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Polynomial Equations for Additive
Functions I: The Inner Parameter Case

Eszter Gselmann and Gergely Kiss

Abstract. The aim of this sequence of work is to investigate polynomial
equations satisfied by additive functions. As a result of this, new char-
acterization theorems for homomorphisms and derivations can be given.
More exactly, in this paper the following type of equation is considered

n∑

i=1

fi(x
pi)gi(x

qi) = 0 (x ∈ F) ,

where n is a positive integer, F ⊂ C is a field, fi, gi : F → C are additive
functions and pi, qi are positive integers for all i = 1, . . . , n.
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1. Introduction and Preliminaries

Equations satisfied by additive functions play an important role not only in the
theory of commutative algebra, but also in the theory of functional equations.
It is an important and challenging question how special morphisms (such as
homomorphisms and derivations) can be characterized among additive map-
pings in general. In this paper classes of multivariable algebraic equations are
introduced with appropriate solutions as field homomorphisms and derivations.

Concerning all the cases we consider here, the involved additive functions
are defined on a field F ⊂ C and have values in the complex field, therefore we
introduce the preliminaries in this setting.
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We adopt the standard notations, that is, N and C denote the set of
positive integers and the set of complex numbers, respectively.

Henceforth we assume F ⊂ C to be a field.

Definition 1. We say that a function f : F → C is additive if it fulfills the
so-called Cauchy functional equation, that is,

f(x + y) = f(x) + f(y) (x, y ∈ F) .

An additive function d : F → C is termed to be a derivation (of order 1) if it
also fulfills the Leibniz equation, i.e.,

d(xy) = d(x)y + xd(y) (x, y ∈ F) .

An additive function ϕ : F → C is said to be a homomorphism if it is multi-
plicative as well, in other words, besides additivity we also have

ϕ(xy) = ϕ(x)ϕ(y) (x, y ∈ F) .

If F = C and ϕ is an isomorphism, then ϕ is called a complex automorphism.

Certain well-known equations are especially important. For instance, the
additive solutions of following equation on a ring R with charR �= 2

f(x2) = 2xf(x) (x ∈ )

are derivations, under some assumptions, where the additive mapping f acts.
As an extension of such type of results in [1,2,5] the additive solutions of the
equations

n∑

i=0

xifn+1−i(xn+1−i) = 0 (x ∈ R)

and
n∑

i=0

f(xpi)xqi = 0 (x ∈ F)

were described, here R denotes a ring with char(R) ≥ n, while F ⊂ C is a field.
By a polynomial equation of additive functions we mean an equation of the
form

P (fr1
1 (xs1), . . . , frn

n (xsn)) = 0,

where P : Cn → C is a n-variable polynomial, ri, si are positive integers and
fi denote the unknown additive functions. Without further restrictions (e.g.,
on the polynomial P or on the parameters ri, si), the above equation is unfor-
tunately too general for its solutions to be fully determined. Indeed, it is not
too hard to specify a polynomial P and parameters ri, si so that the above
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equation is satisfied by all additive functions. Therefore, in this series, we will
focus on the following classes of equations.

n∑

i=1

fi(xpi)gi(xqi) = 0,

n∑

i=1

fi(xpi)gi(x)qi = 0,

n∑

i=1

fi(x)pigi(x)qi = 0,

(x ∈ F)

In this paper the most impressive equation, namely
n∑

i=1

fi(xpi)gi(xqi) = 0, (x ∈ F) (1)

will be studied from this list with a fruitful theoretical description. (This we
call ’inner parameter case’, as the parameters pi, qi are exponents of the vari-
able x, so they act on the domain of the functions fi, gi, respectively.) Under
some natural conditions equation (1) is satisfied by compositions of (higher
order) derivations and homomorphisms. The purpose of this paper is about
the converse by showing proper characterizations for the solutions of (1) in
the class of additive functions.

Structure of the Paper

In Sect. 2 the most important notations, terminology and theoretical back-
ground is summarized. Concerning the notions of polynomials, generalized
polynomials, exponentials and exponential polynomials, here we follow the
monograph of Székelyhidi [10]. Besides these notions, decomposable functions,
introduced by Shulman in [9], will play a key role in the second section. We
show that all solutions of equation (1) are decomposable functions. After that
a result of Laczkovich will be used, who proved in [7] that on unital commuta-
tive topological semigroups, decomposable mappings are generalized exponen-
tial polynomials. On fields these are closely related to higher order derivations
that were introduced by [8,11]. There will also be cases, when we will restrict
to finitely generated subfields of F since on them higher order derivations are
differential operators. The latter concept is significantly easier to calculate.
This makes it possible to determine the exact upper bound for their orders.

The main results of the paper can be found in the third section. At first
some elementary yet important lemmata serve to settle reasonable conditions
for the parameters pi, qi such as the Homogenization Principle (see Lemma 9),
which ensures that the parameters satisfy

pi + qi = N (i = 1, . . . , n) .

Based on the remarks and the examples of Sect. 3.1, we will provide
characterization theorems for Eq. (1) under the following conditions
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C(i) the positive integers p1, . . . , pn satisfy p1 < · · · < pn;
C(ii) for all i = 1, . . . , n we have pi + qi = N ;
C(iii) for all i, j ∈ {1, . . . , n}, i �= j we have pi �= qj .

Further, according to Lemma 10, the solutions of the above functional
equations are sufficient to determine ‘up to equivalence’. This is because the
functions fi and gi fulfill equation (1), if and only if for any automorphism
ϕ : C → C, the functions ϕ ◦ fi and ϕ ◦ gi also fulfill (1), i = 1, . . . , n.

Looking at Eq. (1), it yields a technical problem that there is only one
independent variable in the equation. At the same time, the involved functions
are assumed to be additive. Thus the polarization formula for multi-additive
functions can be used in the symmetrization method, which allows us to enlarge
the number of independent variables from one to N .

In Lemma 13 it is shown that the functions fi and gi satisfies the system
of equations given by this method are decomposable functions thus general-
ized exponential polynomials on the group F

×. Theorem 14 says that for any
i ∈ {1, . . . , n}, in the variety of the functions fi and gi there is exactly one
exponential mi. Focusing on the irreducible solutions, this means that all fi

(resp. gi) are of the form Pi · m (resp. Qi · m), where Pi (and Qi) are (gener-
alized) polynomials and m is a unique exponential function.

Translating the problem to higher order derivations there can be found a
natural basis of compositions of derivations of order 1 by using moment gen-
erating functions. Applying the arithmetic of derivations we get a sharp upper
bound, which is n − 1 for the order of derivation solutions under some condi-
tions, see Theorem 20. We close this section with the study of some important
special cases. In Conjecture 21 and Open Problem 1 we pose problems on the
exact order of the (higher order) derivation solutions in different settings.

2. Notation, Terminology and Theoretical Background

2.1. Polynomials and Generalized Polynomials

Definition 2. Let G,S be commutative semigroups (written additively), n ∈ N

and let A : Gn → S be a function. We say that A is n-additive if it is a
homomorphism of G into S in each variable. If n = 1 or n = 2 then the
function A is simply termed to be additive or biadditive, respectively.

The diagonalization or trace of an n-additive function A : Gn → S is
defined as

A∗(x) = A (x, . . . , x) (x ∈ G) .

As a direct consequence of the definition each n-additive function A : Gn → S
satisfies

A(x1, . . . , xi−1, kxi, xi+1, . . . , xn) = kA(x1, . . . , xi−1, xi, xi+1, . . . , xn)

(x1, . . . , xn ∈ G)
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for all i = 1, . . . , n, where k ∈ N is arbitrary. The same identity holds for any
k ∈ Z provided that G and S are groups, and for k ∈ Q, provided that G and
S are linear spaces over the rationals. For the diagonalization of A we have

A∗(kx) = knA∗(x) (x ∈ G) .

The above notion can also be extended for the case n = 0 by letting
G0 = G and by calling 0-additive any constant function from G to S.

One of the most important theoretical results concerning multiadditive
functions is the so-called Polarization formula, that briefly expresses that every
n-additive symmetric function is uniquely determined by its diagonalization
under some conditions on the domain as well as on the range. Suppose that G
is a commutative semigroup and S is a commutative group. The action of the
difference operator Δ on a function f : G → S is defined by the formula

Δyf(x) = f(x + y) − f(x) (x, y ∈ G) .

Note that the addition in the argument of the function is the operation of the
semigroup G and the subtraction means the inverse of the operation of the
group S.

Theorem 1 (Polarization formula). Suppose that G is a commutative semi-
group, S is a commutative group, n ∈ N. If A : Gn → S is a symmetric,
n-additive function, then for all x, y1, . . . , ym ∈ G we have

Δy1,...,ym
A∗(x) =

{
0 if m > n
n!A(y1, . . . , ym) if m = n.

Corollary 2. Suppose that G is a commutative semigroup, S is a commutative
group, n ∈ N. If A : Gn → S is a symmetric, n-additive function, then for all
x, y ∈ G

Δn
yA∗(x) = n!A∗(y).

Lemma 3. Let n ∈ N and suppose that the multiplication by n! is surjective in
the commutative semigroup G or injective in the commutative group S. Then
for any symmetric, n-additive function A : Gn → S, A∗ ≡ 0 implies that A is
identically zero, as well.

Definition 3. Let G and S be commutative semigroups, a function p : G → S
is called a generalized polynomial from G to S, if it has a representation as the
sum of diagonalizations of symmetric multi-additive functions from G to S. In
other words, a function p : G → S is a generalized polynomial if and only if, it
has a representation

p =
n∑

k=0

A∗
k,

where n is a nonnegative integer and Ak : Gk → S is a symmetric, k-additive
function for each k = 0, 1, . . . , n. In this case we also say that p is a generalized
polynomial of degree at most n.
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Let n be a nonnegative integer, functions pn : G → S of the form

pn = A∗
n,

where An : Gn → S is a symmetric and n-additive mapping, are the so-called
generalized monomials of degree n.

