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Parabolicity on Graphs
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Abstract. Large scale properties of Riemannian manifolds, in particular,
those properties preserved by quasi-isometries, can be studied using dis-
crete structures which approximate the manifolds. In a sequence of pa-
pers, M. Kanai proved that, under mild conditions, many properties are
preserved by a certain (quasi-isometric) graph approximation of a man-
ifold. One of these properties is p-parabolicity. A manifold M (respec-
tively, a graph G) is said to be p-parabolic if all positive p-superharmonic
functions on M (resp. G) are constant. This is equivalent to not having
p-Green’s function (i.e. a positive fundamental solution of the p-Laplace-
Beltrami operator). Herein we study directly the p-parabolicity on graphs.
We obtain some characterizations in terms of graph decompositions. Also,
we give necessary and sufficient conditions for a uniform hyperbolic graph
to be p-parabolic in terms of its boundary at infinity. Finally, we prove
that if a uniform hyperbolic graph satisfies the (Cheeger) isoperimetric
inequality, then it is non-p-parabolic for every 1 < p < ∞.
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1. Introduction

Using discrete structures approximating Riemannian manifolds has proven to
be a useful tool in the study of large scale properties. This is done by M. Kanai
defining a graph, the ε-net of the manifold, so that the manifold and its ε-net
are quasi-isometric. There are many works following Kanai’s ideas or proving
the relation between the large scale behavior of a manifold and some other
associated graph (see, e.g., [3,14,23,25,27,28,36–38,43–46,52,54]).
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This large-scale structure of the manifold or the corresponding graph is
usually preserved by quasi-isometries, which at the same time, allow an impor-
tant distortion of the local geometry. One of the main large-scale properties
preserved by quasi-isometries is the Gromov hyperbolicity (see, e.g., [24,26]).

In [31–33], M. Kanai studied several geometric properties (such as isoperi-
metric inequalities, Poincaré-Sobolev inequalities, parabolicity, growth rate of
the volume of balls, and Liouville type theorems) for a large class of Riemann-
ian manifolds with some conditions on their local geometry. Kanai proved that
these properties are preserved under quasi-isometries. Also, quasi-isometries
preserve the parabolic Harnack inequality (see [17]) and several estimates on
transition probabilities of random walks, such as heat kernel estimates. More-
over, Holopainen and Soardi, among other authors (see [27,28,52]), proved
that the existence of non-trivial solutions of a wide class of partial differential
equations is also preserved under quasi-isometries.

A manifold M (respectively, a graph G) is said to be p-parabolic if all pos-
itive p-superharmonic functions on M (resp. G) are constant. This is equivalent
to not having p-Green’s function (i.e. a positive fundamental solution of the
p-Laplace-Beltrami operator). In [39] we studied the stability of p-parabolicity
(with 1 < p < ∞) by quasi-isometries between Riemannian manifolds weaken-
ing Kanai’s assumptions. Also, we obtained some results on the p-parabolicity
of graphs and trees; in particular, we characterized p-parabolicity for a large
class of trees.

Our focus herein is to study p-parabolicity on (uniform) graphs. Sects. 2
and 3 provide the necessary background: in Sect. 2 we include basic definitions
and main tools in the study of p-parabolicity; in Sect. 3 we recall the defini-
tion of boundary at infinity of a geodesic space, some basic results about the
boundary at infinity of a hyperbolic space and a useful construction named
hyperbolic approximation (see [13]). The hyperbolic approximation of a given
metric space is a hyperbolic graph whose boundary at infinity is the given
metric space.

In Sect. 4 we study the behavior of p-parabolicity in a uniform graph
through certain operations as decompositions or vertex identifications.

Let X be a metric space. Fix a base point o ∈ X and for x, x′ ∈ X let

(x|x′)o =
1
2
(
d(x, o) + d(x′, o) − d(x, x′)

)
.

The number (x|x′)o is non-negative and it is called the Gromov product of x, x′

with respect to o.
A metric space X is (Gromov) hyperbolic if it satisfies the δ-inequality

(x|y)o ≥ min{(x|z)o, (z|y)o} − δ

for some δ ≥ 0, for every base point o ∈ X and all x, y, z ∈ X.
We denote by δ(X) the sharp hyperbolicity constant of X:

δ(X) = sup
{

min{(x|z)o, (z|y)o} − (x|y)o

∣
∣ x, y, z, o ∈ X

}
. (1)
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Hence, X is hyperbolic if and only if δ(X) < ∞.
The theory of Gromov hyperbolic spaces was introduced by M. Gromov

for the study of finitely generated groups (see [26]). The concept of Gromov
hyperbolicity grasps the essence of negatively curved spaces like the classi-
cal hyperbolic space, Riemannian manifolds of negative sectional curvature
bounded away from 0, and of discrete spaces like trees and the Cayley graphs
of many finitely generated groups (see [1,24,26]). This theory has been de-
veloped from a geometric point of view to the extent of making hyperbolic
spaces an important class of metric spaces to be studied on their own (see,
e.g., [10,11,13,24,55]). In the last years, Gromov hyperbolicity has been in-
tensely studied in graphs (see, e.g., [5,6,8,29,30,34,35,47,49–51,56] and the
references therein).

