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The Interplay Between Linear Functional
Equations and Inequalities

Tomasz Szostok

Abstract. We study the connections between the equation
n∑

i=1

aif(αix + (1 − αi)y) = 0

and the corresponding inequality.
n∑

i=1

aif(αix + (1 − αi)y) ≥ 0.

At present, it is clear that linear functional equations should be solved
with the use of the results due to L. Székelyhidi. We show that the sim-
plest and most efficient way of dealing with the (continuous) solutions of
linear inequalities of the above form is connected with the use of stochas-
tic orderings tools. It will be shown that, in order to solve the inequality,
we need to know the continuous solutions of the corresponding equation.
In the last part of the paper, we obtain some simple but unexpected
connections in the other direction.
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1. Introduction

1.1. Preliminaries

We deal here with equations of the form
n∑

i=1

aif(αix + (1 − αi)y) = 0, (1)
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where f : R → R is an unknown function and the numbers ai, αi ∈ R are
given. As it will be explained, using the results of L. Székelyhidi, it may be
shown that every solution of a more general equation

n∑

i=1

aif(αix + βiy) = 0,

is a polynomial function of order at most n− 2. However, we restrict ourselves
to the case βi = 1 − αi to exhibit the connection of (1) with the inequality

n∑

i=1

aif(αix + (1 − αi)y) ≥ 0. (2)

Remark 1. Without loss of generality, it could be assumed that αi ∈ [0, 1].
Indeed, it is enough to find the numbers i1, i2 such that

αi1 ≤ αi ≤ αi1 for all i = 1, . . . , n

and introduce new variables u = αi1x + (1 − αi1)y, v = αi2x + (1 − αi2)y.
Then all other points lie between u and v and, consequently, their weights are
between 0 and 1. After such assumption our equation could be considered on
the interval (then the results contained in [19] could be used). However, we do
not make such an assumption and we deal with functions defined on R.

Remark 2. Note that equations of the form

a1f(x + γ1y) + · · · + anf(x + γny) = 0,

where γ1 < · · · < γn are, in fact, also of the form (2). Indeed, it is enough to
consider new variables u = x + γ1y, v = x + γny. Then all other points will
take the form

αu + (1 − α)v.

1.2. Polynomial functions

Polynomial functions are defined with the use of the difference operator Δh

defined by the formula

Δhf(x) := f(x + h) − f(x).

Further, Δh1,...,hn
f(x) is defined recursively i.e.

Δh1,...,hn
f(x) = Δhn

Δh1,...,hn−1f(x).

If we take h1 = h2 = · · · = hn = h then Δh1,...,hn
f(x) is denoted by Δn

hf(x).

Definition 1. We say that f : R → R is a polynomial function of order n if
and only if f satisfies the equation

Δn+1
h f(x) = 0.
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Remark 3. In our case the equations Δh1,...,hn
f(x) = 0 and Δn

hf(x) = 0 are
equivalent. Therefore, each of them could serve as a definition of polynomial
functions.

In the monograph [20], authored by L. Székelyhidi the following result
can be found.

Theorem 1. Let G be an Abelian semigroup, S an Abelian group, n a nonneg-
ative integer ϕi, ψi additive functions from G to G and let ϕi(G) ⊂ ψi(G), i =
1, 2, . . . , n. If functions f, fi : G → S satisfy equation

f(x) +
n∑

i=1

fi(ϕi(x) + ψi(y)) = 0, (3)

then f satisfies

Δh1,...,hn
f(x) = 0.

Remark 4. Using the above theorem, it is easy to show that every solution of
(1) is a polynomial function of degree at most n − 2.

Indeed, let u, v ∈ R be given. Put x = u + (1 − α1)v and y = u − α1v.
We get

α1x + (1 − α1)y = α1

(
u + (1 − α1)v

)
+ (1 − α1)

(
u − α1v

)
= u

and, for j �= 1

αjx + (1 − αj)y = αj

(
u + (1 − α1)v

)
+ (1 − αj)

(
u − α1v

)

= u + (αj − α1)v.

This means that, after such substitutions, (1) is presented in the form (3) and
from Theorem 1 we obtain the polynomiality of its solutions.

Polynomial functions are sometimes called generalized polynomials. Their
general form is given by

f(x) = a0 + a1(x) + · · · + an(x),

where a0 is a constant and

ai(x) = Ai(x, . . . , x),

where Ai : Ri → R is an i−additive and symmetric function. A continuous
polynomial function is an ordinary polynomial - of the same degree.

