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Abstract. We develop an invariant approach to SU(2)–structures on spin
5–manifolds. We characterize (via spinor approach) the subspaces in the
spinor bundle which induce the same group isomorphic to SU(2). More-
over, we show how to induce quaternionic structure on the contact dis-
tribution of the considered SU(2)–structure. We show the invariance of
certain components of the covariant derivative ∇ϕ, where ϕ is any spinor
field defining SU(2)–structure. This shows, as expected, that (at least
some of) the intrinsic torsion modules can be derived invariantly with
the spinorial approach. We conclude with the explicit description of the
intrinsic torsion and the characteristic connection.
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Introduction

Holonomy plays an important role in Riemannian geometry. It measures the
behavior of parallel displacement with respect to the Levi-Civita connection.
The celebrated theorem by Berger states that the list of possible (restricted)
holonomy groups is limited to a few cases. In the list there are geometries,
called exceptional, which appear only in certain dimensions:

– G2 in dimension 7.
– Spin(7) in dimension 8,

There are two additional geometries, SU(3) in dimension 6 and SU(2) in
dimension 5, which are also called exceptional (despite the fact that they
fall into general category of SU(n)–structures in dimension n or n + 1 as

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-02042-x&domain=pdf
http://orcid.org/0000-0002-5564-5901


15 Page 2 of 29 K. Niedzia�lomski Results Math

a codimension one distribution). This is due to the fact that each of these
geometries in dimension k induces appropriate geometry in dimension k + 1.

In very interesting articles [4,6,15] the authors study these exceptional
geometries from the spinorial point of view. In fact, it can be shown that the
unit spinor field induces an exceptional geometry. However, in the SU(2) case
the choice of the unit spinor is not unique.

In this article, we study SU(2)–geometry from the perspective of spinors,
focusing on the invariant approach, i.e., independent on the choice of the defin-
ing spinor. We concentrate on the action of vectors on spinors. Let us be
more precise. Consider the spinor representation ρ : Spin(5) → End(Δ), where
Δ = C

4. Let ϕ0 ∈ Δ be a unit spinor (defining a group SU(2)). Then an
SU(2)–structure on a spin 5–dimensional manifold M is a subbundle P in the
bundle Spin(M) with the structure group SU(2) or, equivalently, a choice of
the unit spinor field ϕ and a subbundle P of all frames u such that ϕ = [u, ϕ0].

We show that there are different choices of spinors in Δ defining the same
SU(2) [3]. In fact, we show that the subspace V ⊂ Δ of spinors defining the
same group SU(2) is of real dimension four. We characterize these spaces from
two perspective: complex and quaternionic. The quaternionic approach seems
to be well known to the experts in the field, whereas the complex approach is
most likely new.

The other case is concerned with a characterization of the intrinsic torsion
modules. It is well known [9] that the intrinsic torsion is characterized by the
covariant derivative ∇ϕ, where ϕ is a defining spinor. We study the invariance
of this approach. We show that for another spinor ψ defining the same SU(2)–
structure a certain decomposition of ∇ψ induces the same components. To
derive the invariance, we slightly modify the quaternionic structure on Δ and
use the action of two–forms on spinors.

We begin, in the first section, with an algebraic approach to spinors
defining SU(2), or equivalently, its Lie algebra su(2). Majority of the results
in this section is well known, however it is hard to find appropriate citations.
We give a characterization of the subspaces of spinors defining a given Lie
algebra su(2) in terms of complex and quaternionic structures. Moreover, we
study a correspondence between the complex structures on the spinor space Δ
and an associated four dimensional space D of vectors acting on spinors. We
show how to obtain, in a canonical way, a quaternionic structure on D by the
invariant spinorial approach. It is interesting, that the map which assigns a
complex structure (from the quaternionic structure) to a unit spinor is, in fact,
the Hopf fibration. Moreover, we show nonexistence of a complex structure on
D induced from the complex structure on V .

In the second section, we show how algebraic approach developed in
the first section induces a SU(2)–structure on a 5–dimensional spin manifold.
Moreover, we show relations with the approaches from [6] and [9].

