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Abstract. We investigate the asymptotic behaviour of the sequence of for-
ward type iterations of a given random-valued vector function on the state
space being a separable and complete metric space. Assuming non-linear
contraction in mean we prove that the considered sequence converges
weakly to a random variable with a finite first moment and independent
of the initial state. Moreover, we show that the speed of this convergence
does not have to be geometric. We also present examples illustrating the
result obtained.
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1. Introduction

Fix a probability space (Ω,A,P) and a metric space X. Let B(X) denote the
σ-algebra of all Borel subsets of X.

We say that f : X × Ω → X is a random-valued function (shortly: an rv-
function) if it is measurable for the product σ-algebra B(X) ⊗ A. The iterates
of such an rv-function are given by

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f(fn−1(x, ω1, ω2, . . .), ωn)

for n ∈ N, x ∈ X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that fn : X ×
Ω∞ → X is an rv-function on the product probability space (Ω∞,A∞,P∞).
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More exactly, one can show that for n ∈ N the n-th iterate fn is measurable
for B(X) ⊗ An, where An denotes the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}
with A from the product σ-algebra An.

The iterates so defined were introduced independently in [4] and [9] with
reference to functional equations (see e.g. [3,7,18]). In a broader context they
form random forward iterations (see e.g. [8,13]), also known as outer itera-
tions (see e.g. [11]). These iterates are prototypes of random dynamical sys-
tems (see [1, Section 1.1]; cf. [22]) and they have Markov property. The family
{f(·, ω) : ω ∈ Ω} forms an iterated function system (IFS for abbreviation) in
which functions f(·, ω) are choosing independently with probability P. A gen-
eralization of this concept, devoted to random iteration with place-dependent
probabilities, can be found, e.g., in [16, Section 3] and [25]. As in the men-
tioned papers we will express asymptotic behaviour of our iterates by the
convergence in law. In fact, this type of convergence of iterations is closely
related to the asymptotic stability of Markov operators with the kernel of the
form (x,B) �→ ∫

Ω
1B(f(x, ω))P(dω), determined by a fixed rv-function f . For

details see [14] and for a more complete point of view we refer the reader to
[13,17,20] and the references therein; we only mention here that Markovian
operator P is asymptotically stable, if it has an invariant measure μ∗, i.e.,
Pμ∗ = μ∗, which attracts any probability Borel measure. There are many
papers in which the convergence in law of iterates of rv-functions and the sta-
bility of Markov operators with the kernel determined by an rv-function are
investigated; however usually a kind of Lipschitz contraction on the rv-function
considered is assumed (see e.g. [2,6,8,15]).

This paper aims to extend the results on convergence in law of iterates of
random-valued functions that are mean contractive in the conventional sense
to the case where only a weak (non-linear) form of the mean contractivity is
assumed and examine how fast the sequence of iterates converges. The speed
of convergence obtained does not have to be geometric as in the Lipschitz case.
Let us mention that results [21, Theorem 9.2] and [23, Theorem 6.3.2] involve
the same form of the contractivity property as that employed in the manuscript
pertain to IFS with place-dependent probabilities of choosing them, but for
finite many transformations and bring only asymptotic stability of IFS.

2. Preliminaries

Let (X, ρ) be a complete and separable metric space. By M1(X) we denote
the set of all probability measures defined on B(X). Lipα(X) denotes the set of
all real functions defined on X that meet a Lipschitz condition with a constant
α ∈ [0,∞), and

Lipb
1(X ) = {ϕ ∈ Lip1(X ) : ϕ is bounded}.
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It is well known (see [10, Theorem 11.3.3]) that the weak convergence of
probability Borel measures on X is metrizable by the Fortet-Mourier metric
dFM : M1(X) × M1(X) → [0,∞) given by

dFM (μ, ν) = sup
{∣

∣
∣
∣

∫

X

ϕdμ −
∫

X

ϕdν

∣
∣
∣
∣ : ϕ ∈ Lip1(X ), |ϕ(x)| ≤ 1 for x ∈ X

}

.

Moreover we will use the Hutchinson metric (see [12,19]), also known as
Wasserstein or Kantorovich-Rubinstein distance [24], defined by

dH(μ, ν) = sup
{∣

∣
∣
∣

∫

X

ϕdμ −
∫

X

ϕdν

∣
∣
∣
∣ : ϕ ∈ Lipb

1(X )
}

.