In this subsection (G, ·) is assumed to be a commutative group (written
multiplicatively).

Definition 4. Polynomials are elements of the algebra generated by additive
functions over G. More exactly, a mapping f : G → C is called a polynomial
if there is a positive integer n, there exists a (classical) complex polynomial
P : Cn → C in n variables and there are additive functions ak : G → C (k =
1, . . . , n) such that

f(x) = P (a1(x), . . . , an(x)) (x ∈ G) .

Remark 1. We recall that the elements of N
n for any positive integer n are

called (n-dimensional) multi-indices. Addition, multiplication and inequali-
ties between multi-indices of the same dimension are defined component-wise.
Further, we define xα for any n-dimensional multi-index α and for any x =
(x1, . . . , xn) in C

n by

xα =
n∏

i=1

xαi
i

where we always adopt the convention 00 = 0. We also use the notation |α| =
α1 + · · · + αn. With these notations any polynomial of degree at most N on
the commutative semigroup G has the form

p(x) =
∑

|α|≤N

cαa(x)α (x ∈ G) ,

where cα ∈ C and a = (a1, . . . , an) : G → C
n is an additive function. Further-

more, the homogeneous term of degree k of p is
∑

|α|=k

cαa(x)α.

Lemma 4 (Lemma 2.7 of [10]). Let G be a commutative group, n be a positive
integer and let

a = (a1, . . . , an) ,

where a1, . . . , an are linearly independent complex valued additive functions
defined on G. Then the monomials {aα} for different multi-indices are linearly
independent.
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Definition 5. A function m : G → C is called an exponential function if it
satisfies

m(xy) = m(x)m(y) (x, y ∈ G) .

Furthermore, on a(n) (generalized) exponential polynomial we mean a linear
combination of functions of the form p·m, where p is a (generalized) polynomial
and m is an exponential function.

The following lemma shows that generalized exponential polynomial func-
tions are linearly independent. Although it can be stated in a more general
way (see [10]), we adopt it to our situation, when the functions are complex
valued.

Lemma 5 (Lemma 4.3 of [10]). Let G be a commutative group, n a positive
integer, m1, . . . ,mn : G → C (i = 1, . . . , n) be distinct nonzero exponentials and
p1, . . . , pn : G → K (i = 1, . . . , n) be generalized polynomials. If

∑n

i=1
pi · mi

is identically zero, then for all i = 1, . . . , n the generalized polynomial pi is
identically zero.

Additionally, we will need the analogous statement for polynomial ex-
pressions of generalized exponential polynomials which was proved in [5].

Theorem 6. Let K be a field of characteristic 0 and k, l,N be positive integers
such that k, l ≤ N . Let m1, . . . ,mk : K× → C be distinct exponential functions
that are additive on K, let a1, . . . , al : K× → C be additive functions that are
linearly independent over C and for all |s| ≤ N let Ps : Cl → C be classical
complex polynomials of l variables. If

∑

|s|≤N

Ps(a1, . . . , al)ms1
1 · · · msk

k = 0

then for all |s| ≤ N , the polynomials Ps vanish identically.

Definition 6. Let G be a commutative group and V ⊆ C
G a set of functions.

We say that V is translation invariant if for every f ∈ V the function τgf ∈ V
also holds for all g ∈ G, where

τgf(h) = f(hg) (h ∈ G) .

In view of Theorem 10.1 of Székelyhidi [10], any finite dimensional trans-
lation invariant linear space of complex valued functions on a commutative
group consists of exponential polynomials. This implies that if G is a commu-
tative group, then any function f : G → C, satisfying the functional equation

f(xy) =
n∑

i=1

gi(x)hi(y) (x, y ∈ G)

for some positive integer n and functions gi, hi : G → C (i = 1, . . . , n), is an
exponential polynomial of degree at most n.
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This enlightens the connection between generalized polynomials and poly-
nomials. It is easy to see that each polynomial, that is, any function of the
form

x �−→ P (a1(x), . . . , an(x)),

where n is a positive integer, P : Cn → C is a (classical) complex polynomial in
n variables and ak : G → C (k = 1, . . . , n) are additive functions, is a general-
ized polynomial. The converse however is in general not true. A complex-valued
generalized polynomial p defined on a commutative group G is a polynomial if
and only if its variety (the linear space spanned by its translates) is of finite
dimension.

Henceforth, not only the notion of (exponential) polynomials, but also
that of decomposable functions will be used. The basics of this concept are due
to Shulman [9], besides this we heavily rely on the work of Laczkovich [7].

Definition 7. Let G be a group and n ∈ N, n ≥ 2. A function F : Gn → C

is said to be decomposable if it can be written as a finite sum of products
F1 · · · Fk, where all Fi depend on disjoint sets of variables.

Remark 2. Without loss of generality we can suppose that k = 2 in the above
definition, that is, decomposable functions are those mappings that can be
written in the form

F (x1, . . . , xn) =
∑

E

∑

j

AE
j BE

j

where E runs through all non-void proper subsets of {1, . . . , n} and for each
E and j the function AE

j depends only on variables xi with i ∈ E, while BE
j

depends only on the variables xi with i /∈ E.

Theorem 7. Let G be a commutative topological semigroup with unit. A con-
tinuous function f : G → C is a generalized exponential polynomial if and only
if there is a positive integer n ≥ 2 such that the mapping

Gn � (x1, . . . , xn) �−→ f(x1 + · · · + xn)

is decomposable.

The notion of derivations can be extended in several ways. We will employ
the concept of higher order derivations according to Reich [8] and Unger and
Reich [11]. For further results on characterization theorems on higher order
derivations consult e.g. [1–3,5].

Definition 8. Let F ⊂ C be a field. The identically zero map is the only deriva-
tion of order zero. For each n ∈ N, an additive mapping f : F → C is termed
to be a derivation of order n, if there exists B : F × F → C such that B is a
bi-derivation of order n − 1 (that is, B is a derivation of order n − 1 in each
variable) and

f(xy) − xf(y) − f(x)y = B(x, y) (x, y ∈ F) .
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The set of derivations of order n of the ring R will be denoted by Dn(F).

Remark 3. Since D0(F) = {0}, the only bi-derivation of order zero is the iden-
tically zero function, thus f ∈ D1(F) if and only if

f(xy) = xf(y) + f(x)y (x, y ∈ F) ,

that is, the notions of first order derivations and derivations coincide. On
the other hand for any n ∈ N the set Dn(F) \ Dn−1(F) is nonempty because
d1 ◦ · · · ◦ dn ∈ Dn(F), but d1 ◦ · · · ◦ dn /∈ Dn−1(R), where d1, . . . , dn ∈ D1(F)
are non-identically zero derivations.

For our future purposes the notion of differential operators will also be
important, see [6].

Definition 9. Let F ⊂ C be a field. We say that the map D : F → C is a
differential operator of order at most n if D is the linear combination, with
coefficients from F, of finitely many maps of the form d1 ◦ · · · ◦ dk, where
d1, . . . , dk are derivations on F and k ≤ n. If k = 0 then we interpret d1◦· · ·◦dk

as the identity function. We denote by On(F) the set of differential operators
of order at most n defined on F. We say that the order of a differential operator
D is n if D ∈ On(F) \ On−1(F) (where O−1(F) = ∅, by definition).

Remark 4. The term differential operator is justified by the following fact. Let
K = Q(t1, . . . , tk), where t1, . . . , tk are algebraically independent over Q. Then
K is the field of all rational functions of t1, . . . , tk with rational coefficients. It
is clear that

di =
∂

∂ti
is a derivation on K for every i = 1, . . . , k. Therefore, every differential opera-
tor

D =
∑

i1+···+ik≤n

ci1,...,ik
· ∂i1+···+ik

∂ti11 · · · ∂tik

k

,

where the coefficients ci1,...,ik
belong to K, is a differential operator of order

at most n, and also conversely, if D is a differential operator of order at most
n on the field K = Q(t1, . . . , tk), then D is of the above form.

The main result of [6] is Theorem 1.1 that reads in our settings as follows.

Theorem 8. Let F ⊂ C be a field and let n be a positive integer. Then, for
every function D : F → C, the following are equivalent.
(i) D ∈ Dn(F)
(ii) D ∈ cl (On(F))
(iii) D is additive on F, D(1) = 0, and D/j, as a map from the group F

× to
C, is a generalized polynomial of degree at most n. Here j stands for the
identity map defined on F.
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3. Results

3.1. Elementary Observations: Reduction of the Problem

This part begins with some elementary, yet fundamental observations. As the
following lemmata show, the original problem can be reduced to a more simpler
equation.

Lemma 9 (Homogenization). Let n be a positive integer, F ⊂ C be a field
and p1, . . . , pn, q1, . . . , qn be fixed positive integers. Assume that the additive
functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1), that
is,

n∑

i=1

fi(xpi)gi(xqi) = 0

for each x ∈ F. If the set {p1, . . . , pn} has a partition P1, . . . ,Pk with the
property

if pα, pβ ∈ Pj for a certain indexj, then pα + qα = pβ + qβ ,

then the system of equations
∑

pα∈Pj

fα(xpα)gα(xqα) = 0 (x ∈ F, j = 1, . . . , k)

is satisfied.

Proof. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn

be fixed positive integers. Assume that the additive functions f1, . . . , fn, g1,
. . . , gn : F → C satisfy functional equation (1) for each x ∈ F. Assume further
that the set {p1, . . . , pn} has a partition P1, . . . ,Pk with the property

if pα, pβ ∈ Pj for a certain indexj, then pα + qα = pβ + qβ .