In the final—third—section, we show that with a slight modification the
spinorial approach developed in [6] is invariant, i.e., independent on the choice
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of a defining spinor. Moreover, we derive explicit formula for the intrinsic
torsion as well as for the characteristic connection.

1. Decomposition of the Space of Spinors

1.1. Spin Representation

Consider a real Clifford algebra Cl5. Then the irreducible representation Δ of
Cl5 is complex, Δ = C

4. It can be given by the following action of the vectors
ei ∈ R

5 ⊂ Cl5 [1]:

e1 =

⎛
⎜⎜⎝

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

⎞
⎟⎟⎠ , e2 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,e3 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0

⎞
⎟⎟⎠ ,

e4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , e5 =

⎛
⎜⎜⎝

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

⎞
⎟⎟⎠ .

There is a Hermitian product (·, ·) on Δ such that the spinor representation
is unitary and the Clifford product by vectors is skew–symmetric. Denote by
〈·, ·〉 the inner product, which is the real part of (·, ·),

〈ϕ,ψ〉 = Re(ϕ,ψ), ϕ, ψ ∈ Δ.

Fix a (unit) spinor ϕ ∈ Δ and define

Wϕ = {x · ϕ | x ∈ R
5}.

The action R
5 � x 	→ x · ϕ ∈ Wϕ is an isomorphism (see, for example, the

proof of Lemma 1.1 below), i.e., dim Wϕ = 5.
We begin with the first well–known easy observation (see for example

Lemma 6.2 in [10]).

Lemma 1.1. There is a unique vector y = yϕ such that y ·ϕ = iϕ and a unique
complex 2–dimensional subspace Vϕ of Wϕ. They satisfy

Wϕ = Vϕ ⊕ 〈iϕ〉.

Moreover, there is a real 4–dimensional subspace Dϕ ⊂ R
5 such that Vϕ =

Dϕ · ϕ and

Δ = Vϕ ⊕ V ⊥
ϕ ,

where for any ψ ∈ V ⊥
ϕ we have

y · ψ = −iψ.
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Proof. Writing ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C
4 the action Rϕ : R5 → C

4, Rϕ(x) =
x · ϕ is represented by the matrix

Rϕ =

⎛
⎜⎜⎝

iϕ4 ϕ4 −iϕ3 ϕ3 iϕ1

iϕ3 ϕ3 iϕ4 ϕ4 iϕ2

iϕ2 −ϕ2 −iϕ1 −ϕ1 −iϕ3

iϕ1 ϕ1 iϕ2 −ϕ2 −iϕ4

⎞
⎟⎟⎠ .

It can be checked that the rank of Rϕ is 5 as a real 5 × 8 matrix and is equal
to the rank of extended block matrix (Rϕ iϕ�). Moreover, if x is a solution to
Rϕ(x) = iϕ, then

−‖x‖2ϕ = x · x · ϕ = x · (iϕ) = −ϕ.

It implies ‖x‖ = 1. Thus, there is only one solution to the equation Rϕ(x) = iϕ
and this solution has unit norm. Denote it by y = yϕ and let the action of a
vector y =

∑
i yiei ∈ R

5 on Δ be denoted by Ly. Then Ly is represented by a
matrix ⎛

⎜⎜⎝
iy5 0 −iy3 + y4 iy1 − y2

0 iy5 iy1 + y2 iy3 + y4

−iy3 − y4 iy1 − y2 −iy5 0
iy1 + y2 iy3 − y4 0 −iy5

⎞
⎟⎟⎠ .

It is not hard to check that there exists ϕ̃ orthogonal and C–linearly indepen-
dent with ϕ such that y · ϕ̃ = iϕ̃.

We show that Vϕ equals 〈ϕ, ϕ̃〉⊥
C

. For x orthogonal to y, we have

(x · ϕ,ψ) = (y · x · ϕ, y · ψ) = −(x · y · ϕ, y · ψ) = −(x · ϕ,ψ), ψ ∈ {ϕ, ϕ̃}.