According to [15, Lemma 3.1(i)],

dH(μ, ν) = sup
{∣

∣
∣
∣

∫

X

ϕdμ −
∫

X

ϕdν

∣
∣
∣
∣ : ϕ ∈ Lip1(X )

}

for μ, ν ∈ M1
1(X),

(1)

where

M1
1(X) =

{

μ ∈ M1(X) :
∫

X

ρ(x, x0)μ(dx) < ∞
}

with an arbitrarily fixed x0 ∈ X; the definition does not depend on the choice
of x0.

Remark 2.1 [see [24, Theorem 6.18], cf. [15, Theorem 3.3 and Remark 3.2]].
The metric space (M1

1(X), dH |M1
1(X)×M1

1(X)) is complete.

Remark 2.2 [see [15, Theorem 3.3]]. The set M1
1(X) is dense in (M1(X), dFM ).

3. Main result

We employ the following hypothesis.
(H) (X, ρ) is a separable and complete metric space and f : X ×Ω → X is an

rv-function such that
∫

Ω

ρ(f(x, ω), f(z, ω))P(dω) ≤ ψ(ρ(x, z)) for x, z ∈ X

with a concave function ψ : [0,∞) → [0,∞).

Remark 3.1. If ψ : [0,∞) → [0,∞) is concave, then it is non-decreasing.

Proof. Suppose, towards a contradiction, that there are t1, t2 ∈ [0,∞) such
that t1 < t2 and ψ(t2) < ψ(t1). Fix α ∈ (ψ(t2)

ψ(t1)
, 1) and put t = t2−αt1

1−α . Then

ψ(t2) = ψ(αt1 + (1 − α)t) ≥ αψ(t1) + (1 − α)ψ(t),

and hence ψ(t) ≤ ψ(t2)−αψ(t1)
1−α < 0, a contradiction. �
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Proposition 3.1. Assume (H) and define P : M1(X) → M1(X) by

(Pμ)(B) =
∫

X

(∫

Ω

1B(f(x, ω))P(dω)
)

μ(dx) for B ∈ B(X). (2)

Then
dH(Pμ, Pν) ≤ ψ(dH(μ, ν)) for μ, ν ∈ M1

1(X).

Proof. Observe first that for any Borel ϕ : X → R, which is non-negative or
bounded, we have

∫

X

ϕd(Pμ) =
∫

X

(∫

Ω

ϕ(f(x, ω))P(dω)
)

μ(dx) for μ ∈ M1(X). (3)

Fix μ, ν ∈ M1
1(X) and denote by Λ(μ, ν) the collection of all probability

Borel measures λ on X × X such that

λ(B × X) = μ(B) and λ(X × B) = ν(B) for B ∈ B(X).

If λ ∈ Λ(μ, ν), then
∫

X×X

ρdλ ≤
∫

X×X

(ρ(x, x0) + ρ(x0, z)) λ(d(x, z))

=
∫

X

ρ(x, x0)μ(dx) +
∫

X

ρ(x0, z)ν(dz) < ∞.

Therefore, the formula

T (λ) =
∫

X×X

ρdλ for λ ∈ Λ(μ, ν)

defines a functional T : Λ(μ, ν) → [0,∞).
If λ ∈ Λ(μ, ν) and ϕ ∈ Lipb

1(X ), then by (3), (H) and Jensen’s inequality
(see [10, 10.2.6]), we have

∣
∣
∣
∣

∫

X

ϕd(Pμ) −
∫

X

ϕd(Pν)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

X×X

(∫

Ω

(ϕ(f(x, ω)) − ϕ(f(z, ω)))P(dω)
)

λ(d(x, z))
∣
∣
∣
∣

≤
∫

X×X

(∫

Ω

∣
∣ϕ(f(x, ω)) − ϕ(f(z, ω))

∣
∣P(dω)

)

λ(d(x, z))

≤
∫

X×X

(∫

Ω

ρ(f(x, ω), f(z, ω))P(dω)
)

λ(d(x, z))

≤
∫

X×X

ψ
(
ρ(x, z)

)
λ(d(x, z)) ≤ ψ

(∫

X×X

ρ(x, z)λ(d(x, z))
)

= ψ
(
T (λ)

)
,

and hence
dH(Pμ, Pν) ≤ ψ

(
T (λ)

)
for λ ∈ Λ(μ, ν). (4)
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Applying (1) and the Kantorovich-Rubinstein Theorem (see [10, Theorem
11.8.2]) we conclude that there exists λ0 ∈ Λ(μ, ν) such that

dH(μ, ν) = inf
{∫

X×X

ρdλ : λ ∈ Λ(μ, ν)
}

=
∫

X×X

ρdλ0.