1.3. Higher-Order Convexity

It will be shown that the solutions of (2) are expressed in terms of convex
functions of higher order. Therefore, now we will say a few words concerning
this notion. The higher-order divided differences are defined recursively:

f [x1] = f(x1)
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and

f [x1, . . . , xn] =
f [x1, . . . , xn−1] − f [x2, . . . , xn]

xn − x1
.

Let I ⊂ R be an interval. We say that function f : I → R is convex of order n
if

f [x1, . . . , xn+2] ≥ 0,

for any pairwise distinct points x1, . . . , xn+2 ∈ I. Note that 0−convexity means
nondecreasingness and 1−convexity is equivalent to the standard convexity.
Thus the notion of convexity of higher order is a natural extension of these
well-established concepts.

1.4. Stochastic Orderings

The central role in the current paper is being played by two results. The first
of them is the following theorem from the paper by Denuit et al. [4].

Theorem 2. Let X and Y be two random variables such that

E(Xj − Y j) = 0, j = 1, 2, . . . , s. (4)

If the distribution functions FX , FY cross exactly s−times, at points x1, . . . , xs

and

(−1)s+1(FY (t) − FX(t)) ≤ 0 for all t ∈ [a, x1], (5)

then

Ef(X) ≤ Ef(Y )

for all s−convex functions f : R → R.

Note that Theorem 2 with s = 1 is known as the Ohlin lemma [12]. The
idea to use the Ohlin lemma and other stochastic tools in the inequalities the-
ory was started by Rajba in [16]. Then this idea evolved in different directions.
In the paper [9], such tools were used to solve a problem posed by Raşa. In [10],
strongly convex functions are considered, in [11] results for set-valued maps
are obtained, and in [5] these two concepts are treated jointly. See also [13],
[1] where the Levin-Stechkin theorem is used, [2] with result converse to Ohlin
lemma, and [6,7,17,22], where some results for higher-order convex functions
are obtained.

Theorem 2 gives a sufficient condition for s−convex ordering. We will
explain later how to use this theorem in our case.

The second tool is the main result from the paper by Bessenyei and Páles
[3]. If I ⊂ R then Δ(I) and D(I) are defined by the formulas:

Δ(I) := {(x, y) ∈ I2 : x ≤ y}
and

D(I) := {(x, x) : x ∈ I}.
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Let μ be a a non-zero bounded Borel measure on the interval [0, 1], then its
moments μn are defined by the usual formulas,

μn :=
∫ 1

0

tndμ(t), n = 0, 1, 2, . . . .

The main results of [3] is given by the following theorem.

Theorem 3. Let I ⊂ R be an open interval let Ω ⊂ Δ(I) be an open subset
containing the diagonal D(I) of I × I and let μ be a non-zero bounded Borel
measure on [0, 1]. Assume that n is the smallest non-negative integer such that
μn �= 0. If f : I → R is a continuous function satisfying the integral inequality

∫ 1

0

f(x + t(y − x))dμ(t) ≥ 0, (6)

then μnf is (n − 1)−convex.

Remark 5. Theorem 3 is a generalization of a result from [15], where a similar
result for equations was obtained.

2. Results

2.1. Continuous solutions of (2)

In this chapter, we describe the complete procedure needed to solve inequalities
of the type (2). From now on, we assume that the numbers αi are arranged in
descending order i.e.

α1 > α2 > · · · > αn.

After such an arrangement, for x < y we have

αix + (1 − αi)y < αi+1x + (1 − αi+1)y; i = 1, 2, . . . , n − 1.

Remark 6. Divide the numbers ai into two sets:

{ai1 , . . . , ail}
and

{
aj1 , . . . , ajn−l

}

such that

ai1 , . . . , ail > 0

and

aj1 , . . . , ajn−l
< 0

and define the measures:

μX =
ai1δαi1x+(1−αi1 )y

+ · · · + aikδαik
x+(1−αik

)y

ai1 + · · · + aik

(7)
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and

μY =
aj1δαj1x+(1−αj1 )y

+ · · · + ajn−k
δαjn−k

x+(1−αjn−k
)y

aj1 + · · · + ajn−k

. (8)

Then a given function f satisfies (2) if and only if

Ef(X) ≤ Ef(Y ).

Therefore, Theorem 2 gives sufficient conditions under which (2) is satisfied
for all s−convex functions. In the next two remarks, we analyze the meaning
of the assumptions of this theorem in our situation.