This implies (x · ϕ, ϕ̃) = 0 and (x · ϕ,ϕ) = 0 for any x orthogonal to y. Put

Vϕ = {x · ϕ | 〈x, y〉 = 0}. (1)

By the above Vϕ is orthogonal with respect to (·, ·) to the complex space
spanned by ϕ and ϕ̃. Thus, Vϕ is complex. By dimensional reasons Vϕ is the
unique complex 2–dimensional subspace in Wϕ. Moreover, Dϕ = {x ∈ R

5 |
〈x, y〉 = 0}. �

We define an action of skew–forms on Δ as usual( ∑
i1<...<ik

αi1...ikei1 ∧ . . . ∧ eik

)
· ϕ =

∑
i1<...<ik

αi1...ike1 · . . . ek · ϕ.

Denote by su(2)ϕ the anihilator of this action on two–forms (for a given ϕ). It
is well known that su(2)ϕ is isomorphic to the Lie algebra su(2). Moreover let
R

4
ϕ be the subspace of so(5) of 2–forms ω such that ω ∧ y� = 0. In other words

ω ∈ R
4
ϕ if ω = α∧ y� for some 1–form on Dϕ. The action of such forms equals

(α ∧ y�) · ϕ = α · (iϕ) = iα� · ϕ ∈ Vϕ.

Since dim su(2)ϕ = 3, it follows that the subspace so(5)·ϕ ⊂ Δ is 7–dimensional
and, clearly, orthogonal to ϕ. Hence, so(5) · ϕ = 〈ϕ〉⊥.
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1.2. Complex Approach

Definition. We say that a complex 2–dimensional subspace V in Δ is admis-
sible if for any ϕ ∈ V ⊥ we have V ⊂ Wϕ.

Lemma 1.2. Fix a (unit) spinor ϕ ∈ Δ. Then Vϕ is admissible.

Proof. By Lemma 1.1 Vϕ = Vϕ̃, where ϕ̃ is as in the proof of Lemma 1.1.
Take any linear combination ψ of ϕ and ϕ̃. Then, yψ = yϕ, hence Dψ = Dϕ.
Moreover, for x orthogonal to yψ we have

x · ψ = ax · ϕ + bx · ϕ̃ ∈ Vϕ

for some a, b ∈ C. Thus Vψ = Vϕ. �

We are now going to show that the construction of yϕ, as well as Dϕ,
is independent of a unit spinor ϕ in the orthogonal complement V ⊥ of an
admissible space V .

Lemma 1.3. Let V be an admissible subspace. Then
1. yϕ coincide for all ϕ ∈ V ⊥,
2. Dϕ coincide for all ϕ ∈ V ⊥,
3. V = Vϕ for any ϕ ∈ V ⊥.

Proof. Fix ϕ ∈ V ⊥. By Lemma 1.1 there is a unique y such that y ·ϕ = iϕ and
Wϕ = Vϕ ⊕ 〈iϕ〉, where Vϕ = {x · ϕ | 〈x, y〉 = 0}. Thus Dϕ = 〈y〉⊥. Moreover,
there is ϕ̃ which is C–linearly independent with ϕ and such that y · ϕ̃ = iϕ̃
and Δ = Vϕ ⊕ 〈ϕ, ϕ̃〉C. Since V is maximal complex in Wϕ, by admissibility
we have Vϕ = V . This proves the third condition.

Now, take any ψ ∈ V ⊥. Then, ψ = aϕ + bϕ̃ for some a, b ∈ C. Thus
y · ψ = iψ, which implies Dψ = Dϕ, what proves the first and the second
condition. �

Theorem 1.4. Assume V is admissible. Then su(2)ϕ coincide for all ϕ ∈ V ⊥.
Conversely, for a maximal space U such that all su(2)ϕ coincide for ϕ ∈ U the
orthogonal complement U⊥ is admissible.