This jointly with (4) implies

dH(Pμ, Pν) ≤ ψ(T (λ0)) = ψ

(∫

X×X

ρdλ0

)

= ψ(dH(μ, ν)),

and the proof is complete. �

Corollary 3.1. Assume (H) and let P : M1(X) → M1(X) be the operator
given by (2). If there exists x0 ∈ X such that

∫

Ω

ρ(f(x0, ω), x0)P(dω) < ∞, (5)

then P (M1
1(X)) ⊂ M1

1(X) and for every n ∈ N we have

dH(Pnμ, Pnν) � ψn(dH(μ, ν)) for μ, ν ∈ M1
1(X). (6)

Proof. If μ ∈ M1
1(X), then by (3) with ϕ = ρ(·, x0) we obtain

∫

X

ρ(x, x0)(Pμ)(dx) =
∫

X

(∫

Ω

ρ(f(x, ω), x0)P(dω)
)

μ(dx)

≤
∫

X

(∫

Ω

ρ(f(x, ω), f(x0, ω))P(dω)
)

μ(dx)

+
∫

Ω

ρ(f(x0, ω), x0)P(dω)

≤
∫

X

ψ(ρ(x, x0))μ(dx) +
∫

Ω

ρ(f(x0, ω), x0)P(dω)

≤ ψ

(∫

X

ρ(x, x0)μ(dx)
)

+
∫

Ω

ρ(f(x0, ω), x0)P(dω).

Thus (5) implies Pμ ∈ M1
1(X).

By Proposition 3.1 we see that (6) holds for n = 1. If (6) holds for some
n ∈ N, then Proposition 3.1 and Remark 3.1 for μ, ν ∈ M1

1(X) imply

dH(Pn+1μ, Pn+1ν) ≤ ψ(dH(Pnμ, Pnν)) ≤ ψ(ψn(dH(μ, ν)))

= ψn+1(dH(μ, ν)),

which completes the proof. �

Given an rv-function f : X×Ω → X we denote by πf
n(x, ·) the distribution

of fn(x, ·), i.e.,

πf
n(x,B) = P

∞(fn(x, ·) ∈ B) for n ∈ N ∪ {0}, x ∈ X and B ∈ B(X).

Clearly, for every x ∈ X, πf
0 (x, ·) = δx, the Dirac measure concentrated at

x, and πf
1 (x, ·) is the distribution of f(x, ·). One can check that πf

n+1(x, ·) =
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Pπn
f (x, ·) holds for x ∈ X and μ ∈ M1(X) (see [14]), which implies πf

n+1(μ, ·) =
Pπf

n(μ, ·) for any μ ∈ M1(X), with πf
n(μ, ·) =

∫
X

πf
n(x, ·)μ(dx), and shows that

operator P given by (2) is the transition operator of the sequence of iterates
under consideration. It turns out that this operator is asymptotically stable.
In fact, the following theorem gives what follows.

Theorem 3.1. Assume (H) with ψ satisfying also

ψ(t) < t for t ∈ (0,∞). (7)

If (5) holds with some x0 ∈ X, then the operator P : M1(X) → M1(X) given
by (2) admits an invariant measure πf ∈ M1

1(X) and

dH(Pnμ, πf ) ≤ ψn(dH(μ, πf )) for μ ∈ M1
1(X) and n ∈ N, (8)

dH(πf
n(x, ·), πf ) ≤ ψn(dH(δx, πf )) ≤ ψn

(∫

X

ρ(x, z)πf (dz)
)

for x ∈ X and n ∈ N.

(9)

Moreover,
lim

n→∞ dFM (Pnμ, πf ) = 0 for μ ∈ M1(X).