Remark 7. The number of crossing points mentioned in Theorem 2 is equal to
the number of sign changes of the following partial sums sequence

(a1, a1 + a2, . . . , a1 + · · · + an). (9)

Further, the equality of moments (4) in our case means simply that the func-
tions x �→ xi, i = 1, . . . , s, satisfy (1).

Remark 8. Assume that conditions (4) are satisfied and we have s crossing
points. Then inequality (2) may be satisfied either by all s−convex functions or
by all s−concave functions. It depends on the sign of the expression occurring
in (5). In our case, (5) means simply that an > 0.

On the other hand, Theorem 3 used in our situation provides a result in
the converse direction.

Corollary 1. Let ai, αi be such that the functions

x �→ xj , j = 1, . . . , k,

satisfy (1) and the function

x �→ xk+1

does not satisfy (1). Then either every continuous solution of (2) is k−convex
or k−concave.

Proof. To prove this corollary, we first make the substitutions mentioned in
Remark 1 and we have a new (equivalent) equation with αi ∈ (0, 1). Then we
write (1) in the form

n∑

i=1

aif(x + (1 − αi)(y − x)) = 0,

which allows us to treat this inequality as an integral inequality (6). Now, the
assertion follows from Theorem 3. �

The next lemma gives two properties of equation (1) that will be fre-
quently used in the rest of the paper.
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Lemma 1. If the equation (1) is satisfied by the function

x �→ xk,

then the followings assertions are true:
(i) equation (1) is satisfied by every function of the form

x �→ xl, l < k,

(ii) the sequence defined by (9) has at least k sign changes.

Proof. For the indirect proof of the first assertion assume that there exists an
m < k such that the mapping

x �→ xm

does not satisfy (1). Then we may find m0 ≤ m such that the functions

x �→ xl, l < m0

satisfy (1) and

x �→ xm0

does not satisfy it. In view of Corollary 1, this means that every continu-
ous solution of (1) is a polynomial of degree at most m0 − 1, i.e. we have a
contradiction with the fact that x �→ xk satisfies (1).

Now, we prove the second assertion. Consider the case an > 0 and assume,
without loss of generality, that k is the biggest number for which the function

x �→ xk

is the solution of (1). In view of Corollary 1, this means that every solution
of (2) is k−convex. Suppose, contrary to condition (ii), that (9) has m sign
changes for some m < k. We already know that the functions

x �→ xl, l ≤ m,

satisfy (1). In view of Theorem 2, this means that inequality (2) is satisfied by
all m−convex functions.

Combining the above observations, we get the false statement that every
m−convex function is k−convex and the proof is finished. �

Remark 9. At this point the reason why we restrict ourselves to linear equa-
tions with weights summing up to one becomes evident. Note that the qua-
dratic functional equation

f(x + y) + f(x − y) − 2f(x) − 2f(y) = 0

is satisfied by the function x �→ x2 but it is not satisfied by the identity
function. This is caused by the fact that the quadratic functional equation is
not of the form (1).

After the above remarks, we may formulate the following theorem.
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Theorem 4. Assume that the functional equation (1) is satisfied by the function
x �→ xk and that the sequence defined by (9) has exactly k sign changes.

If an > 0, then a given function f satisfies (2) if and only if f is
k−convex. In the case an < 0, f satisfies (2) if and only if f is k−concave.

Proof. Let an > 0, it follows from Lemma 1 that every function x �→ xl, where
l ≤ k satisfies (1). Therefore the assumptions of Theorem 2 are fulfilled (note
that the assumption an > 0 yields (5)) and, consequently, every k−convex
function satisfies (2).

On the other hand, if the function x �→ xk+1 satisfied (2), we would have
at least k + 1 sign changes. Therefore every solution of (2) is k−convex. �

From the above theorem, we can obtain an even simpler corollary.

Corollary 2. If the function x �→ xn−2 satisfies equation (1) then a continuous
function f satisfies (2) if and only if f is (n − 2)−convex (if an > 0).

Proof. To use Theorem 2, we need to show that (9) has n − 2 sign changes.
However, it is clear that this sequence can have a sign change only in points

αix + (1 − αi)y, i = 2, . . . , n − 1.

Thus we have at most n − 2 sign changes. Now it is enough to use Lemma 1
to see that (9) has exactly n − 2 sign changes. �

Now we present examples of applications of our results. We begin with
two warm-up examples concerning t−convexity and t−Wright convexity.

Example 1. Let t ∈ (0, 1) be fixed. It is well known that every continuous
solution of the inequality

f(tx + (1 − ty) ≤ tf(x) + (1 − t)f(y)

is convex. The classical proof is elementary but requires some substitutions.
In our approach, this fact follows directly from Corollary 2.