Observe that for all i = 1, . . . , n, the mapping

F � x �−→ fi(xpi)gi(xqi)

is a generalized monomial of degree pi + qi. Indeed, it is the diagonalization of
the symmetric (pi + qi)-additive mapping

F
pi+qi � (x1, . . . , xpi+qi

) �−→ fi(xσ(1) · · · xσ(pi))gi(xσ(pi+1) · · · xσ(pi+qi)).

Since F ⊂ C, we necessarily have Q ⊂ F. Let now r ∈ Q be arbitrary and
substitute rx in place of x in Eq. (1) to get

n∑

i=1

fi((rx)pi)gi((rx)qi) = 0 (r ∈ Q, x ∈ F) .
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Using the Q-homogeneity of the additive functions f1, . . . , fn and g1, . . . , gn,
we deduce

0 =
n∑

i=1

fi((rx)pi)gi((rx)qi) =
n∑

i=1

fi(rpixpi)gi(rqixqi)

=
n∑

i=1

rpi+qifi(xpi)gi(xqi) =
k∑

j=1

∑

pα∈Pj

rpα+qαfα(xpα)gα(xqα)

(r ∈ Q, x ∈ F) .

Note that the right hand side of this equation is a (classical) polynomial in
r which is identically zero. Thus all of its coefficients should be (identically)
zero, yielding that the system of equations

∑

pα∈Pj

fα(xpα)gα(xqα) = 0 (x ∈ F, j = 1, . . . , k)

is fulfilled. �

Remark 5. The above lemma guarantees that ab initio

pi + qi = N (i = 1, . . . , n)

can be assumed. Otherwise, after using the above homogenization, we get a
system of functional equations in which this condition is already fulfilled. For
instance, due to the above lemma, if the additive functions f1, . . . , f5 : F → C

and g1, . . . , g5 : F → C satisfy equation

f1(x24)g1(x5) + f2(x20)g2(x9) + f3(x19)g3(x10)

+ f4(x13)g4(x7) + f5(x12)g4(x8) = 0 (x ∈ F)

then the equations

f1(x24)g1(x5) + f2(x20)g2(x9) + f3(x19)g3(x10) = 0 (x ∈ F)

and

f4(x13)g4(x7) + f5(x12)g4(x8) = 0 (x ∈ F)

are also fulfilled (separately).

Remark 6. At first glance the assumption that p1, . . . , pn are different seems
a reasonable and sufficient supposition. Clearly, if the parameters are not nec-
essarily different then we cannot expect anything special for the form of the
involved additive functions. Indeed, let L ⊂ C

n be a linear subspace and let
f1, . . . , fn : F → C and g1, . . . , gn : F → C be additive functions such that
rng(f) ⊂ L and rng(g) ⊂ L⊥, where

f(x) = (f1(x), . . . , fn(x)) and g(x) = (g1(x), . . . , gn(x)) (x ∈ F) .
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In this case
n∑

i=1

fi(x)gi(x) = 〈f(x), g(x)〉 = 0 (x ∈ F) .

This shows the necessity of the above assumption. Unfortunately, the suffi-
ciency fails to hold. To see this, let p and q be positive integers and f : F → C

be an arbitrary additive function and define the complex-valued functions
f1, g1, f2, g2 on F by

f1(x) = f(x) g1(x) = f(x) f2(x) = if(x) g2(x) = if(x) (x ∈ F) .

An immediate computation shows that we have

f1(xp)g1(xq) + f2(xp)g2(xq) = 0 (x ∈ F) .

In view of the above remarks, from now on, the following assumptions
are adopted.
C(i) the positive integers p1, . . . , pn are arranged in a strictly increasing or-

der, i.e., p1 < · · · < pn;
C(ii) for all i = 1, . . . , n we have pi + qi = N ;
C(iii) for all i, j ∈ {1, . . . , n}, i �= j we have pi �= qj .

Remark 7. Define the relation ∼ on F
C by f ∼ g if and only if there exists an

automorphism ϕ : C → C such that ϕ ◦ f = g. Obviously ∼ is an equivalence
relation on F

C that induces a partition on F
C.

Lemma 10 (Equivalence). Let n be a positive integer, F ⊂ C be a field and
p1, . . . , pn, q1, . . . , qn be fixed positive integers fulfilling the conditions C(i)–
C(iii) of Remark 6. Assume that the additive functions f1, . . . , fn, g1, . . . , gn :
F → C satisfy functional equation (1). Then for an arbitrary automorphism
ϕ : C → C the functions ϕ ◦ f1, . . . , ϕ ◦ fn, ϕ ◦ g1, . . . , ϕ ◦ gn also fulfill equation
(1).

3.2. Structure of Solutions

We can always restrict ourselves to the case when all the involved functions are
non-identically zero. Otherwise, the number of the terms appearing in Eq. (1)
can be reduced.

Lemma 11 (Symmetrization). Let k and n be positive integers, F ⊂ C be a
field and m1, . . . ,mn : F → C be monomials of degree k. If

n∑

i=1

mi(x) = 0

holds for all x ∈ F, then
n∑

i=1

Mi(x1, . . . , xk) = 0
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is fulfilled for all x1, . . . , xk, where for all i = 1, . . . , n, the mapping Mi : Fk →
C is the uniquely determined symmetric, k-additive function such that

Mi(x, . . . , x) = mi(x) (x ∈ F) .

Proof. Let k and n be positive integers, F ⊂ C be a field and m1, . . . ,mn : F
→ C be monomials of degree k and assume that

n∑

i=1

mi(x) = 0

holds for all x ∈ F. Since for all i = 1, . . . , n, the function mi is a monomial of
degree k, there exists a symmetric, k-additive function Mi : Fk → C such that
we have

Mi(x, . . . , x) = mi(x) (x ∈ F) .

Obviously the mapping
∑n

i=1
mi is a monomial of degree k which is, by the

assumptions, identically zero. To this monomial there also corresponds a sym-
metric and k-additive mapping, namely

F
k � (x1, . . . , xk) �−→

n∑

i=1

Mi(x1, . . . xk).

Observe that the trace of this symmetric and k-additive mapping is identically
zero. At the same time, due to the Polarization formula (Theorem 1), every
symmetric and k-additive function is uniquely determined by its trace. Thus

n∑

i=1

Mi(x1, . . . , xk) = 0

for all x1, . . . , xk ∈ F. �

Lemma 12 (Symmetrization). Let n be a positive integer, F ⊂ C be a field and
p1, . . . , pn, q1, . . . , qn be fixed positive integers fulfilling conditions C(ii), i.e.,
there is a N ∈ N such pi + qi = N for all i = 1, . . . , n. Assume that the
additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1)
for each x ∈ F. Then

1
N !

∑

σ∈SN

n∑

i=1

fi(xσ(1) · · · xσ(pi)) · gi(xσ(pi+1) · · · xσ(N)) = 0

holds for all x1, . . . , xN ∈ F.

Proof. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn

be fixed positive integers fulfilling conditions C(ii). Assume that the additive
functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation

n∑

i=1

fi(xpi)gi(xqi) = 0
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for each x ∈ F. Due to the additivity of the functions f1, . . . , fn and g1, . . . , gn

for all i = 1, . . . , n, the mapping

x �−→ fi(xpi)gi(xqi)

is a monomial of degree pi + qi = N . Further, it is the trace of the symmetric
and N -additive mapping

Fi(x1, . . . , xN )

=
1

N !

∑

σ∈SN

fi(xσ(1) · · · xσ(pi)) · gi(xσ(pi+1) · · · xσ(N))

(x1, . . . , xN ∈ F) .

Therefore, the statement follows from Lemma 11. �

3.3. Solutions of Eq. (1)

The main purpose of the subsection is to describe under the conditions C(i)–
C(iii), the solution space of Eq. (1). We first prove that solutions of Eq. (1) are
decomposable functions on the multiplicative group F

×. In view of Laczkovich
[7], this immediately yields that the solutions of Eq. (1) are generalized expo-
nential polynomials of this group.

Lemma 13. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . ,
qn be fixed positive integers fulfilling conditions C(i) and C(ii). Assume that
the additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation
(1) for each x ∈ F. Then all the functions f1, . . . , fn as well as g1, . . . , gn are
decomposable functions of the group F

×.

Proof. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn

be fixed positive integers fulfilling conditions C(i) and C(ii).
Let us assume first that condition C(iii) is also satisfied. Assume that the

additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1)
for each x ∈ F. Let

S = {p1, . . . , pn} ∪ {q1, . . . , qn} .

Then max S = max {pn, q1}. By condition C(iii), we have pn �= q1. Without
the loss of generality pn > q1 can be assumed, otherwise we follow a similar
argument. In view of Lemma 12, we have

1
N !

∑

σ∈SN

n∑

i=1

fi(xσ(1) · · · xσ(pi)) · gi(xσ(pi+1) · · · xσ(N)) = 0
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for all x1, . . . , xN ∈ F, or after some rearrangement,
1

N !

∑

σ∈SN

fn(xσ(1) · · · xσ(pn)) · gn(xσ(pn+1) · · · xσ(N))

= − 1
N !

∑

σ∈SN

n−1∑

i=1

fi(xσ(1) · · · xσ(pi)) · gi(xσ(pi+1) · · · xσ(N))

(
x1, . . . , xN ∈ F

×) .

Let now

xpn+1 = · · · = xN = 1,

then the above identity says that gn(1) ·fn is decomposable. If gn(1) were zero,
but gn would not be identically zero, then there would exist a ∈ F

× such that
gn(a) �= 0. In this case the above substitutions should be modified to

xpn+1 = a, xpn+2 = · · · = xN = 1,

to get the same conclusion.
If pn = qj for some j = {1, . . . , n} (i.e., C(iii) does not hold), then without

loss of generality we may assume that j = 1, otherwise we may change the
role of fi and gi, and pi and qi, respectively, and proceed as above. If pn = q1,
then we have

1
N !

∑

σ∈Sn

fn(xσ(1) · · · xσ(pn)) · gn(xσ(pn+1) · · · xσ(N))

+
1

N !