Proof. From Corollary 3.1, Remark 2.1 and the Boyd-Wong Theorem (see [5,
Theorem 1]) we conclude that there exists a measure πf ∈ M1

1(X) such that

Pπf = πf

and
lim

n→∞ dH(Pnμ, πf ) = 0 for μ ∈ M1
1(X). (10)

By Corollary 3.1 we have (8).
To get the first inequality in (9), observe that by a simple induction for

all x ∈ X and n ∈ N ∪ {0} we have

Pnδx = πf
n(x, ·); (11)

indeed, P 0δx = δx = πf
0 (x, ·) and if (11) holds for some n ∈ N ∪ {0}, then

(Pn+1δx)(B) = (P (πf
n(x, ·)))(B) =

∫

X

(∫

Ω

1B(f(z, ω))P(dω)
)

πf
n(x, dz)

=
∫

Ω∞

(∫

Ω

1B(f(fn(x, ω), ω′))P(dω′)
)

P
∞(dω)

=
∫

Ω∞
1B(fn+1(x, ω))P∞(dω) = πf

n+1(x,B)

for every B ∈ B(X) (cf. [14, Proposition 2.1]). Since δx ∈ M1
1(X) for every

x ∈ X, Corollary 3.1 and (11) imply πf
n(x, ·) ∈ M1

1(X) for all x ∈ X and
n ∈ N. Therefore, the first inequality in (9) follows from (8) and (11).
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For the prove of the second inequality in (9), note that if x ∈ X and
ϕ ∈ Lipb

1(X ), then
∣
∣
∣
∣

∫

X

ϕdδx −
∫

X

ϕdπf

∣
∣
∣
∣ =

∣
∣
∣
∣ϕ(x) −

∫

X

ϕ(z)πf (dz)
∣
∣
∣
∣

≤
∫

X

|ϕ(x) − ϕ(z)|πf (dz) ≤
∫

X

ρ(x, z)πf (dz).

Hence
dH(δx, πf ) ≤

∫

X

ρ(x, z)πf (dz) for x ∈ X,

which jointly with Remark 3.1 gives the second inequality in (9).
It remains to prove the moreover part. For this purpose, we fix μ ∈

M1(X).
If ϕ ∈ Lip1(X ) and |ϕ(x)| ≤ 1 for every x ∈ X, then due to (H) and (7)

the function φ : X → R given by

φ(x) =
∫

Ω

ϕ(f(x, ω))P(dω)

belongs to Lip1(X ) and |φ(x)| ≤ 1 for every x ∈ X, and moreover, by (3), for
every ν ∈ M1(X) we have

∣
∣
∣
∣

∫

X

ϕd(Pμ) −
∫

X

ϕd(Pν)
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X

φdμ −
∫

X

φdν

∣
∣
∣
∣ ≤ dFM (μ, ν),

whence
dFM (Pμ, Pν) ≤ dFM (μ, ν) for μ, ν ∈ M1(X).

Fix ε > 0. By Remark 2.2 there exists ν ∈ M1
1(X) such that dFM (μ, ν) ≤

ε
2 and by (10) there exists n0 ∈ N such that dH(Pnν, πf ) ≤ ε

2 for every n ≥ n0.
Hence

dFM (Pnμ, πf ) ≤ dFM (Pnμ, Pnν) + dFM (Pnν, πf )

≤ dFM (μ, ν) + dH(Pnν, πf ) ≤ ε

2
+

ε

2
= ε

for every n ≥ n0. �

Remark 3.2. Assume f : X × Ω → X is an rv-function. If for some x ∈ X the
sequence (πf

n(x, ·))n∈N converges weakly to a π, then suppπ ⊂ clf(X × Ω).

Proof. Suppose there exists x0 ∈ suppπ ∩ (X\clf(X × Ω)) and let B be a
closed ball in X with center at x0 and contained in X\clf(X × Ω). Since
x0 ∈ suppπ, it follows that π(B) > 0, and by Urysohn’s lemma there is a
continuous ϕ : X → [0, 1] such that

ϕ(z) = 1 for z ∈ B and ϕ(z) = 0 for z ∈ clf(X × Ω).

