not true.
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a single cyclically reduced relator r. If x,, appears in r, then the subgroup of G
generated by x1,...,x,_1 is a free group, freely generated by z1,...,z,_1. He
called it the Freiheitssatz and used it to give several applications, the decid-
ability of the word problem for groups with a single defining relation among
them. The Freiheitssatz was studied in various varieties of groups and alge-
bras: Shirshov established it for Lie algebras; Romanovskii researched it for
solvable and nilpotent groups; Makar-Limanov proved it for associative alge-
bras over a field of characteristic zero. Recently it was confirmed for Novikov
and right-symmetric algebras, as well as for Poisson algebras [57] and generic
Poisson algebras [41]. The last results motivate the following question.

Question 16. Is the Freiheitssatz true for transposed Poisson algebras?

In 1942, Jung proved that all automorphisms of the polynomial algebra
in two variables are tame. Later, in 1970, Makar-Limanov established the same
result for the free associative algebra in two variables. Cohn proved that the
automorphisms of a free Lie algebra with a finite set of generators are tame.
Shestakov and Umirbaev proved that polynomial algebras and free associative
algebras in three variables in the case of characteristic zero have wild auto-
morphisms [69,73]. At the same time, Abdykhalykov, Mikhalev, and Umirbaev
found wild automorphisms in two generated free Leibniz algebras. It was re-
cently proved that free Poisson and generic Poisson algebras in two variables do
not have wild automorphisms [39,55]. The last results motivate the following
question.

Question 17. Are the automorphisms of a two-generated free transposed Pois-
son algebra tame?

Makar-Limanov and Umirbaev [56] proved an analog of the Bergman
Centralizer Theorem: the centralizer of every non-constant element in a free
Poisson algebra is a polynomial algebra in one variable. The last results moti-
vate the following question.

Question 18 (Zerui Zhang). Describe the centralizer of a non-constant element
in a free transposed Poisson algebra.

Thanks to Corollary 24, we know that each unital transposed Poisson
algebra is an algebra of Jordan brackets. Martinez, Shestakov, and Zelmanov
have shown that all unital Jordan brackets are embeddable into Poisson brack-
ets [61]. Hence, all unital transposed Poisson brackets are embeddable into
Poisson brackets. The last results motivate the following question.

Question 19. Are transposed Poisson brackets embeddable into Poisson brack-
ets?

Thanks to a famous relationship between Poisson algebras and Jordan
superalgebras, also known as Kantor double, the description of simple Jordan
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superalgebras describes simple Poisson algebras. Also recently, simple gener-
alized Poisson algebras and simple generalized Gerstenhaber algebras (odd
generalized Poisson superalgebras) have been described [8,9]. The last results
motivate the following question.

Question 20. "Classify simple transposed Poisson algebras.

The study of some generalizations of Poisson algebras (noncommutative
Poisson algebras; Leibniz-Poisson algebras [11]; generic Poisson algebras [39],
etc.) motivate the consideration of some generalizations of transposed Poisson
algebras.

Question 21. Define and study the following generalizations of transposed Pois-
son algebras:

(a) noncommutative transposed Poisson algebras;
(b) transposed Poisson-Leibniz (in particular, symmetric Leibniz) algebras;
(¢) transposed generic Poisson algebras.

One of the important questions in the study of Poisson and transposed
Poisson algebras is a description of (transposed) Poisson algebra structures on
a certain Lie algebra or a certain associative algebra. The most useful way for
a description of Poisson structures on a certain associative algebra is given
by the study of derivations and biderivations of this algebra. On the other
hand, a description of transposed Poisson structures on a certain Lie algebra
may be given by the study of %—derivations and %—biderivations of this algebra.
Recently, a constructive method for describing Poisson algebra structures on
a certain Lie algebra has been given in a study of Leibniz bialgebras and
symmetric Leibniz algebras [1]. The last results and Theorem 6 motivate the
following question.

Question 22. Give a constructive method for describing transposed Poisson
algebras on a certain non-unital associative (not necessarily commutative) al-
gebra.

It is known that the Poisson bracket admits an extension to the field
of fractions [26,39,54,58]. As we proved in Theorem 32, a unital transposed
Poisson bracket admits an extension to the field of fractions. The last results
motivate the following question.

Question 23. Does the bracket in Theorem 32 give an extension of a transposed
Poisson algebra to the field of fractions in the non-unital case?

The universal multiplicative enveloping algebra of free Poisson and free
generic Poisson fields were studied in [39,58]. In particular, in these papers, it
was proved that the universal multiplicative enveloping algebra is a free ideal
ring. The last results motivate the following question.

"Thanks to [18], there are no non-trivial complex finite-dimensional simple transposed Pois-
son algebras.
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Question 24. Is the universal multiplicative enveloping algebra of a free trans-
posed Poisson field a free ideal ring?

