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On Continuous Parameter Dependence of
Roots of Analytic Functions
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Abstract. Let An(Ω) be the set of analytic functions on a domain Ω of
the complex plane which have n roots in Ω, counted with multiplicity.
In this note we consider functions in An(Ω) which depend continuously
on a parameter. A simple short proof shows that the set of roots in the
Hausdorff metric depends continuously on the parameter. If the parame-
ter space is connected and all roots are known to lie in one of two disjoint
open subsets Ω1, Ω2 of the complex plane, then the number of the roots,
counted with multiplicity, in Ω1 and Ω2, respectively, is independent of
the parameter. Each set of roots generates a unique monic polynomial. It
is shown that the map which associates with each function in An(Ω) the
corresponding monic polynomial is continuous when An(Ω) is equipped
with the topology of uniform convergence on compact subsets of Ω. Pos-
sible applications are indicated.
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1. Introduction

When an analytic function depends analytically on a parameter, then it is well
known that locally the roots can be arranged in such a way that they depend
continuously on the parameter, and even analytically away from branching
points. This is essentially done for polynomial dependence, see e. g. the expo-
sition in Knopp [9], and particular the theorem on page 122 therein. A slightly
different presentation can be found in [7, Appendix A]. Such dependence oc-
curs for example when one considers eigenvalues of linear operators depending
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on a parameter. Kato [8] gives a detailed account of the results for the ma-
trix case in Chapter II, see in particular Section 1.8. In [8, Chapter II Section
5.1] continuous dependence on a parameter is considered, whereas [8, Chap-
ter VII] deals with various aspects of analytic dependence for operators in
Hilbert spaces. These operators are mostly finite dimensional or have a com-
pact resolvent, so that their eigenvalues can be found (locally) as the zeros of
a determinant, which is analytic in the eigenvalue and depends analytically or
at least continuously on the parameter. Therefore the dependence of roots of
analytic function on a parameter is at the core of the investigation. Indeed, if
an analytic function depends analytically on the parameter, then locally the
roots can be expressed in Puiseux series with respect to the parameter, see
e. g. [2, Appendix A 5.4, Theorem 3] or [10, Chapter 9].

The particular case of monic polynomials of a fixed degree has attracted
more attention; see [5,6] and [3] and the references therein. The set of co-
efficients is identified with C

n, and the roots, with multiplicities taken into
account, are identified as equivalences classes of elements in C

n. It is shown in
[5,6] and [3] that these metric spaces of coefficients and roots are homeomor-
phic.

When dealing with analytic functions instead of polynomials, no such
homeomorphism can exist, unless one considers equivalence classes of analytic
functions on a fixed domain with fixed numbers of roots. Indeed, in applications
such equivalence would often not attract the main attention. One is rather
interested in properties of the roots such as their location, for which simple
continuity or connectedness arguments suffice. In this context, the notion of
continuity has to be precisely defined by a suitable topology in the set of roots.
Indeed, the Hausdorff metric on the set of finite nonempty subsets of C and
its multiset variant serves this purpose. The multiset variant has been used in
[5] for a clear exposition of the homeomorphism between monic polynomials
of degree n and the multisets of their roots.

Let An(Ω) be the set of analytic functions on a connected open set Ω ⊂ C

which have n roots in Ω, counted with multiplicity. In Sect. 2 the roots of ana-
lytic functions f(x, ·) ∈ An(Ω) depending on the parameter x in a topological
space will be investigated. It is shown that the map from the parameter space
to the set of roots, equipped with the Hausdorff metric, is continuous when f
is continuous. In particular, if all roots lie in two disjoint open subsets of C,
then the number of the roots, counted with multiplicity, in each of these sets,
is independent of the parameter if the parameter space is connected.

With each analytic function as described above, one can consider the
monic polynomial generated by its roots. It is shown in Sect. 3 that this map
from An(Ω) to the set of the corresponding polynomials is continuous in the
canonical topologies.
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2. Roots of Analytic Functions Depending Continuously on a
Parameter

Throughout this note let X be a nonempty topological space, Ω a nonempty
connected open subset of C, n a positive integer, and f : X × Ω → C a
continuous function such that f(x, ·) ∈ An(Ω) for each x ∈ X.

We equip the set of roots with the Hausdorff metric. More precisely, let
F be the set of all finite nonempty subsets of C. We recall that the distance
d(z,B) between z ∈ C and B ∈ F is defined by d(z,B) = min{|z−w| : w ∈ B}.
Furthermore, for A,B ∈ F let d(A,B) = max{d(z,B) : z ∈ A}. The Hausdorff
metric dH on F is then defined by

dH(A,B) = max{d(A,B), d(B,A)}, A,B ∈ F .