In Sect. 5 we give necessary and sufficient conditions for a uniform hy-
perbolic graph to be p-parabolic in terms of the boundary at infinity of the
graph.

In the last section, we prove the relation between p-parabolicity and
Cheeger isoperimetric inequality for uniform hyperbolic graphs. Isoperimetric
inequalities are of interest in pure and applied mathematics (see, e.g., [15,42]).
The Cheeger isoperimetric inequality is related with many conformal invari-
ants in graphs and Riemannian manifolds, namely the bottom of the spectrum
of the Laplace-Beltrami operator, Poincaré-Sobolev inequalities, the exponent
of convergence, and the Hausdorff dimensions of the sets of both escaping and
bounded geodesics in negatively curved surfaces (see [2,7], [12, p.228], [16,18–
22,40,41], [53, p.333]).

There is a natural connection between isoperimetric inequality and hy-
perbolicity. Recall that one of the definitions of Gromov hyperbolicity involves
some kind of isoperimetric inequality (see [1,26]). In [36,38] we studied the
relationship between the hyperbolicity and the Cheeger isoperimetric inequal-
ity in the context of graphs and Riemannian manifolds with bounded local
geometry. In those works we obtained a characterization of graphs and Rie-
mannian manifolds (with bounded local geometry) satisfying the (Cheeger)
isoperimetric inequality, in terms of their Gromov boundary.

Here, in Sect. 6, we prove that if a uniform hyperbolic graph satis-
fies the Cheeger isoperimetric inequality, then it is non-p-parabolic for every
1 < p < ∞.

2. Definitions and Background

A function between two metric spaces f : X → Y is said to be an (a, b)-quasi-
isometric embedding with constants a ≥ 1, b ≥ 0, if

1

a
dX(x1, x2) − b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b, for every x1, x2 ∈ X.
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Such a quasi-isometric embedding f is a quasi-isometry if there exists a con-
stant c ≥ 0 such that f is c-full, i.e., if for every y ∈ Y there exists x ∈ X with
dY (y, f(x)) ≤ c.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-
isometry between them. It is well-known that to be quasi-isometric is an equiv-
alence relation (see, e.g., [31]).

Given a graph G let us denote as V (G) its vertex set and E(G)) its
edge set. Given a function u : V (G) → R, define the p-modulus of its discrete
gradient |∇Gu|p and its discrete p-Dirichlet integral Dp,G(u), respectively, by

|∇Gu|p(x) : =
( ∑

y∈N(x)

∣
∣u(y) − u(x)

∣
∣p

)1/p

,

Dp,G(u) : =
∑

x∈V (G)

|∇Gu|pp(x) = 2
∑

vw∈E(G)

∣
∣u(v) − u(w)

∣
∣p,

where the edges are considered unoriented.
For a finite subset S of V (G), the p-capacity of S is defined by

capp S = capp(S,G)

= inf
{

Dp,G(u) : u function on V (G) with finite support, u|S = 1
}

.

A graph G is said to be μ-uniform if each vertex p of V (G) has at most
μ neighbors, i.e.,

sup
{|N(p)| : p ∈ V (G)

} ≤ μ.

If a graph G is μ-uniform for some constant μ we say that G is uniform

Theorem 1. Given 1 < p < ∞, a uniform graph G is p-parabolic if and only if
capp S = 0 for some (and then for every) non-empty finite subset of S ⊂ V (G).

For a proof of Theorem 1, see [33, Proposition 6] and [27, Final remark
5.16]. Note that the definition of discrete p-Dirichlet integral in [27] is slightly
different, but both are equivalent.

Also, Corollary 7 in [32] can be trivially extended to the general case
(being p-parabolic for an arbitrary p > 1 instead of p = 2) to obtain the
following:

Proposition 2. If two uniform graphs P and Q are quasi-isometric, then P is
p-parabolic if so is Q.

The Cantor tree (TC , v0) is a rooted tree such that the root, v0, has degree
two and any other vertex has degree three.

Proposition 3 [39, Corollary 5]. The Cantor tree (TC , v0) is non-p-parabolic
for every 1 < p < ∞.

Proposition 4 [39, Proposition 6]. If a uniform graph Γ contains a non-p-
parabolic subgraph Γ′ for some 1 < p < ∞, then Γ is non-p-parabolic.
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3. Boundary at Infinity and Hyperbolic Approximation

Let us recall that a geodesic space is a metric space such that for every couple
of points there exists a geodesic joining them. A geodesic ray in a metric space
X is the image of an isometric embedding F : [0,∞) → X. In this case,
we say that the geodesic ray emanates from F (0). A geodesic space X has a
pole in a point v if there exists M > 0 such that each point of X lies in an
M -neighborhood of some geodesic ray emanating from v.

Let us recall the concepts of geodesic and sequential boundary of a hy-
perbolic space and some basic properties. For further information and proofs
we refer the reader to [10,13,24,26]. Let X be a hyperbolic space and o ∈ X
a base point.

The relative geodesic boundary of X with respect to the base-point o is

∂g
oX := {[γ] | γ : [0,∞) → X is a geodesic ray with γ(0) = o},

where γ1 ∼ γ2 if there exists some K > 0 such that d(γ1(t), γ2(t)) < K, for
every t ≥ 0.