∑

σ∈Sn

g1(xσ(1) · · · xσ(pn)) · f1(xσ(pn+1) · · · xσ(N))

= − 1
N !

∑

σ∈Sn

n−1∑

i=2

fi(xσ(1) · · · xσ(pi)) · gi(xσ(pi+1) · · · xσ(N))

(
x1, . . . , xN ∈ F

×) .

This equation with the substitutions

xpn+1 = · · · = xN = 1,

yields that a linear combination of fn and g1 is decomposable. If {fn, g1} is
linearly dependent, then this obviously means that both fn and g1 are decom-
posable functions. If this system is not linearly dependent, then there exist
a, b ∈ F

×, a �= b and different complex constants c1 and c2 such that

fn(a) = c1g1(a) fn(b) = c2g1(b).

With the substitutions

xpn+1 = a, xpn+2 = · · · = xN = 1,

and

xpn+1 = b, xpn+2 = · · · = xN = 1,
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we get that the functions

(x1, . . . , xp1) �−→ g1(x1 · · · xp1)fn(a) + fn(x1 · · · xp1)g1(a)

and

(x1, . . . , xp1) �−→ g1(x1 · · · xp1)fn(b) + fn(x1 · · · xp1)g1(b)

are decomposable. Since finite linear combinations of decomposable functions
are also decomposable, it follows that fn and g1 are decomposable, separately.

After that, let us consider the set S \{pn} and apply the above argument
for this set. With this step-by-step descending argument the statement of the
lemma follows. �

Remark 8. We emphasize that condition C(iii) in Lemma 13 has not been
assumed. Thus, the fact that the additive solutions of (1) are decomposable
functions can be deduced only under the conditions C(i) and C(ii). On the
other hand, for our purpose to describe the solutions more concretely we have
to assume also condition C(iii) to avoid further difficulties. We believe however
that most of our methods can work similarly only under the conditions C(i)
and C(ii).

Remark 9. Note also that in general we cannot state more than that the in-
volved functions f1, . . . , fn and g1, . . . , gn are decomposable functions on the
commutative group F

×. In other words, we can only state that the solutions
of the functional equation in question are higher order derivations (see below
Corollary 15). In general it is not true that the solutions of this functional
equation are differential operators (i.e., exponential polynomials of the multi-
plicative group F

×). To see this, let us consider the functional equation

xf1(x6) + x2f2(x5) + x3f3(x4) = 0 (x ∈ F) .

Indeed, using the results of [5], we deduce that f1, f2, f3 ∈ D2(F).

Due to a result of Laczkovich [7] and under the assumptions of Lemma 13,
there exist a positive integer l, there are generalized polynomials Pk,i, Qk,i :
F

× → C (k = 1, . . . , l and i = 1, . . . , n) and there exist linearly independent
exponentials m1, . . . ,ml : F× → C such that

fi(x) =
l∑

k=1

Pk,i(x)mk(x) and gi(x) =
l∑

k=1

Qk,i(x)mk(x)
(
x ∈ F

×) .

Since the generalized polynomials on any finitely generated field are poly-
nomials and the exponentials m1, . . . ,mk are linearly independent, we can ap-
ply Theorem 6. This implies that after substituting the above form the func-
tions f1, . . . , fn and g1, . . . , gn and using that for each κ ∈ N and k = 1, . . . , n,
we have

mk(xκ) = mk(x)κ
(
x ∈ F

×) ,
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especially
n∑

i=1

Pk,i(xpi)Qk,i(xqi) = 0
(
x ∈ F

×)

follows for all k = 1, . . . , l. This tells us that it is enough to solve Eq. (1) for
generalized polynomials of the group F

×. In fact, we can prove the following.

Theorem 14. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . ,
qn be fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the
additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1)
for each x ∈ F. Then there exists a positive integer l, there exist exponentials
mi : F× → C and there are generalized polynomials Pi, Qi : F× → C of degree
at most l such that

fi(x) = Pi(x)mi(x) and gi(x) = Qi(x)mi(x)
(
x ∈ F

×)

for each i = 1, . . . , n.

Proof. As we saw above, under the hypothesis of the lemma, if the functions
f1, . . . , fn and g1, . . . , gn solve Eq. (1), then there exist a positive integer l,
there are generalized polynomials Pk,i, Qk,i : F× → C (k = 1, . . . , l and i =
1, . . . , n) and there exist linearly independent exponentials m1, . . . ,ml : F× →
C such that

fi(x) =
l∑

k=1

Pk,i(x)mk(x) and gi(x) =
l∑

k=1

Qk,i(x)mk(x)
(
x ∈ F

×) .

Assume to the contrary that l ≥ 2.
Let

S = {p1, . . . , pn} ∪ {q1, . . . , qn} .

Then due to conditions C(i)–C(iii) we have maxS = max {pn, q1}. Similarly as
in Lemma 13, without the loss of generality pn > q1 can be assumed, otherwise
we follow a similar argument. By our assumption l ≥ 2, this yields that there
exist different exponential terms in f1 and g1 with nonzero polynomial coeffi-
cients. For the sake of simplicity, suppose that these different exponentials are
m1 and m2. Since max S = p1, the term mp1

1 mq1
2 appears only in f1(xp1)g1(xq1)

while expanding Eq. (1). Since generalized polynomials Pk,i and exponentials
mk satisfies the conditions of Theorem 6 for every finitely generated subfield
of F, the coefficient of the above-mentioned term which is P1,1(xp1)Q1,1(xq1)
has to vanish on F. From this we can deduce that P1,1 or Q1,1 is identically
zero, contrary to our assumption. Thus

f1(x) = P1(x)m1(x) and g1(x) = Q1(x)m1(x) (x ∈ F) ,

with appropriate generalized polynomials P1, Q1 : F× → C and exponential
m1 : F× → C.



63 Page 18 of 37 E. Gselmann and G. Kiss Results Math

Suppose now that there is a positive integer k, less than n such that for
all i = 1, . . . , k we have

fi(x) = Pi(x)mi(x) and gi(x) = Qi(x)mi(x)
(
x ∈ F

×) .

Assume that in the representation of fk+1 and gk+1 there are different expo-
nentials with nonzero polynomial coefficients, say mj1 and mj2 . Observe that
while expanding Eq. (1), the term m

pk+1
j1

m
qk+1
j2

appears only at once, namely
in the product fk+1(xpk+1)gk+1(xqk+1). Again, due to Theorem 6, we deduce
that the appropriate polynomial term, that is,

Pk+1,j1(x
pk+1)Qk+1,j2(x

qk+1)

has to vanish. This proves that necessarily

fk+1(x) = Pk+1(x)mk+1(x) and gk+1 = Qk+1(x)mk+1(x)
(
x ∈ F

×)

hold. This shows that there exist exponentials m1, . . . ,mn : F× → C and gen-
eralized polynomials P1, . . . , Pn and Q1, . . . , Qn on the group F

× such that for
all i = 1, . . . , n

fi(x) = Pi(x)mi(x) and gi = Qi(x)mi(x)
(
x ∈ F

×) .

�
Remark 10. Due to conditions C(i)–C(iii), Eq. (1) has the form

0 =
n∑

i=1

fi(xpi)gi(xqi)

=
n∑

i=1

Pi(xpi)mi(x)piQi(xqi)mi(x)qi =
n∑

i=1

Pi(xpi)Qi(xqi)mi(x)N

(
x ∈ F

×) .

If the exponentials appearing on the right hand side would be different, then
by Theorem 6, their coefficients would be zero. This implies however that there
exists a proper subset J ⊂ {1, . . . , n} such that

∑

j∈J

fj(xpj )gj(xqj ) = 0 as well as
∑

j /∈J

fj(xpj )gj(xqj ) = 0
(
x ∈ F

×) . (2)

This leads to the following definition of irreducible solutions.

Definition 10. A system of solutions {f1, . . . , fn, g1, . . . , gn} of Eq. (1) is called
irreducible if it does not satisfy a sub-term of (1). Otherwise, we say that a
system of solutions is reducible.

Clearly, a system of solutions {f1, . . . , fn, g1, . . . , gn} of (1) which fulfills
(2) is a reducible solution. On the other hand, the argument in Remark 10
shows that every solution of (1) can be given as a sum of irreducible solutions
of disjoint sub-terms of (1). Therefore, we restrict ourselves to the irreducible
case, since every reducible solution can be deduced as a sum of irreducible
solutions.
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Corollary 15. Under the conditions of Theorem 14, suppose that system of
functions {f1, . . . , fn, g1, . . . , gn} is an irreducible solution of Eq. (1). Then
there exists an exponential m : F× → C and there are generalized polynomials
Pi, Qi : F× → C such that for each i = 1, . . . , n

fi(x) = Pi(x)m(x) and gi(x) = Qi(x)m(x)
(
x ∈ F

×) . (3)

In other words, for each i = 1, . . . , n there exists higher order derivations
Di, D̃i : F → C such that

fi(x) ∼ Di(x) and gi(x) ∼ D̃i(x)
(
x ∈ F

×) ,

where ∼ in the latter two equations is the equivalence relation defined in Re-
mark 7.

Proof. By Remark 10, all of the exponentials mi have to be the same in the
description of the solutions of Theorem 14. Therefore, Eq. (3) describes the
irreducible solutions of (1).