It is well known that dH is indeed a metric on F , see e. g. [1, Theorem 1.12.13],
since F is a subset of the set of nonempty compact subsets of C. Observe that

dH(A1 ∪ A2, B1 ∪ B2) ≤ max{dH(A1, B1), dH(A2, B2)}, A1, A2, B1, B2 ∈ F ,

(1)

see e. g. [1, Theorem 1.12.15], which can easily be extended to finite unions.
The open and closed ball in a metric space (R, ρ) about r ∈ R with radius

ε > 0 are denoted by Bε(r) = {s ∈ R : ρ(s, r) < ε} and Bε(r) = {s ∈ R :
ρ(s, r) ≤ ε}, respectively. When applying this notation, the underlying metric
space will be clear from the context.

Define the function Z : X → F such that for each x ∈ X, Z(x) is the
set of roots of f(x, ·). For x ∈ X let nx be the number of elements of Z(x).
For each subset ̂Z of Z(x) let mx( ̂Z) be the total multiplicity of the roots of
f(x, ·) which belong to ̂Z.

Lemma 1. Let y ∈ X and ε > 0 and enumerate Z(y) = {w1, . . . , wny
}. Then

there is ε0 > 0 such that ε0 ≤ ε, such that Bε0(wj) ⊂ Ω for j = 1, . . . , ny, and
such that ε0 < 1

2 min{|wj − wk| : 1 ≤ j < k ≤ ny} when ny > 1. Furthermore,
for each 0 < ε1 ≤ ε0 there is a neighbourhood U of y such that each x ∈ U
satisfies mx(Z(x) ∩ Bε1(wj)) = my({wj}) for j = 1, . . . , ny and

Z(x) =
ny
⋃

j=1

(Z(x) ∩ Bε1(wj)). (2)

Proof. The statement regarding the existence and choice of ε0 is obvious since
Ω is open and Z(y) is finite. Note that the disks Bε0(wj), j = 1, . . . .ny, are
mutually disjoint.

Now fix j ∈ {1, . . . , ny} and 0 < ε1 ≤ ε0. Then wj is the only element of
Z(y), that is, the only root of f(y, ·), belonging to Bε1(wj). Since the boundary
∂Bε1(wj) of Bε1(wj) is compact, δj := min{|f(y, z)| : z ∈ ∂Bε1(wj)} > 0.
Then there is a neighbourhood Uj of y such that |f(x, z) − f(y, z)| < δj for
all x ∈ Uj and z ∈ ∂Bε1(wj); first locally on ∂Bε1(wj) due to the continuity
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of f and then globally by a compactness argument. Now Rouché’s theorem,
see e. g. [4, Theorem 3.8], proves that mx(Z(x) ∩ Bε1(wj)) = my({wj}) for all
x ∈ Uj . Putting U :=

⋂ny

j=1 Uj it follows that U is a neighbourhood of y and
that

n = mx(Z(x)) ≥ mx

⎛

⎝

ny
⋃

j=1

(Z(x) ∩ Bε1(wj))

⎞

⎠ = my(Z(y)) = n, x ∈ U.

Hence (2) is proved since any roots outside the union on the right hand side
would increase mx(Z(x)). �
Theorem 2. The function Z is continuous.

Proof. Let y ∈ X and ε > 0 and let ε1 = ε0 and U be as in Lemma 1. Let
x ∈ U . Since the distance of each element w ∈ Z(x)∩Bε0(wj) to wj is less then
ε0, it follows that dH(Z(x) ∩ Bε0(wj), {wj}) < ε0 ≤ ε for 1 ≤ j ≤ ny. Then
(1) and (2) show that dH(Z(x), Z(y)) < ε. Thus Z(U) ⊂ Bε(Z(y)), proving
that Z is continuous at y. �

Recall that a topological space Y is called connected if and only if ∅ and
Y are the only subsets of Y which are open as well as closed. Equivalently, Y
is connected if and only if Y is not the disjoint union of two nonempty open
subsets. Also recall that continuous functions map connected topological spaces
onto connected topological spaces since preimages of disjoint open subsets are
disjoint open subsets. Hence the following result is obvious.

Corollary 3. Assume that X is connected. Then Z(X) is connected.

Theorem 4. Let Ω1 and Ω2 be two disjoint open subsets of C such that Z(x) ⊂
Ω1 ∪ Ω2 for all x ∈ X. Then the maps MΩp

: X → Z defined by MΩp
(x) =

mx(Z(x) ∩ Ωp), x ∈ X, (p = 1, 2) are continuous.