In fact, in the definition above the equivalence classes of the geodesic
rays do not depend on the election of the base point. Therefore, the set of
classes of geodesic rays is called geodesic boundary of X, ∂gX. Herein, we do
not distinguish between the geodesic ray and its image.

A sequence of points {xi} ⊂ X converges to infinity if

lim
i,j→∞

(xi|xj)o = ∞.

This property is independent of the choice of o since

|(x|x′)o − (x|x′)o′ | ≤ d(o, o′)

for any x, x′, o, o′ ∈ X.
Two sequences {xi}, {x′

i} that converge to infinity are equivalent if

lim
i→∞

(xi|x′
i)o = ∞.

Using the δ-inequality (1), we easily see that this defines an equivalence
relation for sequences in X converging to infinity. The sequential boundary at
infinity ∂∞X of X is defined to be the set of equivalence classes of sequences
converging to infinity.
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Note that given a geodesic ray γ, the sequence {γ(n)} converges to infinity
and two equivalent rays induce equivalent sequences. Thus, in general, ∂gX ⊆
∂∞X.

We say that a metric space is proper if every closed ball is compact. Every
uniform graph is a proper geodesic space.

Proposition 5 [10, Chapter III.H, Proposition 3.1]. If X is a proper hyperbolic
geodesic space, then the natural map from ∂gX to ∂∞X is a bijection.

For every ξ, ξ′ ∈ ∂∞X, its Gromov product with respect to the base point
o ∈ X is defined as

(ξ|ξ′)o = inf lim inf
i→∞

(xi|x′
i)o,

where the infimum is taken over all sequences {xi} ∈ ξ, {x′
i} ∈ ξ′.

Remark 1. [13, Lemma 2.2.2] If X is a δ-hyperbolic geodesic space, then for
every pair of geodesic rays σ, σ′ with σ(0) = x0 = σ′(0) and such that {σ(n)} ∈
ξ and {σ′(n)} ∈ ξ′,

(ξ|ξ′)x0 ≤ lim inf
t→∞ (σ(t)|σ′(t))x0 ≤ lim sup

t→∞
(σ(t)|σ′(t))x0 ≤ (ξ|ξ′)x0 + 2δ.

The Gromov product

(x|ξ)o = inf lim inf
i→∞

(x|xi)o

is defined for any x ∈ X, ξ ∈ ∂∞X, where the infimum is taken over all
sequences {xi} ∈ ξ.

A hyperbolic space X is said to be visual, if for some base point o ∈ X
there is some constant D > 0 such that for every x ∈ X there is ξ ∈ ∂∞X with
d(o, x) ≤ (x|ξ)o + D. Moreover, this property is independent of the choice of
o.

Proposition 6 [36, Proposition 4.4]. A proper hyperbolic geodesic space has a
pole if and only if it is visual.

A metric d on the sequential boundary at infinity ∂∞X of X is said to
be visual, if there are o ∈ X, a > 1 and positive constants c1, c2, such that

c1a
−(ξ|ξ′)o ≤ d(ξ, ξ′) ≤ c2a

−(ξ|ξ′)o

for all ξ, ξ′ ∈ ∂∞X. In this case, we say that d is a visual metric with respect
to the base point o and the parameter a.

Theorem 7 [13, Theorem 2.2.7]. Let X be a hyperbolic space. Then for any
o ∈ X, there is a0 > 1 such that for every a ∈ (1, a0] there exists a metric d
on ∂∞X, which is visual with respect to o and a.

Remark 2. Notice that for any visual metric, ∂∞X is bounded and complete.
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Proposition 8 [24, Proposition 7.9]. If X is a proper, geodesic, hyperbolic space,
then ∂∞X is compact.

Let us recall the following construction from [13].
A subset A in a metric space (X, d) is called r-separated, r > 0, if

d(a, a′) ≥ r for any distinct a, a′ ∈ A. Note that if A is maximal with this
property, then the union ∪a∈ABr(a) covers X. A maximal r-separated set A
in a metric space X is called an r-approximation of X.

A hyperbolic approximation of a metric space X, H(X), is a graph defined
as follows. Fix a positive s ≤ 1

6 which is called the parameter of H(X). For
every k ∈ Z, let Ak ∈ X be an sk-approximation of X. For every a ∈ Ak,
consider the ball B(a, 2sk) ⊂ X. Let us define, for every k, the set V ∗

k :=
{B(a, 2sk) | a ∈ Ak} and a set Vk which has a vertex corresponding to each
ball in V ∗

k . Then let V = ∪k∈ZVk be the set of vertices of the graph H(X).
Thus, every vertex v ∈ V corresponds to some ball B(a, 2sk) with a ∈ Ak for
some k. Let us denote the corresponding ball to v ∈ V simply by B(v).

There is a natural level function l : V → Z defined by l(v) = k for v ∈ Vk.
Vertices v, v′ are connected by an edge if and only if they either belong to

the same level, Vk, and the closed balls B̄(v), B̄(v′) intersect, B̄(v)∩B̄(v′) 
= ∅,
or they lie on neighboring levels Vk, Vk+1 and the ball of the upper level, Vk+1,
is contained in the ball of the lower level, Vk.