Then ϕ
(
fn(x, ω)

)
= 0 for n ∈ N and ω ∈ Ω∞, and

∫

X

ϕ(z)π(dz) = lim
n→∞

∫

X

ϕ(z)πf
n(x, dz) = lim

n→∞

∫

Ω∞
ϕ(fn(x, ω))P∞(dω) = 0.
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Hence

π(B) =
∫

B

ϕdπ = 0,

a contradiction. �

By Remark 3.1 we can set

ψ(∞) = lim
x→∞ ψ(x)

and consider ψ as a mapping of [0,∞] into itself.

Remark 3.3. Since by the Remark 3.2 the support of the invariant measure πf

from Theorem 3.1 is included in the closure of f(X ×Ω), it follows that for all
x ∈ X and y ∈ f(X × Ω), we have
∫

X

ρ(x, z)πf (dz) ≤ ρ(x, y) +
∫

suppπf

ρ(y, z)πf (dz) ≤ ρ(x, y) + diamf(X × Ω).

Therefore, (9) yields

dH

(
πf

n(x, ·), πf
) ≤ ψn

(
dist(x, f(X × Ω)) + diamf(X × Ω)

)

for all x ∈ X and n ∈ N.

4. Examples

Fix ξ ∈ L1(Ω,A,P), a non-zero η ∈ L1(Ω,A,P), and put α = 1
‖η‖1

. Let
ψ : [0,∞) → [0,∞) be a concave function such that ηψ(x) + ξ is non-negative
for every x ∈ [0,∞) and

|ψ(αx) − ψ(αz)|
α

≤ ψ(|x − z|) < |x − z| for x, z ∈ [0,∞) with x �= z. (12)

Note that ψ is non-expansive and ψ(0) = 0. In particular, the formula

f(x, ω) = η(ω)ψ(αx) + ξ(ω) for x ∈ [0,∞) and ω ∈ Ω

defines a random affine map f : [0,∞) × Ω → [0,∞). It is clear that (5) holds
with any x0 ∈ [0,∞) and

∫

Ω

|f(x, ω) − f(z, ω)|P(dω) ≤ ψ(|x − z|) for x, z ∈ [0,∞).

In consequence (H) holds, and one can apply Theorem 3.1. Note that neither
[2, Theorem 3.1] nor [8, Theorem 1.1] do not apply, whenever

ψ �∈
⋃

α∈(0,1)

Lipα([0,∞)). (13)

Let πf be the measure resulting from Theorem 3.1. Then (9) yields

dH

(
πf

n(x, ·), πf
) ≤ ψn−1(ψ(∞)) for x ∈ [0,∞) and n ∈ N. (14)
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Example 4.1. Consider ψ : [0,∞) → [0,∞) given by

ψ(t) =
t

1 + t
.

It is easy to see that ψ is concave, satisfies (12) with α = 1, (13) holds, and
(14) leads to

dH

(
πf

n(x, ·), πf
) ≤ ψn−1(1) =

1
n

for x ∈ [0,∞) and n ∈ N.

Example 4.2. Consider now ψ : [0,∞) → [0,∞) given by

ψ(t) = arctan t.

It is easy to check that ψ is concave, satisfies (12) with α = 1, and (13) holds.
Now, (14) gives

dH

(
πf

n(x, ·), πf
) ≤ ψn−1

(π

2

)
for x ∈ [0,∞) and n ∈ N.

Applying [18, Theorem 1.3.6] we conclude that for every c ∈
(√

3
2 ,∞

)
there

exists n0 ∈ N such that

dH

(
πf

n(x, ·), πf
) ≤ c√

n
for x ∈ [0,∞) and n ≥ n0.

Example 4.3. Fix ψ0 : [0,∞) → [0,∞) of the form ψ0(t) = t
1+t or ψ0(t) =

arctan t, and consider ψ : [0,∞) → [0,∞) given by

ψ(t) = sin ψ0(t).

Note that ψ is concave and (13) holds. Observe also that ψ satisfies (12) with
α = 2; indeed, for all x �= z we have

| sin ψ0(2x) − sin ψ0(2z)| ≤ 2 sin
|ψ0(2x) − ψ0(2z)|

2
≤ 2 sin

ψ0(2|x − z|)
2

≤ 2 sin ψ0(|x − z|) ≤ 2|x − z|.
Since ψ ≤ ψ0, we conclude that (14) implies

dH

(
πf

n(x, ·), πf
) ≤ ψn−1

0 (ψ0(∞)) for x ∈ [0,∞) and n ∈ N.
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