Using Lemma 10, solutions of Eq. (1) are enough to be determined up to
the equivalence relation ∼ defined in Remark 7. Accordingly, we can suppose
that the exponential m in the above representation is the identity mapping.
Hence, in view of Theorem 8 we get that the functions f1, . . . , fn as well as
g1, . . . , gn are (or more precisely, are equivalent to) higher order derivations,
as we stated. �

3.4. The Order of Higher Order Derivation Solutions

Every higher order derivation on F is a differential operator on any finitely
generated subfield of F (see Theorem 8 and [6]). Hence on these fields the
solutions are differential operators. Moreover, if the solutions on any finitely
generated subfield of F are differential operators of order at most n, then
every solution on F is a derivation of order n. From now on, instead of finding
solutions as higher order derivations we are looking for differential operators
as solutions.

For this purpose, our next aim is to understand the arithmetic of the
composition of derivations of the form d1 ◦ · · · ◦ dr that are building blocks of
differential operators. First we show that there is a natural form of composition
of derivations that can be taken as a standard basis.

For this target, the notion of moment function sequences turn out to
be useful. Here we follow [4]. A composition of a nonnegative integer n is a
sequence of nonnegative integers α = (αk)k∈N

such that

n =
∞∑

k=1

αk.

For a positive integer r, an r-composition of a nonnegative integer n is a
composition α = (αk)k∈N

with αk = 0 for k > r.
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Given a sequence of variables x = (xk)k∈N and compositions α = (αk)k∈N

and β = (βk)k∈N
we define

α! =
∞∏

k=1

αk, |α| =
∞∑

k=1

αk, xα =
∞∏

k=1

xαk

k ,

(
α

β

)
=

∞∏

k=1

(
αk

βk

)
.

Furthermore, β ≤ α means that βk ≤ αk for all k ∈ N and β < α stands for
β ≤ α and β �= α.

Definition 11. Let G be a commutative group, r a positive integer, and for
each multi-index α in N

r let fα : G → C be a continuous function. We say that
(fα)α∈Nr is a generalized moment sequence of rank r, if

fα(x + y) =
∑

β≤α

(
α

β

)
fβ(x)fα−β(y) (4)

holds whenever x, y are in G. The function f0, where 0 is the zero element in
N

r, is called the generating function of the sequence.

Theorem 16. Let G be a commutative group, r a positive integer, and for each
α in N

r let fα : G → C be a function. If the sequence of functions (fα)α∈Nr

forms a generalized moment sequence of rank r, then there exists an exponential
m : G → C and a sequence of complex-valued additive functions a = (aα)α∈Nr

such that for every multi-index α in N
r and x in G we have

fα(x) = Bα(a(x))m(x),

where Bα denotes the multivariate Bell polynomial corresponding to the multi-
index α.

Remark 11. It is well-known that every polynomial P : Cr → C (r ∈ N) can be
given as a linear combination of Bell polynomials Bα, where α ∈ N

r. Hence,
momentum generating functions generate the exponential polynomial func-
tions on G. By Lemma 4, polynomials of the form Bα ◦a are linearly indepen-
dent over C.

Lemma 17. Let F ⊂ C be a field, r be a positive integer and d1, . . . , dr : F → F

be linearly independent derivations. For all multi-index α ∈ N
r, α = (α1, . . . , αr)

define the function ϕα : F → C by

ϕα(x) = dα(x) = dα1
1 ◦ · · · ◦ dαr

r (x)

= d1 ◦ · · · ◦ d1︸ ︷︷ ︸
α1times

◦ · · · ◦ dr ◦ · · · ◦ dr︸ ︷︷ ︸
αr times

(x)

(
x ∈ F

×) .

Then (ϕα)α∈Nr is a generalized moment sequence of rank r on the commutative
group F

× and the generating function of the sequence is the identity function.
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Proof. Let F ⊂ C be a field, r be a positive integer and d1, . . . , dr : F → F be
linearly independent derivations. For all multi-index α ∈ N

r, α = (α1, . . . , αr)
define the function ϕα : F → C as in the lemma. We prove the statement by
induction of the length of the multi-index α. Assume that α ∈ N

r and |α| = 1.
Then there exists i ∈ {1, . . . r} such that αi = 1 and αj = 0 for j �= i and

ϕα(xy) = dαi
i (xy) = di(xy) = xdi(y) + ydi(x)

= ϕ0(x)ϕα(y) + ϕ0(y)ϕα(x) =
∑

β≤α

(
α

β

)
ϕβ(x)ϕα−β(y)

(
x, y ∈ F

×) .

Let now α ∈ N
r and assume that the statement is true for all multi-indices

β ∈ N
r with β < α. Then

ϕα(xy) = dα(xy) = dα1
1 ◦ · · · ◦ dαr

r (xy) = d1 ◦ · · · d1︸ ︷︷ ︸
α1 times

◦ · · · ◦ dr ◦ · · · ◦ dr︸ ︷︷ ︸
αr times

(xy)

= d1 ◦ · · · ◦ d1︸ ︷︷ ︸
α1 times

◦ · · · ◦ dr−1 ◦ · · · ◦ dr−1︸ ︷︷ ︸
αr−1 times

(dαr
r (xy))

= d1 ◦ · · · ◦ d1︸ ︷︷ ︸
α1 times

◦ · · · ◦ dr−1 ◦ · · · ◦ dr−1︸ ︷︷ ︸
αr−1 times

⎛

⎝
αr∑

βr=0

(
αr

βr

)
dβr

r (x) · dαr−βr
r (y)

⎞

⎠

=
αr∑

βr=0

(
αr

βr

)
d1 ◦ · · · ◦ d1︸ ︷︷ ︸

α1 times

◦ · · · ◦ dr−1 ◦ · · · ◦ dr−1︸ ︷︷ ︸
αr−1 times

(
dβr

r (x) · dαr−βr
r (y)

)

=
α1∑

β1=0

· · ·
αr−1∑

βr−1=0

αr∑

βr=0

(
α1

β1

)
. . .

(
αr−1

βr−1

)(
αr

βr

)

× dβ1
1 ◦ · · · ◦ dβr

r (x) · dα1−β1
1 ◦ · · · ◦ dαr−βr

r (y)

=
∑

β≤α

(
α

β

)
ϕβ(x)ϕα−β(y)

(
x, y ∈ F

×) .

�

Corollary 18. By Lemma 17 and Remark 11 implies that the functions dα =
dα1
1 ◦ · · · ◦ dαr

r constitute a basis of the differential operators in F
×. Since

every dα is additive, by Lemma 4, all elements of the system {dα(x)}, where
α ∈ ∪r∈NN

r are algebraically independent.
A consequence of the algebraic independence of the elements of dα, where

α ∈ ∪r∈NN
r is the following. Let P ∈ C[x1, . . . , xn] be a polynomial, d1, . . . dr

be derivations as in Lemma 17 and α1, . . . , αn ∈ ∪r∈NN
r. Then the following

polynomial form

P (dα1(x), . . . , dαn(x)) = 0 (x ∈ G)
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holds if and only if

P (d̂ |α1|(x), . . . , d̂ |αn|(x)) = 0 (x ∈ G) ,

where d̂ is an arbitrary derivation (of order 1). In other words, we can substi-
tute d1, . . . , dr by d̂ in dα1 , . . . , dαn .

By Corollary 18, it would be desirable to calculate dk = d ◦ · · · ◦ d︸ ︷︷ ︸
ktimes

, where

d is a derivation (of order 1) and k ∈ N. Lemma 17, together with [4, Propo-
sition 1], implies the following statement.

Proposition 19. Let F ⊂ C be a field and d : F → C a derivation. For all
positive integer k we define the function dk on F by

dk(x) = d ◦ · · · ◦ d︸ ︷︷ ︸
k times

(x) (x ∈ F) .

Then for all positive integer p we have

dk(x1 · · · xp) =
∑

l1,...,lp≥0
l1+···+lp=k

(
k

l1, . . . , lp

) p∏

t=1

dlt(xt) (x1, . . . , xp ∈ F) ,

where the conventions d0 = id and
(

k

l1, . . . , lp

)
=

k!
l1! · · · lp! are adopted. Espe-

cially, for all positive integer p, we have

dk(xp) =
∑

l1,...,lp≥0
l1+···+lp=k

(
k

l1, . . . , lp

)
· dl1(x) · · · dlp(x) (x1, . . . , xp ∈ F) ,

Reordering the previous expression we can get the following

dk(xp) =
∑

j1+···+js=p′<p
j1+2j2+···+sjs=k

(
k

1, . . . , 1︸ ︷︷ ︸
j1

, . . . , s, . . . , s︸ ︷︷ ︸
js

) s∏

t=1

1
(jt!)

×
(

p

1, . . . , 1︸ ︷︷ ︸
p′

)
· (d(x))j1 · · · (ds(x))js · xp−p′

, (x ∈ F)

where j1, . . . , js denotes the number of d(x), . . . , ds(x) in a given composition
of dk(xp).

With the above results, we are now ready to prove an upper bound for
the order of derivations appearing in Theorem 14.
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Theorem 20. Under the hypotheses of Theorem 14, the solutions fi and gi are
derivations Di and D̃i for all i = 1, . . . , n. Let k and l denote the maximal
orders of derivations Di and D̃i, respectively. Suppose that there exists some
i′ such that the order of Di′ and D̃i′ is exactly k and l, respectively. Then for
all i = 1, . . . , n the order of Di and D̃i is less or equal to n − 1.

Proof. Assume contrary that the maximal order k of the above derivations
D1, . . . , Dn is greater than n−1. The argument for the case when the maximal
order l of D̃1, . . . , D̃n is greater than n − 1 is analogous.

By our assumption there exists an index i′ such that the orders of the
derivations Di′ and D̃i′ is exactly k and l, respectively. It is important to
note that then the sum of the orders of Di and D̃i is at most k + l for any
i, and it is exactly k + l for some indices if and only if the corresponding D

and D̃ is of order k and of order l, respectively. Furthermore, by the algebraic
independence of higher order derivations, there the number of these indices
are at least two.