Since Ak is an sk-approximation of X for any k ∈ Z and s ≤ 1
6 , every

vertex in Vk has a neighbor in Vk+1.
An edge vv′ ⊂ H(X) is called horizontal if its vertices belong to the same

level, v, v′ ∈ Vk for some k ∈ Z. Other edges are called radial. Consider the
path metric on X for which every edge has length 1.

Note that any (finite or infinite) sequence {vk} ∈ V such that vkvk+1 is
a radial edge for every k and such that the level function l is monotone along
{vk}, is the vertex sequence of a geodesic in H(X). Such a geodesic is called
radial.

Proposition 9 [13, Proposition 6.2.10]. For any metric space (X, d), H(X) is
a geodesic 3-hyperbolic space.

Assume now that X is bounded and non-trivial. Then, since s < 1, there is
a maximal integer k with diam X < sk and it is denoted by k0 = k0(diam X, s).
Then, for every k ≤ k0 the vertex set Vk consists of one point, and therefore
contains no essential information about X. Thus, the graph H(X) can be
modified making Vk = ∅ for every k < k0. This modified graph is called the
truncated hyperbolic approximation of X, Ht(X). The level function l restricted
to Ht(X) has a unique minimum, v, with l(v) = k0. This point v can be con-
sidered as the natural base point of the truncated hyperbolic approximation.

Theorem 10 [13, Proposition 6.4.1]. Let Γ be a truncated hyperbolic approxi-
mation of a complete bounded metric space (X, d). Then there is a canonical
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identification ∂∞Γ = X under which the metric d of X is a visual metric on
∂∞Γ with respect to the natural base point v of Γ and the parameter a = 1

s .

The following definition appeared in [36] and was inspired by the defini-
tion of a metric space having bounded geometry in [9].

Definition 1. Given a metric space (X, d), we say that X has strongly bounded
geometry if for every K > 0 there exists M > 0 such that the following
condition is satisfied: for any ε > 0, any ε-approximation of X, Aε, and any
x ∈ X, |Aε ∩ B(x,Kε)| < M .

Remark 3. Note that if ε > diam X, then |Aε| = 1 and |Aε ∩ B(x,Kε)| ≤
|Aε| = 1. Hence, in order to check whether X has strongly bounded geometry
or not, it suffices to consider 0 < ε ≤ diam X.

Theorem 11 [13, Corollary 7.1.6]. Visual hyperbolic geodesic spaces X,X ′ with
bilipschitz equivalent boundaries at infinity are roughly similar to each other.
In particular, every visual hyperbolic space (i.e. every hyperbolic space with
a pole) is roughly similar (and therefore, quasi-isometric) to any (truncated)
hyperbolic approximation of its boundary at infinity; and any two hyperbolic
approximations of a complete bounded metric space Z are roughly similar (and
therefore, quasi-isometric) to each other.

Proposition 12 [36, Proposition 4.14]. If G is a hyperbolic uniform graph with
a pole, then ∂∞G with any visual metric has strongly bounded geometry.

Proposition 13 [36, Proposition 4.11]. If the metric space (X, d) has strongly
bounded geometry, then H(X) is uniform.

4. Parabolicity and Graph Decomposition

The following results are useful, as Proposition 4, in order to determine if a
graph is p-parabolic or not.

Proposition 14. Let G1, G2 be two uniform graphs such that V0 :=
(
V (G1) ∪

V (G2)
)\(

V (G1)∩V (G2)
)
is a finite set and such that the subgraphs of G1 and

G2 induced by V (G1)∩V (G2) are the same. Then G1 is p-parabolic if and only
if G2 is p-parabolic.

Proof. Let us define for each i = 1, 2,

R := ∪v∈V0N(v), Si :=
(
V0 ∪ R

) ∩ V (Gi).

If u1 : V (G1) → R has finite support and u1|S1 = 1, then the function u2 :
V (G2) → R defined by u2|S2 = 1 and u2|V (G2)\S2 = u1 has finite support and
Dp,G2(u2) = Dp,G1(u1). Hence, capp(S2, G2) ≤ capp(S1, G1). By symmetry,
we have the converse inequality and Theorem 1 gives that G1 is p-parabolic if
and only if G2 is p-parabolic. �
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Proposition 15. Let G be a uniform graph and consider a finite or countable
set {en} ⊆ E(G) and 1 < p < ∞. Let us consider the graph G′ obtained from
G by replacing each edge en by a path of length �n for each n.

(1) If G is p-parabolic, then G′ is p-parabolic.
(2) If supn �n < ∞, then G is p-parabolic if and only if G′ is p-parabolic.

Proof. Let us fix S ⊂ V (G) ⊂ V (G′) and denote by vn and wn the incident
vertices to en.

Consider u : V (G) −→ R with finite support and u|S = 1. Define the
function u′ : V (G′) −→ R defined as u′|V (G) := u and if z ∈ V (G′) \ V (G),
then z is contained in the path of length �n for some n and

u′(z) := u(vn) + dG′(z, vn)
u(wn) − u(vn)

�n
.