Proof. Since the statement is symmetric in Ω1 and Ω2, it is sufficient to con-
sider p = 1. Let Zq(x) = Z(x) ∩ Ωq, x ∈ X, (q = 1, 2) and choose any
y ∈ X. There is 0 ≤ l ≤ ny such that we can write Z1(y) = {w1, . . . , wl} and
Z2(y) = {wl+1, . . . , wny

}. Let ε0 be as in Lemma 1. Since Ω1 and Ω2 are open,
we can choose 0 < ε1 ≤ ε0 such that Bε1(wj) ⊂ Ωp when j = 1, . . . , l for p = 1
and j = l+1, . . . , ny for p = 2. Then another application of Lemma 1 with the
neighbourhood U of y as defined there shows that mx(Z1(x)) = my(Z1(y)) for
all x ∈ U . Hence MΩ1(U) ⊂ {my(Z1(y))}, which shows that MΩ1 is continuous
at y. �
Corollary 5. Assume that X is connected and that there are two disjoint open
subsets Ω1 and Ω2 of C such that Z(x) ⊂ Ω1 ∪ Ω2 for all x ∈ X. Then
mx(Z(x) ∩ Ωp), x ∈ X, (p = 1, 2) is independent of x ∈ X.

Proof. Since the functions MΩp
(p = 1, 2) are continuous by Theorem 4 and

since X is connected, MΩp
(X) must be connected. Because nonempty con-

nected subsets of Z are singletons, the result follows. �
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A typical application of Corollary 5 would be that the space X is an
interval [a, b] and that the analytic functions f(x, ·) with common domain have,
say, no real roots, and that the roots of f(a, ·) have positive imaginary parts. If
now the domain has countably many disjoint subregions which contain all roots
of f(x, ·), x ∈ [a, b], and the number of the roots, counted with multiplicity, in
each of these subregions is independent of x, then also all roots of f(b, ·) have
positive imaginary parts. Meaningful examples have to be given in context and
will be considered elsewhere.

One such application, still in preparation, will occur in work on the direct
and inverse spectral problem for boundary value problems of a class of ordinary
differential equations. Here the coefficients of the differential equation as well
as the boundary conditions depend on the spectral parameter. Several entire
functions occur, and to find the desired location of the roots of some of those
entire functions, parameter dependence will be used to reduce this task to
simpler entire functions whose location of roots is known to have the desired
properties.

The assumption that the number of roots in Ω, counted with multiplicity,
is constant is crucial for the continuity results in this section. Indeed, letting
X = [1, 4], Ω the open unit disc and f(x, z) = sin(xz) for x ∈ X and z ∈ Ω, it
is clear that Z(x) = {0} for x ∈ [1, π], whereas Z(x) = {0,−πx−1, πx−1} for
x ∈ (π, 4]. But dH(Z(x), Z(π)) = πx−1 when x ∈ (π, 4] shows that Z is not
continuous at π.

3. Canonical Polynomials

For h ∈ An(Ω) with roots (v1, . . . , vn) written as unordered n-tuples, a unique
monic polynomial

πΩ,n(h)(z) :=
n

∏

j=1

(z − vj) (3)

is defined. We will investigate the question if πΩ,n is continuous. Here we have
the natural topology on An(Ω) induced by the standard topology of uniform
convergence on compact subset of A(Ω), the space of analytic functions on Ω.
The space of monic polynomials of degree n will be identified with the space
C

n of its coefficients as in [5,6] and [3], and we will use the notation Pn,1 for
it as in [5]. The order of the coefficients as entries of vectors in C

n is arbitrary
but fixed.

To prove the continuity of πΩ,n we need some preparation.
We consider the function F : An(Ω) × Ω → C defined by

F (h, z) = h(z), h ∈ An(Ω), z ∈ Ω. (4)
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Lemma 6. The function F is continuous.