Proof. Assume V is admissible. Take an orthonormal C–basis {ϕ, ϕ̃} of V ⊥.
By Lemma 1.3 Dϕ = Dϕ̃. We will write just D. Choose an orthonormal basis
(ej) of D and let (uj) be a basis of D such that ej · ϕ = uj · ϕ̃. Then

〈uj , uk〉 = 〈uj · ϕ̃, uk · ϕ̃〉 = 〈ej · ϕ, ek · ϕ〉 = 〈ej , ek〉.
Hence (uj) is also orthonormal. Moreover,

0 = 〈ϕ, ϕ̃〉 = 〈ej · ϕ, ej · ϕ̃〉 = 〈uj · ϕ̃, ej · ϕ̃〉 = 〈ej , uj〉.
Fixing e1 and the corresponding u1, we may take e2 = u1. Hence, u1 ·ϕ = u2 ·ϕ̃.
We have

〈e1, u2〉 = 〈e1 · ϕ, u2 · ϕ〉 = 〈u1 · ϕ̃, u2 · ϕ〉
= −〈u2 · ϕ̃, u1 · ϕ〉 = −〈u1 · ϕ, u1 · ϕ〉 = −1.
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Since both e1 and u2 are unit, it follows that u2 = −e1. In particular, span{e1, e2}
= span{u1, u2}. Analogously, we set e4 = u3 and we obtain u4 = −e3. Consider
the following 2–forms

ω0 = e1 ∧ u1 − e3 ∧ u3, ω1 = e1 ∧ e3 + u1 ∧ u3, ω2 = e1 ∧ u3 − u1 ∧ e3.

(2)

It is not hard to check that ωj ·ϕ = ωj · ϕ̃ = 0 and ωj are linearly independent.
In particular ωj · ψ = 0 for any C–linear combination of ϕ and ϕ̃. Hence, all
su(2)ϕ for ϕ ∈ V ⊥ coincide.

Conversely, let ω0, ω1, ω2 be 2–forms in R
5 defining a Lie algebra g iso-

morphic to su(2) and let U be the subspace of these ϕ ∈ Δ such that ωj ·ϕ = 0.
Clearly, U is complex.

Fix ϕ ∈ U and denote by V the orthogonal complement of U , i.e., V =
U⊥. By Lemma 1.1, Vϕ is complex 2–dimensional and orthogonal to ϕ. By
Lemma 1.3, Vϕ is admissible. Since ϕ̃ ∈ V ⊥

ϕ , where ϕ̃ is as above, by the first
part su(2)ϕ̃ = su(2)ϕ = g, i.e., ωj · ϕ̃ = 0. Thus ϕ̃ ∈ U . We have shown that
V ⊥

ϕ ⊂ U . In other words, V ⊂ Vϕ ⊂ Wϕ. It suffices to show that dimC V =
dimC V ⊥ = 2. Suppose dimC V = 1 and let u be a unit vector in R

5 orthogonal
to yϕ and such that ψ = u · ϕ is orthogonal to V . Then ψ ∈ V ⊥, hence
su(2)ψ = g. Therefore

0 = u · ωj · ϕ = 2(u�ωj) · ϕ + ωj · ψ = 2(u�ωj) · ϕ. (3)

For x ∈ Dϕ, by the fact that Vϕ is a complex subspace, we have

(x ∧ y) · ϕ = ix · ϕ ∈ Vϕ.

This implies R
4
ϕ · ϕ = Vϕ. Since so(5) · ϕ = 〈ϕ〉⊥, it follows that g ⊂ so(Dϕ).

By (3), we see that in fact g ⊂ so(3), where so(3) is taken with respect to the
3–dimensional subspace of Dϕ orthogonal to u ∈ Dϕ. Thus g = so(3). This
is impossible, since so(3) contains pure elements ω = α ∧ β and ω · ϕ cannot
vanish. Finally, dimC V = 2. �

Notice that by Theorem 1.4 we may write su(2)V for the Lie algebra
induced by any spinor ϕ ∈ V ⊥, where V is an admissible space i.e., su(2)V =
su(2)ϕ for any ϕ ∈ V ⊥. Moreover, the subspace R4

ϕ ⊂ so(5) is also independent
of the choice of ϕ in the orthogonal complement of an admissible space V .
Hence we may denote it by R

4
V .

Let us now describe the decomposition of so(5) into irreducible su(2)–
modules. Fix an admissible space V . The orthogonal complement V ⊥ is again
an admissible space (as will be seen below). Therefore we introduce the ±–
notation: V − = V and V + = V ⊥. Denote by su(2)− the Lie algebra cor-
responding to V −, which is isomorphic to su(2). Analogously, we write R

4
−

instead of R4
V − .