It is clear that u′ has finite support and u′|S = 1. Since p > 1, we have
∣
∣u(wn) − u(vn)

∣
∣p ≥ �n

∣
∣
∣
u(wn) − u(vn)

�n

∣
∣
∣
p

and so, Dp,G′(u′) ≤ Dp,G(u). Thus, capp(S,G′) ≤ capp(S,G) and Theorem 1
gives that G′ is p-parabolic if G is p-parabolic.

Assume now that supn �n = � < ∞. Consider U : V (G′) −→ R with
finite support and U |S = 1. Define the function U0 : V (G) −→ R defined as
U0 := U |V (G). It is clear that U0 has finite support and U0|S = 1.

Fix n and denote by {zj}�n
j=0 the vertices contained in the path of length

�n with dG′(zj , vn) = j (thus, z0 = vn and z�n = wn). If xj :=
∣
∣U(zj)−U(zj−1)

∣
∣

for 1 ≤ j ≤ �n, then

∣
∣U0(wn) − U0(vn)

∣
∣p ≤

⎛

⎝
�n∑

j=1

xj

⎞

⎠

p

≤ �p−1
n

�n∑

j=1

xp
j ≤ �p−1

�n∑

j=1

xp
j .

and so, Dp,G(U0) ≤ �p−1Dp,G′(U).
Thus, capp(S,G) ≤ �p−1 capp(S,G′) and Theorem 1 gives that G is p-

parabolic if G′ is p-parabolic. �

Proposition 16. Let G be a uniform graph and 1 < p < ∞. Consider some
constant K > 1 and a finite or countable set ∪n{vj

n}kn
j=1 ⊆ V (G) with {vj

n}kn
j=1∩

{vj
m}km

j=1 = ∅ for n 
= m and 1 < kn ≤ K for every n. Let us consider the graph
G′ obtained from G by identifying the vertices {vj

n}kn
j=1 at a single vertex v∗

n

for each n, with N(v∗
n) = ∪kn

j=1N(vj
n)\{vj

n}kn
j=1 for each n. If G′ is p-parabolic,

then G is p-parabolic. Furthermore, if ∪n{vj
n}kn

j=1 is a finite set, then G′ is
p-parabolic if and only if G is p-parabolic.

Proof. Proposition 14 gives the second statement. Let us prove the first one.
Suppose G is μ-uniform. Therefore, G′ is (K · μ)-uniform.
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Consider S′ = {v∗
1} and a function u′ on V (G′) with finite support and

u′|S′ = 1. Let us define S = {vj
1}k1

j=1 and a function u on V (G) as follows:
u(vj

n) = u′(v∗
n) for each n and j, and u(v) = u′(v) if v 
= vj

n for every n and j.
Thus, u has finite support and u|S = 1.

Notice that, since G is μ-uniform, |N(w)∩{vj
n}kn

j=1| ≤ μ for any w ∈ V (G).
Therefore, Dp,G(u) ≤ μ · Dp,G′(u′). Consequently,

capp(S,G) ≤ μ · capp(S
′, G′)

and Theorem 1 gives that G is p-parabolic, since G′ is uniform and p-parab-
olic. �

Let us denote diam(A) := supx,y∈A d(x, y).

Proposition 17. Let G be a uniform graph and 1 < p < ∞. Consider some con-
stant D > 1 and a finite or countable set ∪n{vj

n}kn
j=1 ⊆ V (G) with diam({vj

n}kn
j=1)

< D for every n. Let us consider the graph G′ obtained from G by identi-
fying the vertices {vj

n}kn
j=1 at a single vertex v∗

n for each n, with N(v∗
n) =

∪kn
j=1N(vj

n)\ ∪kn
j=1 {vj

n} for each n. Then G is p-parabolic if and only if G′ is
p-parabolic.

Proof. Since G is uniform, if diam({vj
n}kn

j=1) < D, then there exists some con-
stant K such that kn ≤ K for every n. Thus, by Proposition 16, if G′ is
p-parabolic, then G is p-parabolic.

Suppose G is p-parabolic and let v0 ∈ V (G)\ ∪n {vj
n}kn

j=1. Then, by The-
orem 1, for every i ∈ N there is a function ui : V (G) → R with finite support
and ui(v0) = 1 such that Dp,G(ui) < 1

i . Let us define u∗
i : V (G′) → R so that

u∗
i (w) = ui(w) for every w ∈ V (G)\∪n {vj

n}kn
j=1 and u∗

i (v
∗
n) := ui(v1

n) for every
n ∈ N. Then, u∗

i (v0) = 1 and u∗
i has finite support.

For each n ∈ N, let

An =
{
vw ∈ E(G) : v ∈ B(v1

n,D), w ∈ N(v)
}
,

dn = max
{|ui(v) − ui(w)| : vw ∈ An

}
.