From now on we assume that F is finitely generated. Indeed, if we verify
the statement for any finitely generated subfield of a field F, then it holds for F
itself, as well. On finitely generated fields all of these higher order derivations
can be represented as differential operators, that is, on finitely generated fields
we have

Di(x) =
∑

|α|≤k

λi,αdα
i (x) and D̃i(x) =

∑

|β|≤l

λ̃i,β d̃β
i (x) (x ∈ F)

with appropriate complex constants λi,α, λ̃i,β , (|α| ≤ k, |β| ≤ l, i = 1, . . . , n)
and higher order derivations dα

i , d̃β
i : F → C defined in Lemma 17. Further, we

have

0 =
n∑

i=1

Di(xpi)D̃i(xqi)

=
n∑

i=1

⎛

⎝
∑

|α|≤k

λi,αdα
i (xpi)

⎞

⎠ ·
⎛

⎝
∑

|β|≤l

λ̃i,β d̃β
i (xqi)

⎞

⎠ (x ∈ F) .

If we expand the right hand side of the above identity with the aid of Propo-
sition 19, we get an expression of the following polynomial form

P (x, d1(x), . . . , dk(x), d̃1(x), . . . , d̃l(x), . . . , dk
1(x), . . . ,

dk
k(x), d̃l

1(x), . . . , d̃l
l(x)) = 0 (x ∈ F) .

If this identity can be satisfied by different functions, it can also be satisfied
by a single one. By Corollary 18, this enables us to substitute the functions
dα

i , d̃β
i (i = 1, . . . , n, |α| ≤ k, |β| ≤ l) with suitable compositions of a given

derivation d of order 1. In other words, instead of the above identity, we can
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restrict ourselves to
n∑

i=1

⎛

⎝
k∑

j=0

λi,jd
j(xpi)

⎞

⎠ ·
⎛

⎝
l∑

j=0

λ̃i,jd
j(xqi)

⎞

⎠ = 0 (x ∈ F)

with appropriate complex constants λi,j (i = 1, . . . , n, j = 0, . . . , k), and λ̃i,j

(i = 1, . . . , n, j = 0, . . . , l) and derivation d : F → C. By our assumptions there
are some i′ such that λi′,k �= 0 and λ̃i′,l �= 0.

Dividing the above sum to smaller ones, we get

n∑

i=1

⎛

⎝
k∑

j=0

λi,jd
j(xpi)

⎞

⎠ ·
⎛

⎝
l∑

j=0

λ̃i,jd
j(xqi)

⎞

⎠

=
n∑

i=1

⎛

⎝
k−1∑

j=0

λi,jd
j(xpi) + λi,kdk(xpi)

⎞

⎠ ·
⎛

⎝
k−1∑

j=0

λ̃i,jd
j(xqi) + λ̃i,ld

l(xqi)

⎞

⎠

n∑

i=1

[
S(pi, k − 1)S(qi, l − 1) + λ̃i,ld

l(xqi)S(pi, k − 1)

+λi,kdk(xpi)S(qi, l − 1) + λi,kλ̃i,kdk(xpi)dl(xqi)
]

= 0

(x ∈ F) ,

where

S(pi, k − 1) =
k−1∑

j=0

λi,jd
j(xpi) and S(qi, l − 1) =

l−1∑

j=0

λ̃i,jd
j(xqi) (x ∈ G) .

Note that, by the algebraic independence used in Corollary 18, this sum splits
into separate terms of the form ds(xpi)dt(xqi), where s + t is a fixed number.
By our assumption, when s + t = k + l, then the only way is that s = k, t = l.
This implies that using Proposition 19 we get that

0 =
n∑

i=1

λi,kλ̃i,ld
k(xpi)dl(xqi)

=
n∑

i=1

λi,kλ̃i,k

×

⎛

⎜⎜⎜⎝
∑

j1+···+js=p′<pi
j1+2j2+···+sjs=k

(
k

1, . . . , 1︸ ︷︷ ︸
j1

, . . . , s, . . . , s︸ ︷︷ ︸
js

)(
pi

1, . . . , 1︸ ︷︷ ︸
p′

)
s∏

t=1

(dt(x))jt

(jt!)
xpi−p′

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝
∑

j1+···+js=q′<qi
j1+2j2+···+sjs=l

(
l

1, . . . , 1︸ ︷︷ ︸
j1

, . . . , s, . . . , s︸ ︷︷ ︸
js

)(
qi

1, . . . , 1︸ ︷︷ ︸
q′

)
s∏

t=1

(dt(x))jt

(jt!)
xqi−q′

⎞

⎟⎟⎟⎠
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while the rest in the above sum can be computed similarly.

Case 1. If k < l, then we compute the coefficients of the terms

(d(x))jdk−j(x)dl(x) (j = 0, . . . , k − 1). (5)

For each j = 0, . . . , k − 1 this can be taken from the expansion of

λi,kλ̃i,ld
k(xpi)dl(xqi)

in only one way. Namely, by splitting dk(xpi) into j + 1 parts and dl(xqi) into
one. Then the corresponding coefficients are

n∑

i=1

λi,kλ̃i,l

(
k

1, . . . , 1︸ ︷︷ ︸
j

)
1
j!

(
pi

1, . . . , 1︸ ︷︷ ︸
j+1

)(
qi

1

)
= 0.

Since each of the terms contains
(

k

1, . . . , 1︸ ︷︷ ︸
j

)
1
j!

=
(

k

j

)
, this can be eliminated

from the above equation. The corresponding equations (j = 0, . . . , k) can be
written in the following matrix equation

⎛

⎜⎜⎜⎜⎜⎜⎝

(
p1
1

)(
q1
1

)
. . .

(
pn

1

)(
qn

1

)
(

p1
1,1

)(
q1
1

)
. . .

(
pn

1,1

)(
qn

1

)

...
. . .

...( p1

1, . . . , 1︸ ︷︷ ︸
k

)(
q1
1

)
. . .

( pn

1, . . . , 1︸ ︷︷ ︸
k

)(
qn

1

)

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎝

λ1,kλ̃1,l

λ2,kλ̃2,l

...
λn,kλ̃n,l

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

Here we note that as pi’s are all different positive integers, it follows that
pi ≥ n for some i and hence the first n rows of the matrix are not identically
zero, as k > n − 1. It is straightforward to verify that the first n row of above
matrix equation is equivalent to

⎛

⎜⎜⎜⎝

p1 . . . pn

p21 . . . p2n
...

. . .
...

pn
1 . . . pn

n

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎜⎝

q1λ1,kλ̃1,l

q2λ2,kλ̃2,l

...
qnλn,kλ̃n,l

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

Since this is a Vandermonde type matrix with different pi’s, the only solution
of this homogeneous linear system is the zero vector, i.e., qiλi,kλ̃i,l = 0 for all
i = 1, . . . , n. This contradicts to our assumption that there is some i′ for which
λi′,k �= 0 and λ̃i′,l �= 0 (qi′ �= 0 as qi �= 0 for all i ∈ {1, . . . , k}).

Case 2. If k = l, then we compute the coefficients of the terms

(d(x))2j(dk−j(x))2 (j = 0, . . . , k − 1). (6)
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If j <
k

2
, then this term can be taken from the expansion of

λi,kλ̃i,ld
k(xpi)dk(xqi)

in only one way. Namely, by splitting dk(xpi) and dk(xqi) into j + 1 parts.
Then the corresponding coefficients are

n∑

i=1

λi,kλ̃i,l

⎛

⎜⎜⎜⎝

(
k

1, . . . , 1︸ ︷︷ ︸
j

)
1
j!

⎞

⎟⎟⎟⎠

2

(
pi

1, . . . , 1︸ ︷︷ ︸
j+1

)(
qi

1, . . . , 1︸ ︷︷ ︸
j+1

)
= 0.

Since each of the terms contains
((

k
1, . . . , 1︸ ︷︷ ︸

j

) 1
j!

)2
=
(
k
j

)2
, this can be eliminated

from the above equations. These equations for j = 0, . . . , �k/2� − 1 can be
written in the following matrix equation

⎛

⎜⎜⎜⎜⎜⎜⎝

(
p1
1

)(
q1
1

)
. . .

(
pn
1

)(
qn
1

)
(
p1
1,1

)(
q1
1,1

)
. . .

(
pn
1,1

)(
qn
1,1

)

...
. . .

...( p1
1, . . . , 1︸ ︷︷ ︸
�k/2�−1

)( q1
1, . . . , 1︸ ︷︷ ︸
�k/2�−1

)
. . .

( pn

1, . . . , 1︸ ︷︷ ︸
�k/2�−1

)( qn

1, . . . , 1︸ ︷︷ ︸
�k/2�−1

)

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎝

λ1,kλ̃1,k

λ2,kλ̃2,k

...

λn,kλ̃n,k

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

Here we note that as pi, qi are all different positive integers, it follow that
maxi {pi, qi} ≥ 2n and hence the first n′ = min(n, �k/2� − 1) rows of the
matrix in not identically zero, as k > n−1. It is straightforward to verify that
the first n′ row of above matrix equation is equivalent to

⎛

⎜⎜⎜⎝

p1q1 . . . pnqn

p21q
2
1 . . . p2nq2n

...
. . .

...
pn′
1 qn′

1 . . . pn′
n qn′

n

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎜⎝

λ1,kλ̃1,k

λ2,kλ̃2,l

...
λn,kλ̃n,k

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

Note that if n′ = n, then we are done with a Vandermonde matrix argument
similar as it is used in Case 1. So from now on we assume that n′ = �k/2�− 1.
This also means that k < 2n, thus the maximal order of the corresponding
derivations is at most 2n − 1.