Multiplicative enveloping algebras are often much simpler than the alge-
bras themselves, and in the case where the variety is not obvious, they can
help a lot. A basis of the universal enveloping algebra P¢ of a free Poisson
algebra P was constructed and it was proved that the left dependency of a
finite number of elements of P¢ over P¢ is algorithmically recognizable [74].
The last results motivate the following question.

Question 25 (Vladimir Dotsenko). Construct a basis of the universal envelop-
ing algebra TP® of a free transposed Poisson algebra TP. Is left dependency
of a finite number of elements of TP® over TP algorithmically recognizable?

It is known that each Novikov-Poisson algebra under commutator product
on non-associative multiplication gives a transposed Poisson algebra [4]. Let
us say that a transposed Poisson algebra is special if it can be embedded into
a Novikov-Poisson algebra relative to the commutator bracket. Similarly, let
us say that a transposed Poisson algebra is D-special (from “differentially”) if
it embeds into a commutative algebra with a derivation relative to the bracket
[z,y] = D(z)y — 2D (y). Obviously, every D-special transposed Poisson algebra
is a special one. It is known too that the class of special Jordan algebras
(i.e. embedded into associative algebras relative to the multiplication z oy =
2y + yz) is a quasivariety, but it is not a variety of algebras [72]. On the other
hand, the class of all special Gelfand-Dorfman algebras (i.e., embedded into
Poisson algebras with derivation relative to the multiplication x o y = xd(y))
is closed concerning homomorphisms and thus forms a variety [43]. The last
results motivate the following question.

Question 26 (Pavel Kolesnikov). Does the class of special (resp., D-special)
transposed Poisson algebras form a variety or a quasivariety?

Let us call special identities to all identities that hold on all special trans-
posed Poisson algebras but do not hold on the class of all transposed Poisson
algebras. The study of special and non-special identities is a popular topic in
non-associative algebras (see, for example, the Jordan algebra case in [23], the
Gelfand-Dorfman algebra case in [44], the case of dialgebras in [45], the Jordan
trialgebra and post-Jordan algebra cases in [3], etc.). The last results motivate
the following question.

Question 27 (Pavel Kolesnikov). Find the identities separating the variety gen-
erated by special (resp., D-special) transposed Poisson algebras in the variety
of all transposed Poisson algebras. Find the identities separating the variety
generated by D-special transposed Poisson algebras in the variety generated
by special transposed Poisson algebras.
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Also known is that: each two-generated Jordan algebra is special [71]; each
one-generated Jordan dialgebra is special [76]; each 2-dimensional Gelfand-
Dorfman algebra is special [43]. The last results motivate the following ques-
tion.

Question 28. Are one-generated transposed Poisson algebras special?

Thanks to [63], all unital transposed Poisson algebras by Kantor double
process give special Jordan superalgebras. On the other hand, there are exam-
ples of Poisson algebras that do not have special Kantor double [63]. The last
results motivate the following question.

Question 29. Is the Kantor double of a transposed Poisson algebra a special
Jordan superalgebra?

Among Gelfand-Dorfman algebras, a relevant place is occupied by spe-
cial ones, i.e., those that can be embedded into differential Poisson algebras
(see [44]). Namely, a Gelfand-Dorfman algebra V' with operations [-, -] and
is special if there exists a Poisson algebra (P,-,{-,-}) and derivation d such
that V' C P and [u,v] = {u,v}, with u* v = d(u)v for all u,v € V. Recently,
Kolesnikov and Nesterenko proved that each transposed Poisson algebra ob-
tained from a Novikov-Poisson algebra is a special Gelfand-Dorfman algebra
[42]. Sartayev proved that transposed Poisson algebras satisfy the special iden-
tities of Gelfand-Dorfman algebras [68]. The last results motivate the following
question.

Question 30 (Pavel Kolesnikov, Bauyrzhan Sartayev). Are transposed Poisson
algebras special Gelfand-Dorfman algebras?

From the geometric point of view, the variety of n-dimensional algebras
defined by a family of polynomial identities gives a subvariety in C"’. The
geometric classification of a variety of algebras is a description of his geo-
metric variety: defining irreducible components, their dimensions, and rigid
algebras (see [2,19,40] and references therein). The variety of transposed Pois-
son algebras gives a subvariety in C?"° . The geometric classification of complex
3-dimensional transposed Poisson algebras was given in [6]. Neretin, in his pa-
per [65], considered n-dimensional associative, commutative, and Lie algebras,
and gave the upper bound for the dimensions of their geometric varieties. The
last results motivate the following question.

Question 31. Give the upper bound for dimensions of geometric varieties of
n-dimensional transposed Poisson algebras.