If G is μ-uniform, in B(v, 2D) there are at most

1 + μ + μ2 + · · · + μ2D =
μ2D+1 − 1

μ − 1

vertices, for every v ∈ V (G). Thus,
∣
∣{k : B(v1

n,D) ∩ B(v1
k,D) 
= ∅}∣

∣

≤ ∣
∣ B(v1

n, 2D) \ {v1
n}∣

∣

≤ μ2D+1 − 1
μ − 1

− 1 =
μ2D+1 − μ

μ − 1
,

and so, an edge in E(G) belongs at most to μ2D+1−μ
μ−1 different sets An.
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Notice that, since diam({vj
n}kn

j=1) < D, for every vertex w ∈ V (G′) adja-
cent to v∗

n,

|u∗
i (v

∗
n) − u∗

i (w)| ≤ D · dn.

Also, since G is uniform and diam({vj
n}kn

j=1) < D, there is a constant μ′ such
that G′ is μ′-uniform. Therefore,

Dp,G′(u∗
i ) ≤ μ2D+1 − μ

μ − 1
μ′ · Dp · Dp,G(ui) <

μ2D+1 − μ

μ − 1
μ′Dp

i
.

Hence, G′ is p-parabolic by Theorem 1. �

In general, a graph obtained by attaching a countable set of p-parabolic
graphs through arbitrary subsets of vertices is not necessarily a p-parabolic
graph. However, the following result provides sufficient conditions for G to be
p-parabolic.

Theorem 18. Consider 1 < p < ∞ and a finite or countable set of graphs
{Gn}N

n=0 (1 ≤ N ≤ ∞). Let G be the graph obtained from {Gn}N
n=0 as follows:

given some D ∈ N, a finite or countable set of vertices {vn,j}Nn
j=1 ⊆ V (Gn) with

1 ≤ Nn < ∞ and diam({vn,j}Nn
j=1) < D for each n ≥ 1, and a set of vertices

∪N
n=1{v0

n,j}Nn
j=1 ⊆ V (G0), G is the graph obtained by identifying vn,j with v0

n,j

for each n, j ≥ 1. If G is a uniform graph, then G is p-parabolic if and only if
Gn is p-parabolic for every n ≥ 0.

Proof. Note that Gn is uniform for every n ≥ 0 since G is uniform.
If G is p-parabolic, then Proposition 4 gives that Gn is p-parabolic for

every n ≥ 0.
Assume now that Gn is p-parabolic for every n ≥ 0.
By Proposition 17 it suffices to prove that the graph G′ obtained from G

by identifying the vertices {vn,j = v0
n,j}Nn

j=1 at a single vertex v∗
n for each n ≥ 1

is p-parabolic. Also, by Proposition 17, if G′
n is the corresponding subgraph of

G′ obtained by the identification of these vertices in Gn, then G′
n is p-parabolic

for each n ≥ 0. Therefore, it suffices to prove that G is p-parabolic assuming
that Nn = 1 for every n ≥ 1.

Since G0 is a p-parabolic graph, given ε > 0 and a non-empty finite
subset S0 ⊂ V (G0), by Theorem 1 there exists a function u0 on V (G0) with
finite support, u0|S0 = 1 and Dp,G0(u0) < ε/2. Since u0 has finite support and
G is a uniform graph, there is K such that u0(v0

n,1) = 0 for every n > K.
Since G1, . . . , GK are p-parabolic graphs, if we choose the finite sets S1 =
{v1,1}, . . . , SK = {vK,1}, then Theorem 1 gives that there exist functions un

on V (Gn) with finite support, un(vn,1) = u0(v0
n,1) and Dp,Gn

(un) < ε/2n+1

for each 1 ≤ n ≤ K.
Define a function u on V (G) as follows: u|V (G0) = u0, u|V (Gn) = un for

each 1 ≤ n ≤ K and u|V (Gn) = 0 for each n > K. It is clear that u has finite
support, u|S0 = 1 and
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Dp,G(u) = Dp,G0(u0) +
K∑

n=1

Dp,Gn
(un) <

ε

2
+

K∑

n=1

ε

2n+1
< ε.

Since G is a uniform graph, Theorem 1 gives that G is p-parabolic. �

5. Parabolicity of Hyperbolic Graphs

Given a subset A in metric space (X, d) let us denote diam(A) :=
supx,y∈A d(x, y).

Definition 2. A metric space (X, d) is locally perfect at the point x ∈ X if there
exist ε0 > 0 and λ > 1 such that diam(B(z, ε)) > ε

λ for every z ∈ B(x, ε0) and
every 0 < ε < ε0.

Theorem 19. If G is a hyperbolic uniform graph with a pole such that ∂∞G is
locally perfect at some point for some visual metric, then G is non-p-parabolic
for every 1 < p < ∞.

Proof. Suppose that ∂∞G is locally perfect at the point x for some visual
metric d∞ with parameters ε0 and λ. Let us assume, with no loss of generality,
that ε0 < diam(∂∞G). Consider some parameter s < min{ 1

6 , 1
2λ} and let Γ be

the truncated hyperbolic approximation of ∂∞G with parameter s.
Now, let m ∈ N be such that 2sm < ε0 and let a ∈ B(x, ε0) ∩ Am. Let v

be the vertex in Γ such that B(v) = B(a, 2sm). Since ∂∞G is locally perfect,
diam(B(a, sm)) > sm

λ > 2sm+1. Hence, there are two points z1, z2 ∈ B(a, sm)
with d∞(z1, z2) > 2sm+1, and since Am+1 is a maximal sm+1-separated set,
there are two points a1 ∈ B(z1, s

m+1)∩Am+1, a2 ∈ B(z2, s
m+1)∩Am+1 so that

B(a1, 2sm+1) 
= B(a2, 2sm+1). Hence, there are two different vertices w1, w2

in Γ with B(wi) = B(ai, 2 sm+1) for i = 1, 2 and such that vw1 and vw2 are
radial edges in Γ.