Proof. Let g ∈ An(Ω), w ∈ Ω and ε > 0. Since g is continuous, there is δ > 0
such that Bδ(w) ⊂ Ω and |g(z) − g(w)| < ε

2 for all z ∈ Bδ(w). The set

U :=
{

h ∈ An(Ω) : ∀z ∈ Bδ(w) |h(z) − g(z)| <
ε

2

}

is a neighbourhood of g. Then

|F (h, z) − F (g, w)| = |h(z) − g(w)| ≤ |h(z) − g(z)| + |g(z) − g(w)| < ε

for h ∈ U and z ∈ Bδ(w) shows that F is indeed continuous at (g, w). �

We need to strengthen Theorem 2. To this end, let k ∈ N and consider
the set of all non-ordered k-tuples (u1, . . . , uk) of complex numbers. These can
either be considered as multisets as in [5] or as equivalence classes of elements
in C

n as in [6] and [3], where a, b ∈ C
n are equivalent if there is a permutation

σ of the components such that b = σ(a). In the notation of [5] we write Zk for
the set of unordered k-tuples. Let Sk denote the group of permutations of the
set {1, . . . , k}. Writing U = (u1, . . . , uk) and V = (v1, . . . , vk) for two elements
in Zk,

dk(U, V ) := min
τ∈Sk

max
1≤j≤k

|uj − vτ(j)|

defines a metric dk on Zk, see [5, Proposition 3.1]. Above, U and V are ordered
representations of the unordered tuples, and the permutations τ ∈ Sk on V
yield all representations of the class represented by V . Although the definition
may look unsymmetric in U and V , one also may apply permutations to U ,
which can be combined with the permutations of V to the form given because
Sk is a group.

We need to concatenate unordered tuples. For U = (u1, . . . , uk) and V =
(v1, . . . , vl) we write U ∪V = (u1, . . . , uk, v1, . . . , vl). It is clear that U ∪V and
V ∪ U represent the same element in Zk+l.

Lemma 7. Let k, l ∈ N and U1, U2 ∈ Zk, V1, V2 ∈ Zl. Then

dk+l(U1 ∪ V1, U2 ∪ V2) ≤ max{dk(U1, U2), dl(V1, V2)}.

Proof. Let Sk,l be the subset of all permuations in Sk+l which permute the
first k and last l numbers only. A permutation ω ∈ Sk,l can be uniqely written
as ω = (σ, τ), where σ ∈ Sk operates on the first k numbers and τ ∈ Sl

operates on the last l numbers. For p = 1, 2 write Up = (up,1, . . . , up,k) and
Vp = (vp,1, . . . , vp,l). Then
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dk+l(U1 ∪ V1, U2 ∪ V2)

≤ min
(σ,τ)∈Sk,l

max
{

max
1≤j≤k

|u1,j − u2,σ(j)|, max
1≤j≤l

|v1,j − v2,τ(j)|
}

= max
{

min
σ∈Sk

max
1≤j≤k

|u1,j − u2,σ(j)|, min
τ∈Sl

max
1≤j≤l

|v1,j − v2,τ(j)|
}

= max{dk(U1, U2), dl(V1, V2)}.

�

Clearly, Lemma 7 can be extended to finite unions by repeated applica-
tion.

Let f be as in Sect. 2, and define Zn,f : X → Zn such that Zn,f (x) is the
unordered n-tuple of roots of f(x, ·) in Ω with multiplicity taken into account.

Theorem 8. The function Zn,f is continuous.

Proof. Let y ∈ X and ε > 0 and let ε1 = ε0 and U be as in Lemma 1. Let x ∈ U
and j ∈ {1, . . . , ny}. By Lemma 1 the roots of f(y, ·) and f(x, ·) in Bε0(wj),
counted with multiplicity, are m-tuples of the form W = (wj , . . . , wj) and V =
(v1, . . . , vm), respectively, with m = my({wj}). It follows that |vp − wj | < ε0

for all p = 1, . . . , m, which gives dm(V,W ) < ε0 ≤ ε. An application of (2) and
Lemma 7 shows that dn(Zn,f (x),Zn,f (y)) < ε. Hence Zn,f (U) ⊂ Bε(Zn,f (y))
in Zn, which proves that Zn,f is continuous at y. �

Let ζ : Zn → Pn,1 be defined by

ζ(V ) =
n

∏

j=1

(z − vj), V = (v1, . . . , vn) ∈ Zn.

In [6, Theorem A], [5, Theorem 4.4] and [3, Theorem 2.8] the following state-
ment has been proved.

Theorem 9. The function ζ is a homeomorphism.

Theorem 10. The function πΩ,n : An(Ω) → Pn,1 is continuous.

Proof. By Lemma 6, Theorem 8 applies in particular to X = An(Ω) and
f = F . Clearly, πΩ,n = ζ ◦ Zn,F . Hence an application of Theorems 8 and 9
completes the proof. Of course, only the continuity of ζ is needed from Theorem
9, which is the easier part following from Vieta’s theorem; see the discussion
in the cited references. �

Funding No direct funding for preparing the manuscript has been obtained.
Access to the author’s institution library resources is standard indirect funding
used.



54 Page 8 of 9 M. Möller Results Math
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