The “Koszul” property of an (quadratic) operad is quite important. The
explicit definition needs more notions on operads [22,52]. If an operad P is
Koszul, one can give the oo-structure of such an operad, P,.-algebra. For
example, Lie, associative, pre-Lie, and Poisson are Koszul and hence we have
Loo-; Aso-, PLoo-, Poo-algebras. These remarks motivate the following question.
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Question 32 (Li Guo).® ? The operad of the transposed Poisson is Koszul? If
so, there might be a TP -algebra structure.

Some recent works about the cohomology theory of Poisson algebras [5,
67] motivate the following question.

Question 33. Describe the cohomology theory of transposed Poisson algebras.

Poisson algebras are the semi-limit of quantization deformation of com-
mutative associative algebras into associative algebras. F-manifold algebras
are the semi-limit of quantization deformation of commutative associative al-
gebras (or commutative pre-Lie algebras) into pre-Lie algebras. The last results
motivate the following question.

Question 34 (Chengming Bai). Into which algebras are the transposed Poisson
algebras the semi-limit of quantization deformation of commutative algebras?

The study of commutative and noncommutative Poisson bialgebras [50,
66] motivate the following question.

Question 35 (Chengming Bai).!? Define and study transposed Poisson bialge-
bras.

The study of double Poisson algebras [75] motivates the following ques-
tion.

Question 36. Define and study double transposed Poisson algebras.

Bai, Bai, Guo, and Wu proved that each transposed Poisson algebra
(£, [,]) gives a transposed Poisson 3-Lie algebra by defining the following
multiplication:

[2,y,2] =D(x) - [y, 2] =D(y) - [z, 2] + D(2) - [, y].

The last results motivate the following question.

8Here is a short proof of the fact that the operad TP of transposed Poisson algebras is not
Koszul (communicated by Vladimir Dotsenko). Using Grobner bases for Operads (http://
irma.math.unistra.fr/~dotsenko/Operads.html), one finds that the dimensions of the com-
ponents of the operad TP up to parity five are given by 1,2,6,20,74. Moreover, this operad
is known to be self-dual under the Koszul duality for operads. Therefore, if it were Koszul,
the exponential generating function f(z) of dimensions of its components would satisfy the
functional equation f(—f(—z)) = x. However, using the dimensions of the components listed
above, we find f(—f(—x)) = +7/3025 4+ O(2%), and therefore the operad TP is not Koszul.
9 Another proof was given by Askar Dzhumadildaev in [15]: he defined the weak Leibniz
algebras, as algebras satisfying (ab— ba)c = 2a(bc) — 2b(ac) and a(bc — ¢b) = 2(ab)c — 2(ac)b.
Furthermore, he proved that weak Leibniz operad is not Koszul; operads of weak Leibniz
algebras and transposed Poisson algebras are isomorphic.

10Recently, the present question was successfully resolved in [49].
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Question 37 (Chengming Bai, Ruipu Bai, Li Guo & Yong Wu). Let n > 2 be
an integer. Let (£,,[-,...,]) be a transposed Poisson n-Lie algebra, let D be
a derivation of (£,-) and (£, [, ..., ]). Define an (n + 1)-ary operation

n+1

[z1, s wnga] = ) (D)™ D (@) - [z, &y gl

i=1
where #; means that the i-th entry is omitted. Is (£, -, [-,...,-]) a transposed
Poisson (n + 1)-Lie algebra?

Cantarini and Kac classified all complex linearly compact (generalized)
Poisson n-Lie algebras in [10], which motivates the following question.

Question 38. Give examples and classify simple transposed Poisson n-Lie al-
gebras.

It is known that the variety of Gerstenhaber algebras coincides with the
variety of odd Poisson superalgebras (see, for example, [9]). This remark mo-
tivates the following question.

Question 39. Define and study transposed Gerstenhaber algebras.

It is known [4] that the tensor product of transposed Poisson algebras is
equipped with a canonical transposed Poisson algebra structure. On the level
of operads, this means that the operad TPA of transposed Poisson algebras is a
Hopf operad. Many natural examples of Hopf operads arise in algebraic topol-
ogy when one computes the homology of a topological operad. This suggests
the following question. One may define, by analogy with transposed Poisson
algebras, and transposed Gerstenhaber algebras, which are given by similar
axioms, but with the shifted Lie bracket of homological degree one (and ap-
propriate signs arising from the “Koszul sign rule”). The corresponding operad
seems to be a Hopf operad as well.

Question 40 (Vladimir Dotsenko). Is it the homology operad of some operad
made of topological spaces? In the case of the Gerstenhaber operad, the cor-
responding topological operad is the operad of little 2-disks, one of the pro-
tagonists of the operad theory in its early days.
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