Lemma 1.5. The following holds:
1. The orthogonal complement of an admissible space is again admissible.
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2. Let V − be an admissible space. Denoting by su(2)+ the Lie algebra cor-
responding to V + (isomorphic to su(2)) we have

Δ = V − ⊕ V +, so(5) = su(2)− ⊕ su(2)+ ⊕ R
4
−.

In particular, R4
− = R

4
+.

Proof. Let V − be admissible and choose ψ ∈ V −. Choose any ϕ ∈ V +. By
Lemma 1.3 V − = Vϕ, hence, there is x0 ∈ R

5 such that ψ = x0 · ϕ. Therefore,
x0 · ψ = −‖x0‖2ϕ, i.e., ϕ ∈ Wψ. We have shown that V + ⊂ Wψ, thus V + is
admissible.

By Lemma 1.1, x0 is orthogonal to y, where y · ϕ = iϕ. Thus

y · ψ = y · x0 · ϕ = −x0 · y · ϕ = −i(x0 · ϕ) = −iψ.

Hence yψ = −y. In particular, Dψ = Dϕ for any ϕ ∈ V +. By the proof of
Theorem 1.4 we have su(2)ψ ⊂ so(Dψ). For ω ∈ su(2)ϕ we have

ω · ψ = ω · x0 · ϕ = 2(x0�ω) · ϕ + x0 · ω · ϕ = 2(x0�ω) · ϕ.

The right hand side vanishes only if x0�ω = 0. Choose a basis (ej) in Dϕ such
that e1 = 1

‖x0‖x0 and a basis (uj) as in the proof of Theorem 1.4. Then ω is a
linear combination of ω0, ω1, ω2 given by (2), say ω =

∑
j ajωj . If ω 
= 0, then

x0�ω = a0u1 + a1e3 + a2u3 
= 0.

Thus ω · ϕ 
= 0. Therefore, su(2)ψ is transversal to su(2)ϕ. This completes the
proof. �
Corollary 1.6. Let V − be an admissible space. Then the following actions are
surjective

su(2)− : V + → V +, su(2)+ : V − → V −.

Proof. Follows from the fact that for a given spinor ϕ ∈ V + we have su(2)+ ·
ϕ = V + ∩ 〈ϕ〉⊥. �
Remark 1.7. From the considerations above we have a useful observation con-
cerning the Clifford action. Namely, let V − be admissible and let ϕ ∈ (V −)⊥ =
V + be unit. Then the right multiplication Rϕ : so(5) → Δ by ϕ satisfies the
following restrictions

Rϕ : R4
− → V +,

Rϕ : su(2)+ → 〈ϕ〉⊥ ∩ V −,

which are isomorphisms.

Example 1.8 (The fundamental example). Denote by s1, . . . , s4 the canonical
C–basis in Δ = C

4. Fix a spinor ϕ = s1. Then

e1ϕ = is4, e2ϕ = s4, e3ϕ = −is3, e4ϕ = −s3, e5ϕ = is1.

Hence V − = 〈s3, s4〉C and V + = 〈s1, s2〉C. Indeed,

Wϕ = 〈s3, s4〉C ⊕ {iϕ}.
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Now it suffices to apply Lemma 1.1. Moreover,

e12ϕ = is1, e13ϕ = s2, e14ϕ = −is2, e15ϕ = −s4,

e23ϕ = −is2, e24ϕ = −s2, e25ϕ = is4,

e34ϕ = is1, e35ϕ = s3,

e45ϕ = −is3.

Here and further, ejk denotes the two–form ej ∧ ek. Now, it is easy to see that
the equation ω · ϕ = 0 is satisfied by the following 2–forms

ω̃1 = e12 − e34, ω̃2 = e13 + e24, ω̃3 = e14 − e23,

which define su(2)−. Hence, (su(2)−)⊥ ⊂ so(5) is spanned by su(2)+ generated
by the elements

ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23,

and R
4
− (see the definition after proof of Theorem 1.4) is generated by the

elements

e15, e25, e35, e45.

Notice that for the spinor s2 we have

e1 · s2 = is3, e2 · s2 = −s3, e3 · s2 = is4, e4 · s2 = −s4, e5 · s2 = is2,

which confirms that V − and V + are exactly as stated above. Moreover, we
have the following relations

e1 · s1 = e3 · s2, e2 · s1 = −e4 · s2, e3 · s1 = −e1 · s2, e4 · s1 = e2 · s2.