Since every vertex v as above has two adjacent vertices in the next level of
Γ it follows that Γ contains a Cantor tree as a subgraph. Thus, by propositions
3 and 4, Γ is non-parabolic for every 1 < p < ∞.

Therefore, by Theorem 11 and propositions 12 and 13, G and Γ are quasi-
isometric uniform graphs and by Proposition 2, G is non-p-parabolic for every
1 < p < ∞. �

Given two sequences of positive integers L = {�n}∞
n=1 and R = {rn}∞

n=1,
with 2 ≤ rn ≤ N for every n ≥ 1 and some constant N , the Cantor tree
(TL,R, v0) is a rooted tree such that the root, v0, has degree r1, the vertices at
distance �1 + · · · + �n−1 have degree rn + 1, and any other vertex has degree
two. In [36] we gave the following characterization of p-parabolicity for Cantor
trees.
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Theorem 20. [36, Theorem 7] Given 1 < p < ∞ and sequences L = {�n}∞
n=1

and R = {rn}∞
n=1, the Cantor tree (TL,R, v0) is p-parabolic if and only if

∞∑

k=1

�k

(r1 · · · rk)1/(p−1)
= ∞.

Using the same ideas, we can obtain a sufficient condition for a hyperbolic
uniform graph to be p-parabolic. Moreover, Theorem 22 bellow, when p = 2
is a consequence of Corollary 2.6 in [48]. Let us recall the following Lemma:

Lemma 21 [39, Lemma 11]. Let 1 < p < ∞, a1, . . . , an > 0, f : [0,∞)n → R

given by

f(y1, . . . , yn) = a1y
p
1 + · · · + anyp

n,

and

D = {y = (y1, . . . , yn) ∈ R
n : yk ≥ 0 for 1 ≤ k ≤ n and y1 + · · · + yn = 1}.

Then the minimum of f on D is attained at the point y0 with

y0
k = a

−1/(p−1)
k

⎛

⎝
n∑

j=1

a
−1/(p−1)
j

⎞

⎠

−1

for 1 ≤ k ≤ n, and

min
y∈D

f(y) = f(y0) =

(
n∑

k=1

a
−1/(p−1)
k

)−(p−1)

.

Theorem 22. Let G be a hyperbolic uniform graph with a pole and some visual
metric d on ∂∞G and let 0 < s ≤ 1

6 and 1 < p < ∞. If there exist two
sequences of positive integers {�n}∞

n=1 and {rn}∞
n=1, with rn ≥ 2 for every

n ≥ 1,
∞∑

k=1

�k

(r1 · · · rk)2/(p−1)
= ∞,

and for every point x ∈ ∂∞G, the ball B(x, 2sLk−1) contains at most rk points
which are sLk -separated (where L0 = 0 and Lk =

∑k
j=1 �j), then G is p-

parabolic.

Proof. Let Γ be the truncated hyperbolic approximation of (∂∞G, d) with
parameter s and let us denote by dΓ the usual minimal path distance in the
graph Γ. Let us assume that the maximal integer k with diam X < sk, k0,
satisfies k0 ≤ 0. Otherwise, it suffices to extend the truncated hyperbolic
approximation considering Vk to be a single point for every 0 ≤ k < k0.

Let S = ∪k≤0Vk. By Proposition 8, ∂∞G is compact. Therefore, S is
finite.

For each m ∈ N let us consider a decreasing sequence {uk}m
k=0 with 1 = u0

and um = 0 and define a function um : V (Γ) → R such that:
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• um(w) = u0 = 1 for every w ∈ Vk with k ≤ 0,
• um(w) = uk for every w ∈ VLk

(that is, for every w ∈ Γv such that
dΓ(v, w) = Lk =

∑k
j=1 �j),

• um(w) = uk−1 − uk−1−uk

�k
i for every w such that dΓ(v, w) = Lk−1 + i for

every 1 ≤ k ≤ m and every 1 < i < �k,
• um(w) = um = 0 for every w such that dΓ(v, w) ≥ Lm =

∑m
j=1 �j .

As we saw above, V0 is finite. For each fixed v ∈ V0, let Γv be the subgraph
of Γ induced by v and all the vertices in ∪k>0Vk which are connected to v by
radial edges. Let V v

k := Vk ∩ Γv.
Claim: capp(v,Γv) = 0.
Since each ball B(x, 2sLk−1) contains at most rk points which are sLk -

separated, then if Lk−1 < i ≤ Lk, for each vertex w in Vi−1 there are at most
rk vertices in Vi connected to w by radial edges. Therefore, the set V v

i has at
most r1 · · · rk vertices and there are at most (r1 · · · rk)2 radial edges between
V v

i−1 and V v
i (notice that the balls associated to the vertices in Vi−1 may all

intersect and a vertex from Vi can be joined by a radial edge to every vertex
in Vi−1). Thus,

1
2
Dp,Γv

(um) ≤ |u0 − u1|p
�p
1

r2
1�1 + · · · +

|um−1 − um|p
�p
m

(r1 · · · rm)2�m

=
m∑

k=1

(r1 · · · rk)2|uk−1 − uk|p
�p−1
k

.