Example 2. Let t ∈ (0, 1) be fixed. every continuous solution of the inequality

f(tx + (1 − ty) + f((1 − t)x + ty) ≤ f(x) + f(y)

is convex. Now, the inequality is satisfied by the identity function but it has
four terms. Therefore, we cannot use Corollary 2, but we can use Theorem 4
instead. To do this, just notice that the sequence (9) has only one sign change.

Now, we present a new application of the tools developed here. It con-
cerns the functional inequality considered in [14]. This inequality is much more
general than t−Wright convexity. But (surprisingly) the continuous solutions
are just convex functions.
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Theorem 5. Let ti ∈ (0, 1) be given numbers. A continuous function f : R → R

satisfies
n∑

i=1

f(tix + (1 − ti)y) ≤
n∑

i=1

tif(x) +

(
n −

n∑

i=1

ti

)
f(y) (10)

if and only if it is convex.

Proof. It is easy to check that the identity function satisfies (10). Further, the
sequence (9) has only one sign change, therefore, from Theorem 4 we know
that every convex function satisfies (10).

Conversely, since (9) has only one sign change, from Lemma 1, we know
that the function

x �→ x2

does not satisfy (10). In view of Corollary 1, this means that every solution of
(10) has to be convex. �
Remark 10. Note, how short proofs become when the methods connected with
stochastic orderings are used.

In [14], inequality (10) with n = 2 was considered

f(sx + (1 − s)y) + f(tx + (1 − t)y) ≤ αf(x) + (2 − α)f(y)). (11)

It was shown that in the case s, t ∈ (0, 1) the solutions of (11) are convex. How-
ever, without this assumption, inequality (11) could be satisfied by 2−convex
functions. If we expect that inequality (10) may have n−convex functions as
solutions (in the case where ti are not necessarily from (0, 1)), we will be
surprised by the next theorem.

Theorem 6. Let ti ∈ R, i = 1, . . . , n. If a continuous function satisfies (10),
then one of the following possibilities occurs:
(1) f is 3−concave,
(2) f is l − convex with l ≤ 2,
(3) f is l − concave with l ≤ 2.

Proof. Observe that, if we move all terms of (10) to the right-hand side then we
have at most two terms with a positive coefficient ai. Therefore, the sequence
(9) can have at most 3 crossing points. Consequently, the equation

n∑

i=1

f(tix + (1 − ti)y) =
n∑

i=1

tif(x) +

(
n −

n∑

i=1

ti

)
f(y) (12)

may be satisfied only by the functions x �→ xk with k ≤ 3. This means that f
satisfying (10) is an l−convex or l−concave function with l ≤ 3.

To finish the proof, we need to show that (10) cannot have 3−convex
solutions. Indeed, assume that the mapping x �→ x3 satisfies the equation.
Then, according to Lemma 1, the sequence (9) has three sign changes. It is
possible only if all of the following three conditions are satisfied:
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• At least one ti is negative,
• At least one ti is in (0, 1),
• At least one ti is greater than 1.

However, in such a case, we have an = −1 < 0. This means that the solutions
of (10) are 3−concave. �

First, we give an example in which inequality (10) is satisfied by 3−concave
functions.

Example 3. A continuous function f satisfies

f

(
2 − √

6
4

x +
2 +

√
6

4
y

)
+ f

(
x + y

2

)
+ f

(
2 +

√
6

4
x +

2 − √
6

4
y

)

≤ 3
2
f(x) +

3
2
f(y) (13)

if and only if it is 3−concave.
Indeed, an equation connected with this inequality is satisfied by x �→

x3 and there are five terms in (13). Further, the coefficient standing at the
rightmost point is negative. Thus our claim follows from Corollary 2.

We end this part of the paper with an example of a particular form of
inequality (10) satisfied by 2−convex functions.

Example 4. A continuous function f satisfies

f

(
−1

5
x +

6
5
y

)
+ f

(
2
5
x +

3
5
y

)
≤ 1

5
f(x) +

9
5
f(y) (14)

if and only if it is 2−convex.
Indeed, observe that (14) is satisfied by the function x �→ x2 with equality

and that a4 = 9
5 > 0. Moreover, our equation has four terms. This means that

the above observation follows from Corollary 2.