(4)

1.3. Complex Structures

Firstly, we will show nonexistence of complex structures on Δ satisfying certain
relations.

Assuming j : Δ → Δ is a complex structure on a real vector space Δ,
there is a complex structure Iϕ on Dϕ for fixed ϕ in the orthogonal complement
of the admissible space Vϕ (compare [4,6]). Namely,

Iϕ(x) · ϕ = j(x · ϕ), x ∈ Dϕ. (5)

The definition of Iϕ depends on ϕ. Moreover, in the definition (5) we only need
the values of j on Vϕ, since for any x ∈ Dϕ we have x : V ⊥

ϕ → Vϕ.
We want to find all complex structures j on V such that the induced

complex structure Iϕ is independent of the choice of ϕ ∈ V ⊥. We will prove
below that there is no such complex structure. Even more, let t : V → V be an
R–linear map and define the induced linear map Tϕ : Dϕ → Dϕ, for ϕ ∈ V ⊥,
analogously as in (5):

Tϕ(x) · ϕ = t(x · ϕ), x ∈ Dϕ. (6)
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Theorem 1.9. The only linear map t : V → V such that the induced linear map
Tϕ is independent of the choice of ϕ ∈ V ⊥ is a scalar multiple of the identity
map.

Proof. Without loss of generality we may take V to be 〈s3, s4〉C. Assume t
induces a map T , which does not depend on the choice of the spinor in V ⊥ =
〈s1, s2〉C. Then D = spanR{e1, e2, e3, e4}. Let T (e1) = (a, b, c, d). Then

t(s3) = −(a, b, c, d) · (is2), t(is3) = (a, b, c, d) · s2,

t(s4) = −(a, b, c, d) · (is1), t(is4) = (a, b, c, d) · s1.

This implies that the matrix of t : V → V with respect to the basis s3, is3, s4, is4

is of the form

t =

⎛
⎜⎜⎝

a −b −c −d
b a d −c
c −d a b
d c −b a

⎞
⎟⎟⎠ .

From this we conclude that T is represented by the same matrix with respect
to the basis e1, e2, e3, e4.

Let us study the independence from ϕ. For x, y ∈ Dϕ and ϕ,ψ ∈ V ⊥

such that x · ϕ = y · ψ it must hold

T (x) · ϕ = T (y) · ψ.

Substituting relations (4) we obtain b = d = 0. Moreover, for ϕ ∈ V ⊥ and
x ∈ Dϕ there is y (depending on ϕ) such that y · ϕ = x · iϕ. Considering this
condition we conclude, as above, that c = 0. Hence, t = a · idV . Finally, it is
clear that such t satisfies the assumptions of the theorem. �

Corollary 1.10. There is no complex structure I on Dϕ induced from the com-
plex structure j on V by the formula (5), which does not dependent on the
choice of ϕ ∈ V ⊥.

Secondly, we give a natural procedure on how to define an associated
quaternionic structure on an SU(2)–structure via spinorial approach. We have
already shown that an approach similar to the one considered in [4] (compare
[6]) is not valid. Nevertheless, these is a nice description of the complex struc-
tures on Dϕ with the spinorial (invariant) approach. The intuition has been
already used in the proof of Theorem 1.9.

Let V be an admissible space. We know that all Dϕ coincide for ϕ ∈ V ⊥.
Denote this space by D. Fix ϕ ∈ V ⊥ and x ∈ D. Then there exists a unique
element Jϕ(x) ∈ D such that

Jϕ(x) · ϕ = x · (iϕ) = i(x · ϕ).

The second equality follows from the fact that the action of x ∈ D on Δ is
C–linear.
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Notice that the map Jϕ : D → D is a complex structure,

Jϕ(Jϕ(x)) · ϕ = i(Jϕ(x) · ϕ) = −x · ϕ.