By Lemma 21, with ak = (r1 · · · rk)2�−(p−1)
k , the minimum possible value

of 1
2Dp,Γv

(um) is

(
m∑

k=1

(
(r1 · · · rk)2�−(p−1)

k

)−1/(p−1)
)−(p−1)

=

(
m∑

k=1

�k

(r1 · · · rk)2/(p−1)

)−(p−1)

.

Therefore, if
∑∞

k=1
�k

(r1···rk)2/(p−1) = ∞, it follows that capp(v,Γv) = 0.
Since V0 is finite and, by the definition of um, the horizontal edges do

not contribute to Dp,Γ(um), it is immediate to see that capp(v,Γ) = 0. By
propositions 12 and 13, Γ is uniform. Hence, by Theorem 1, Γ is p-parabolic.

Thus, by Theorem 11, G and Γ are quasi-isometric uniform graphs, and
by Proposition 2, G is p-parabolic. �

Corollary 23. Let G be a hyperbolic uniform graph with a pole and some visual
metric d on ∂∞G and let 0 < s ≤ 1

6 and 1 < p < ∞. If there exist a sequence
of positive integers {�n}∞

n=1 and a constant N such that

lim
k→∞

�k+1

�k
> N

2
p−1 ,
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and for every point x ∈ ∂∞G, the ball B(x, 2sLk−1) contains at most N points
which are sLk -separated (where L0 = 0 and Lk =

∑k
j=1 �j), then G is p-

parabolic.

Proof. Notice that

lim
k→∞

�k+1

�k
> N

2
p−1 ⇔ lim

k→∞

�k+1

N(2k+2)/(p−1)

�k
N2k/(p−1)

> 1,

and by the D’Alembert criterion it follows that
∞∑

k=1

�k

N2k/(p−1)
= ∞. �

6. Parabolicity and Isoperimetric Inequality

From Theorem 19 and Theorem 24 bellow we can immediately prove Theorem
25. This could also be obtained from Theorem 1.1 in [4]

Definition 3. The combinatorial Cheeger isoperimetric constant of a graph G
is defined to be

h(G) = inf
U

|∂U |
|U | ,

where U ranges over all non-empty finite subsets of vertices in G, ∂U = {v ∈
G | dG(v, U) = 1} and |U | denotes the cardinality of the set U .

A graph G satisfies the (Cheeger) isoperimetric inequality if h(G) > 0,
since this means that

|U | ≤ h(G)−1|∂U |
for every finite set of vertices U .

Let us recall the following from [38].

Definition 4. Given a metric space (X, d) and a constant A > 1, we say that
(X, d) is A-uniformly perfect if there exists some ε0 > 0 such that for every
0 < ε ≤ ε0 and every x ∈ X there exist a point y ∈ X such that ε/A <
d(x, y) ≤ ε. We say that (X, d) is uniformly perfect if there exists some A such
that (X, d) is A-uniformly perfect.

Theorem 24 [38, Theorem 5]. Given a uniform hyperbolic graph G, then
h(G) > 0 if and only if G is an infinite graph with a pole and ∂∞G is uniformly
perfect for some visual metric.

Theorem 25. Given a uniform hyperbolic graph G, if h(G) > 0, then G is
non-p-parabolic for every 1 < p < ∞.
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Proof. Since h(G) > 0, by Theorem 24, G has a pole. Also, since ∂∞G is
uniformly perfect for some visual metric, there exist A > 0 and ε0 > 0 such
that diam(B(z, ε)) > ε

A for any z ∈ ∂∞G and any 0 < ε < ε0. This means
that ∂∞G with that visual metric is locally perfect and, by Theorem 19, G is
non-p-parabolic for every 1 < p < ∞. �
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Europ. Syst. Autom. 8, 45–60 (2002)

[30] Jonckheere, E. A. and Lohsoonthorn, P. (2004) Geometry of network security.
Amer. Control Conf. 111–151

[31] Kanai, M.: Rough isometries and combinatorial approximations of geometries of
non-compact Riemannian manifolds. J. Math. Soc. Jpn. 37, 391–413 (1985)

[32] Kanai, M.: Rough isometries and the parabolicity of Riemannian manifolds. J.
Math. Soc. Jpn. 38, 227–238 (1986)

[33] Kanai, M., Analytic inequalities and rough isometries between non-compact
Riemannian manifolds. In: Curvature and Topology of Riemannian manifolds.
Katata Lecture Notes in Math. 1201. Springer, Berlin, pp 122–137 (1985)

[34] Mart́ınez-Pérez, A., Chordality properties and hyperbolicity on graphs. Electron.
J. Combinat. 23 (3) 3.51 (2016)
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Álvaro Mart́ınez-Pérez
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Departamento de Matemáticas
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