At first glance, it may seem strange that it is impossible to construct a
particular version of (10) satisfied by 3−convex functions. However, note that
the numbers ai appearing on the left-hand side of this inequality are already
specified and they are all equal to one. Therefore, after moving all terms to the
right-hand side, the number of terms with positive weights cannot be greater
than two (no matter what is the choice of ti).

2.2. Some Properties of (1)

In this part, we observe that the tools developed in the previous part of the
paper may be used to gather new information concerning functional Eq. (1).
We assume here that the weights of (1) are rational.

Remark 11. It is well known that a linear equation with rational weights is
either satisfied by every monomial function of a given order or is not satisfied
by any such function (see Corollary 3.10 [18] or Lemma 1 [21]).
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Using this remark and Lemma 1, we immediately obtain the following
result.

Theorem 7. Let αi ∈ Q, i = 1, . . . , n be some numbers. Then f is a polynomial
function of order not greater than the number of sign changes of the sequence
(9).

We give now some examples. The sequences (9) associated with these
equations were analyzed in the previous part of the paper.

Example 5. Let f be a solution of Jensen equation

f(x) − 2f

(
x + y

2

)
+ f(y) = 0.

Then it follows from Theorem 1 that f is a polynomial function of degree at
most 1. The sequence (9) has one sign change. Therefore from Theorem 7 we
also get that the solution of this equation is a polynomial function of order at
most 1.

In the above example, there was no difference in the estimation of the de-
gree with the one obtained from Theorem 1. In the next example, the equation
has four terms, therefore the order obtained from the theorem of Székelyhidi
is equal to two.

Example 6. Let t ∈ (0, 1) be a rational number, consider the equation

f(x) − f(tx + (1 − ty) − f((1 − t)x + ty) + f(y) = 0 (15)

Then the sequence (9) has one sign change. Therefore, the solutions of (15)
are polynomials functions of order at most 1.

The difference is much bigger in the case of the equation connected with
(10). Observe that the degree obtained from Theorem 1 is equal to n.

Example 7. Let ti be rational numbers. If ti ∈ (0, 1) then f satisfies
n∑

i=1

f(tix + (1 − ti)y) =
n∑

i=1

tif(x) +

(
n −

n∑

i=1

ti

)
f(y) (16)

if and only if it is of the form

f(x) = a(x) + b,

where b is a constant and a is an additive function.
If ti ∈ Q, i = 1, 2, . . . , n, then the solutions of (16) are polynomial func-

tions of order at most 3.

We end the paper with a remark concerning not the partial sum sequence
(9) but the sequence (a1, . . . , an).
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Remark 12. Observe that for a change of sign of (9) it is necessary that this
sequence alternately increases and decreases. Thus let αi ∈ Q, i = 1, . . . , n ,
be some numbers and let k be the number of sign changes of the numbers ai

in the sequence

(a1, a2, · · · , an).

Then f is a polynomial function of order not greater than k − 1.

As we can see, if we have an equation of the form (1) and we want to
achieve the maximal order of polynomial functions (as solutions), then the
signs of ai, i = 1, 2, . . . , n must alternate. Each time two positive (or negative)
numbers meet, we lose one possible sign change of (9) and, consequently, one
order of polynomiality.

Clearly, the case of irrational numbers αi is different. It was shown by
Lajkó in [8] that equation (15) may have solutions being polynomial functions
of order two. It may happen however only for irrational t and such solutions
have to be discontinuous.
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[14] Olbryś, A., Szostok, T.: A nonsymmetric version of Wright convexity, submitted
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[20] Székelyhidi, L.: Convolution Type Functional Equations on Topological Com-
mutative groups. World Scientific Publishing Co., Inc., Teaneck, NJ (1991)

[21] Szostok, T.: Alienation of two general linear functional equations. Aequationes
Math. 94, 287–301 (2020)

[22] Szostok, T.: Inequalities of Hermite-Hadamard type for higher-order convex
functions, revisited. Commun. Pure Appl. Anal. 20(2), 903–914 (2021)

https://doi.org/10.1515/jaa-2022-2011


57 Page 14 of 14 T. Szostok Results Math

Tomasz Szostok
University of Silesia in Katowice
Katowice
Poland
e-mail: tomasz.szostok@us.edu.pl

Received: March 1, 2023.

Accepted: November 28, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	The Interplay Between Linear Functional Equations and Inequalities
	Abstract
	1. Introduction
	1.1. Preliminaries
	1.2. Polynomial functions
	1.3. Higher-Order Convexity
	1.4. Stochastic Orderings

	2. Results
	2.1. Continuous solutions of (2)
	2.2. Some Properties of (1)

	References