If j ≥ k

2
, then the term (d(x))2j(dk−j(x))2 can be taken from the expan-

sion of

λi,kλ̃i,ld
k(xpi)dk(xqi)

in three ways. One is as above, when we split both dk(xpi) and dk(xqi) into
j +1 parts. Another one is when dk(xpi) is split into k parts giving d(x)k, and
dk(xqi) provides (dk−j(x))2(d(x))2j−k. The third one is given by changing the
role of pi and qi.
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Then the corresponding coefficients are

n∑

i=1

λi,kλ̃i,k

(( k

1, . . . , 1︸ ︷︷ ︸
j

)
1

(j!)

)2( pi

1, . . . , 1︸ ︷︷ ︸
j

)(
qi

1, . . . , 1︸ ︷︷ ︸
j

)

+
n∑

i=1

λi,kλ̃i,k

(
k

1, . . . , 1︸ ︷︷ ︸
k

)
1

(k!)

(
k

1, . . . , 1︸ ︷︷ ︸
2j−k

, j

)
1
2

1
(2j − k)!

×
(( pi

1, . . . , 1︸ ︷︷ ︸
k

)(
qi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)
+
(

pi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
k

))
= 0.

First we show that the second sum has to vanish for all j = �k/2�, . . . , k − 1.
In such cases, the coefficients

(
k

1, . . . , 1︸ ︷︷ ︸
k

)
1
k!

(
k

1, . . . , 1︸ ︷︷ ︸
2j−k

, j

)
1
2

1
(2j − k)!

are the same is each summand, it is enough to show that

n∑

i=1

λi,kλ̃i,k

(( pi

1, . . . , 1︸ ︷︷ ︸
k

)(
qi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)
+
(

pi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
k

))
= 0. (7)

This clearly holds, since the term (d(x))2j+1d2k−2j−1(x) in the expansion of
dk(xpi)dk(xqi) for j = �k/2�, . . . , k−1 can be given in exactly two ways. Either
(d(x))k stems from dk(xpi) and (d(x))2j−k+1 ·d2k−2j−1(x) stems from dk(xqi),
or reversely changing the role of pi and qi. Hence we get

n∑

i=1

λi,kλ̃i,k

(
k

1, . . . , 1︸ ︷︷ ︸
2j−k+1

)
· 1
(2j − k + 1)!

×
(( pi

1, . . . , 1︸ ︷︷ ︸
k

)(
qi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)
+
(

pi

1, . . . , 1︸ ︷︷ ︸
2j−k+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
k

))
= 0,

which is equivalent to Eq. (7). Thus, for all j = �k/2�, . . . , k − 1 it follows

n∑

i=1

λi,kλ̃i,k

(( k

1, . . . , 1︸ ︷︷ ︸
j

)
1

(j!)

)2( pi

1, . . . , 1︸ ︷︷ ︸
j

)(
qi

1, . . . , 1︸ ︷︷ ︸
j

)
= 0
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This implies that

n∑

i=1

λi,kλ̃i,k

(
pi

1, . . . , 1︸ ︷︷ ︸
j

)(
qi

1, . . . , 1︸ ︷︷ ︸
j

)
= 0

hold for all j = 0, . . . , k − 1. Thus we get

⎛

⎜⎜⎜⎜⎜⎜⎝

(
p1
1

)(
q1
1

)
. . .

(
pn
1

)(
qn
1

)
(
p1
1,1

)(
q1
1,1

)
. . .

(
pn
1,1

)(
qn
1,1

)

...
. . .

...( p1
1, . . . , 1︸ ︷︷ ︸

k

)( q1
1, . . . , 1︸ ︷︷ ︸

k

)
. . .

( pn

1, . . . , 1︸ ︷︷ ︸
k

)( qn

1, . . . , 1︸ ︷︷ ︸
k

)

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎝

λ1,kλ̃1,k

λ2,kλ̃2,k

...

λn,kλ̃n,k

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ ,

where the first n rows of the matrix is not identically zero as pi and qi are
different, hence there is an index i′ such that pi′ ≥ n and qi′ ≥ n. Thus this
system consisting the first n rows is equivalent to

⎛

⎜⎜⎜⎝

p1q1 . . . pnqn

p21q
2
1 . . . p2nq2n

...
. . .

...
pn
1 qn

1 . . . pn
nqn

n

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎜⎝

λ1,kλ̃1,k

λ2,kλ̃2,l

...
λn,kλ̃n,k

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

By the usual Vandermonde argument as in Case 1, the only solution of this
homogeneous linear system is the zero vector, i.e., λi,kλ̃i,l = 0 for all i =
1, . . . , n. This contradicts our assumption that there is some i′ for which λi′,k �=
0 and λ̃i′,k �= 0.

Case 3. If k > l, then we prove by induction in j that

n∑

i=1

λi,kλ̃i,lp
j+1−s
i qs

i = 0

holds for every j = 0, . . . , n − 1 and every s = 0, . . . , j.
In each step we consider how (d(x))jdk−j(x)dl(x) can be given from the

expansion dk(xpi)dl(xqi). There are three possible ways, where this term can
stem from.

(a) (d(x))jdk−j(x) stems from dk(xpi) and dl(x) stems from dl(xqi). This can
happen for every
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j ∈ {0, . . . , k}. In this case the coefficient of (d(x))jdk−j(x)dl(x) is
n∑

i=1

λi,kλ̃i,l

(
k

1, . . . , 1︸ ︷︷ ︸
j

)
1
j!

(
pi

1, . . . , 1︸ ︷︷ ︸
j+1

)(
qi

1

)

=
n∑

i=1

λi,kλ̃i,l

(
k

j

)(
pi

1, . . . , 1︸ ︷︷ ︸
j+1

)
qi.

(b) dk−j(x)dl(x)(d(x))j−l stems from dk(xpi) and (d(x))l stems from dl(xqi).
This can happen if j ≥ l. In this case the coefficient of (d(x))jdk−j(x)dl(x)
is

n∑

i=1

λi,kλ̃i,l

(
k

k − j, l, 1, . . . , 1︸ ︷︷ ︸
j−l

)
1

(j − l)!

(
l

1, . . . , 1︸ ︷︷ ︸
l

)
1
l!

(
pi

1, . . . , 1︸ ︷︷ ︸
j−l+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
l

)

=
n∑

i=1

λi,kλ̃i,l

(
k

k − j, j − l, l

)(
pi

1, . . . , 1︸ ︷︷ ︸
j−l+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
l

)
.

(c) dl(x)(d(x))k−l stems from dk(xpi) and (d(x))l−(k−j)dk−j(x) stems from
dl(xqi). This can happen if l ≥ k − j. In this case the coefficient of
(d(x))jdk−j(x)dl(x) is

n∑

i=1

λi,kλ̃i,l

(
k

k − l, 1, . . . , 1︸ ︷︷ ︸
l

)
1
l!

(
l

k − j, 1, . . . , 1︸ ︷︷ ︸
l−(k−j)

)
1

(l − (k − j))!

×
(

pi

1, . . . , 1︸ ︷︷ ︸
l+1

)(
qi

1, . . . , 1︸ ︷︷ ︸
l−(k−j)+1

)

=
n∑

i=1

λi,kλ̃i,l

(
k

k − l, k − j, l − (k − j)

)(
pi

1, . . . , 1︸ ︷︷ ︸
l+1

)(
qi

1, . . . , 1︸ ︷︷ ︸
l−(k−j)+1

)
.

For j = 0 (and hence s = 0) only the first term takes into account. This
means that

n∑

i=1

λi,kλ̃i,lpiqi = 0.

So the inductive hypothesis holds for j = 0.
Now we assume that

n∑

i=1

λi,kλ̃i,lp
j′+1−s
i qs

i = 0
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holds for every j′ = 0, . . . , j − 1 and every s = 0, . . . , j′. We prove that

n∑

i=1

λi,kλ̃i,lp
j+1−s
i qs

i = 0

holds for every s = 0, . . . , j, as well. Generally, some of the previous
compositions are possible for a given j but the following argument works
in all cases, however we just prove it when all compositions discussed
below appear in the expansion. Thus we assume that the coefficient of
(d(x))jdk−j(x)dl(x) is

0 =
n∑

i=1

λi,kλ̃i,l

⎡

⎢⎢⎢⎣

(
k

j

)(
pi

1, . . . , 1︸ ︷︷ ︸
j+1

)
qi

+
(

k

k − j, j − l, l

)(
pi

1, . . . , 1︸ ︷︷ ︸
j−l+2

)(
qi

1, . . . , 1︸ ︷︷ ︸
l

)

+
(

k

k − l, k − j, l − (k − j)

)(
pi

1, . . . , 1︸ ︷︷ ︸
l+1

)(
qi

1, . . . , 1︸ ︷︷ ︸
l−(k−j)+1

)
.

⎤

⎥⎥⎥⎦

By the inductive hypothesis and the fact that j < n ≤ min {p′
i, q

′
i}

for some i′, this is equivalent to

0 =
n∑

i=1

λi,kλ̃i,l

((
k

j

)
pj+1

i qi +
(

k

k − j, j − l, l

)
pj−l+2

i ql
i

+
(

k

k − l, k − j, l − (k − j)

)
pl+1

i q
l−(k−j)+1
i

)
.

Note that the expressions pj+1−s
i qs

i for s = 0, . . . , j can be interchanged in
the following sense. By C(ii), pi + qi = N , thus we have that pj+1−s

i qs
i =

Npj−s
i qs

i − pj−s
i qs+1

i . As

n∑

i=1

λi,kλ̃i,lp
j−s
i qs

i = 0
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for every s = 0, . . . , j − 1 by the inductive hypothesis, the term Npj−s
i qs

i

can be eliminated. After several repetition of this step we get that

0 =
n∑

i=1

λi,kλ̃i,l

((
k

j

)
pj+1

i qi ±
(

k

k − j, j − l, l

)
pj+1

i qi

±
(

k

k − l, k − j, l − (k − j)

)
pj+1

i qi

)
.

We also note that using this interchange rule and the inductive hypothesis
it is clear that

n∑

i=1

λi,kλ̃i,lp
j+1−s
i qs

i = 0

for any s = 0, . . . , j is equivalent to
n∑

i=1

λi,kλ̃i,lp
j+1
i qi = 0.

Therefore, to finish the proof it is enough to show that
(

k

j

)
±
(

k

k − j, j − l, l

)
±
(

k

k − l, k − j, l − (k − j)

)
�= 0.

This is equivalent to verify that

1
j!

± 1
(j − l)!(l!)

± 1
(k − l)!(l − (k − j)!)

�= 0.

Multiplying by j! this lead to

1 ±
(

j

l

)
±
(

j

k − l

)
�= 0.

It is straightforward to show using the growth of
(
n
k

)
in k (if k ≤ n/2)

that one term dominates the others if l �= k− l and l �= j−(k− l). Thus in
these cases this (weighted) sum is nonzero. If l = k − l or l = j − (k − l),
then either their sign is the same and hence the sum is nonzero, or their
sign is different and hence they eliminate each other, hence the sum is 1
which is nonzero.

Summarizing, we get that
(

k

j

)
±
(

k

k − j, j − l, l

)
±
(

k

k − l, k − j, l − (k − j)

)
�= 0

and hence
n∑

i=1

λi,kλ̃i,lp
j+1
i qi = 0, (8)

which is equivalent to the inductive hypothesis for j as we noted above.
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Thus Eq. (8) holds for every j = 0, . . . , n − 1. In matrix form this
means that

⎛

⎜⎜⎜⎝

1 . . . 1
p1 . . . pn

...
. . .

...
pn−1
1 . . . pn−1

n

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎜⎝

p1q1λ1,kλ̃1,k

p2q2λ2,kλ̃2,l

...
pnqnλn,kλ̃n,k

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎟⎠ .

Since this matrix is a Vandermonde type matrix with different pi’s, as
Case 1 and Case 2, this implies that, the only solution of this homo-
geneous linear system is the zero vector, i.e., piqiλi,kλ̃i,l = 0 for all
i = 1, . . . , n. This contradicts to our assumption that there is some i′

for which λi′,k �= 0 and λ̃i′,l �= 0 (and pi �= 0, qi �= 0 by C(i)). This
also finishes the proof of the theorem, thus the order of all derivations
involved in (1) is at most n − 1.

�
Remark 12. The upper bound appearing in the above theorem is sharp. To
see this, let n,N be positive integers, λ1, . . . , λn ∈ C and let f : F → C be an
additive function for which

n∑

i=1

λif(xi)xN−i = 0

is fulfilled for all x ∈ F. Then f ∈ Dn−1(R) if and only if λi = (−1)i

(
n

i

)
for

all i = 1, . . . , n, see [1,3,5].

Remark 13. The proof of Theorem 20 in all the cases is based on the fact that
the matrix ⎛

⎜⎜⎜⎜⎜⎜⎝

(
p1
1

)(
q1
1

)
. . .

(
pn

1

)(
qn

1

)
(

p1
1,1

)(
q1
1

)
+
(
p1
1

)(
q1,1
1

)
. . .

(
pn

1

)(
qn

1,1

)
+
(

pn

1,1

)(
qn

1

)

...
. . .

...( p1

1, . . . , 1︸ ︷︷ ︸
n−1

)( q1
1, . . . , 1︸ ︷︷ ︸

n−1

)
. . .

( pn

1, . . . , 1︸ ︷︷ ︸
n−1

)( qn

1, . . . , 1︸ ︷︷ ︸
n−1

)

⎞

⎟⎟⎟⎟⎟⎟⎠

has rank n, though it is far from being trivial to find the proper sub-matrix,
which verifies that.

On the other hand, the situation is much more complicated, if the maxi-
mal order k of Di, and the maximal order l of D̃i is not uniquely determined.
Namely, if there are several different pairs (ki, li) so that ki + li = K, where K

is constant and ki is the maximum order of Di, li is the maximal order of D̃i.
Then the equations first can only be determined for subsets of the index set,
which satisfy some nontrivial relations. In this case the first task is to show
that the problem can be formalized separately for the index sets, which seems
a very hard problem in full generality. In this case our method can be applied.
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Theorem 20 and Remark 13 motivates our conjecture, that we verified
for n ≤ 4.

Conjecture 21. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1,
. . . , qn be fixed positive integers fulfilling conditions C(i)–C(iii). Assume that
the additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy Eq. (1). Then every
solution is a generalized exponential polynomial function of degree at most n−1
on F

×. In particular, if

fi(x) = Di(x) and gi(x) = D̃i(x)
(
x ∈ F

×) (9)

for each i = 1, . . . , n, then the order of Di, D̃i is at most n − 1.

This conjecture leads to the following more general open question.

OpenQuestion 1. Is it true that every nonzero additive, irreducible solutions
f1, . . . , fn of

P (f1(xp1), . . . , fn(xpn)) = 0, with P (0, . . . , 0) = 0

are derivations of order at most n − 1 and the identity function up to a ho-
momorphism, if P : C → C is polynomial and p1 . . . , pn are distinct positive
integers?

Finally we highlight some important special cases when Theorem 20 gives
the proper bound of the order of the derivations.

Corollary 22. Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1,
. . . , qn be fixed positive integers fulfilling conditions C(i)–C(iii). Assume that
the additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy Eq. (1) as an irre-
ducible solution. Then fi ∼ Di and gi ∼ D̃i, where Di and D̃i are higher order
derivations. Assume further that one of the following holds.
(A) All Di have the same order. This is the case, when fi(x) = cif(x) (x ∈ F)

for some nonzero constants ci ∈ C, i ∈ {1, . . . , n}.
(B) All D̃i have the same order. This is the case, when gi(x) = cig(x) (x ∈ F)

for some nonzero constants ci ∈ C, i ∈ {1, . . . , n}.
(C) fi = ci · gi for all i ∈ {1, . . . , n} with some nonzero constants ci ∈ C,

i = 1, . . . , n.

Then the order Di and D̃i is at most n − 1.

Proof. Theorem 14 implies that every solution fi (resp. gi) is an exponential
polynomial of the form Pi · m (resp. Qi · m), which means that fi ∼ Di and
gi ∼ D̃i for some derivations Di and D̃i.

(A) Let k denote the order of Di, and let l be the maximal order of D̃i. Now
we are in the position to apply Theorem 20.

(B) Similar to (A), since in case of Eq. (1), the role of the parameters p1, . . . , pn

and q1, . . . , qn is symmetric.
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(c) As the maximal degree of fi is the same as the maximal degree of gi and
it is taken for the same index we can apply Theorem 20.

�

Special Cases of Eq. (1). In this subsection we consider special cases of Eq. (1).
All the equations we consider here are of the form

f1(xp1)g1(xq1) + f2(xp2)g2(xq2) = 0 (x ∈ F) .

Here f1, f2, g1, g2 : F → C denote the unknown additive functions and the
parameters p1, p2, q1, q2 fulfill conditions C(i)–C(iii). Due to the results of the
previous section, we get that

fi(x) ∼ λi,0x + λi,1di(x)
gi(x) ∼ μi,0x + μi,1d̃i(x)

(x ∈ F, i = 1, 2)

with appropriate complex constants λi,j , μi,j (i = 1, 2, j = 0, 1) and derivations
di, d̃i : F → C (i = 1, 2).

Corollary 23. Let N be a positive integer, F ⊂ C be a field and p, q be different
positive integers (strictly) less than N and assume that q �= N − p. If the
additive functions f, g : F → C satisfy

f(xp)f(xN−p) = g(xq)g(xN−q) (x ∈ F) ,

then
(A) either there exists a homomorphism ϕ : C → C, a derivation d : F → C

such that

f(x) = ϕ(d(x)) and g(x) = αϕ(d(x)) (x ∈ F) ,

where α =
p(N − p)
q(N − q)

,

(B) or there exists a homomorphism ϕ : F → C such that

f(x) = f(1) · ϕ(x) g(x) = ±f(1) · ϕ(x) (x ∈ F) .

Corollary 24. Let N be a positive integer, F ⊂ C be a field and p, q be different
positive integers (strictly) less than N and assume that q �= N − p. If the
additive functions f, g : F → C satisfy

f(xp)g(xN−p) = κf(xq)g(xN−q) (x ∈ F) .

Then

(A) if κ /∈
{

1,
p(N − p)
q(N − q)

}
, then f is identically zero,

(B) if κ = 1, then the only possibility is that

f(x) = f(1) · ψ(x) and g(x) = f(1) · ψ(x) (x ∈ F) ,

where ψ : F → C is a homomorphism,
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(C) if κ =
p(N − p)
q(N − q)

, then there exists a homomorphism ϕ : C → C and

derivations d1, d2 : F → C such that

f(x) = ϕ(d1(x)) and g(x) = ϕ(d2(x)) (x ∈ F) .

Both results implies that the nonzero additive solutions of equation

f(xp)f(xN−p) = κf(xq)f(xN−q) (x ∈ F) .

are derivations of order 1 (κ =
p(N − p)
q(N − q)

) or the identity function (κ = 1) up

to a homomorphism.
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Reáltanoda u. 13-15
Budapest 1053
Hungary
e-mail: kigergo57@gmail.com

Received: March 16, 2023.

Accepted: November 30, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	Polynomial Equations for Additive Functions I: The Inner Parameter Case
	Abstract
	1. Introduction and Preliminaries
	Structure of the Paper

	2. Notation, Terminology and Theoretical Background 
	2.1. Polynomials and Generalized Polynomials

	3. Results
	3.1. Elementary Observations: Reduction of the Problem
	3.2. Structure of Solutions
	3.3. Solutions of Eq. 
	3.4. The Order of Higher Order Derivation Solutions
	Special Cases of Eq. (1)


	References