Hence (Jϕ)2 = −idD.
Moreover, we have Jλϕ = Jϕ for any complex number λ 
= 0. Thus we

have the correspondence

{ϕ ∈ V ⊥ : ‖ϕ‖ = 1} 	→ {complex str. in D}, ϕ 	→ Jϕ. (7)

Proposition 1.11. The correspondence (7) is in fact the Hopf fibration S
1 →

S
3 → S

2. In particular, the image {Jϕ : ϕ ∈ D} is a 2–sphere which defines a
quaternionic structure on D.

Proof. Without loss of generality we may take V = 〈s3, s4〉C. Then V ⊥ =
〈s1, s2〉C. Any spinor ϕ ∈ V ⊥ equals ϕ = as1 + bis1 + cs2 + dis2 for some
a, b, c, d ∈ R. Moreover, let Jϕ(e1) =

∑
j xjej . Substituting e1 for x in the

definition of Jϕ we get⎛
⎜⎜⎝

−d −c b −a
c −d −a −b

−b a −d −c
a b c d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−c
−d
−a
−b

⎞
⎟⎟⎠

This implies x1 = 0, x2 = −(a2 + b2 − c2 − d2), x3 = 2(ad − bc), x4 =
2(ac + db). We proceed in a similar way taking x = e2, e3, e4, respectively.
Finally, denoting

α = a2 + b2 − c2 − d2, β = 2(ad − bc), γ = 2(ac + bd),

we obtain

Jϕ =

⎛
⎜⎜⎝

0 α −β −γ
−α 0 −γ β
β γ 0 α
γ −β −α 0

⎞
⎟⎟⎠ .

Notice that α2 + β2 + γ2 = 1 and that the map (a, b, c, d) 	→ (α, β, γ) is the
Hopf fibration of S3 onto S

2.
Let us end by showing that the 2–sphere of complex structures defines a

quaternionic structure on D. Denote by (α, β, γ) ∈ S
2 a point on the 2–sphere

inducing the complex structure J = J(α, β, γ) from the image of the map (7).
Then,

J(α, β, γ)J(α̃, β̃, γ̃) = −J(α̃, β̃, γ̃)J(α, β, γ)

if and only if the vectors (α, β, γ) and (α̃, β̃, γ̃) are orthogonal (with respect
to the standard inner product in R

3). Now, it suffices to take two orthogonal
vectors u, v ∈ S

3 and define

J1 = J(u), J2 = J(v), J3 = J1J2.

It is easy to see that the triple (J1, J2, J3) is a quaternionic structure. �
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1.4. Quaternionic Approach

Let us rewrite some of the results from subsection 1.1 with the quaternionic
approach.

Let us begin with a choice of a quaternionic structure on Δ. The choice
is not unique. We begin with the one considered in [6]. It can be shown [11]
that in Δ there is a quaternionic structure i2 : Δ → Δ which anticommutes
with multiplication by vectors. Recall that a quaternionic structure j may
be seen as an antilinear map such that j2 = −id. Let i1 be the complex
structure on Δ = C

4 induced by the volume element vol = e1 · e2 · e3 · e4 · e5.
It is easy to see that vol induces the standard complex structure given by the
multiplication by i, which clearly commutes with the multiplication by vectors.
Define i3 = i1 ◦ i2. i3 anticommutes with multiplication. Then we have a triple
(i1, i2, i3) of complex structures on Δ. Each ik is an isometry [6].

We will need the following useful fact.

Lemma 1.12 ([6]). Fix a unit spinor ϕ ∈ Δ. Then the subspace U generated
by ϕ, i1ϕ, i2ϕ, i3ϕ and its orthogonal complement V = U⊥ are ik–invariant,
k = 1, 2, 3. Moreover, the subspace D ⊂ R

5 such that D · ϕ = V inherits
a quaternionic structure induced by the complex structures Ik, k = 1, 2, 3,
defined by Ik(x) · ϕ = ik(x · ϕ). In particular, each ik leaves the decomposition
Δ = V ⊕ V ⊥ invariant.

This allows us to prove the main result of this subsection.

Theorem 1.13. A real 4–dimensional subspace V ⊂ Δ is admissible if and only
if it is a quaternionic subspace with respect to (i1, i2, i3).

Proof. Firstly, assume V is admissible. Choose any ϕ ∈ V ⊥. Then V = Vϕ.
By Lemma 1.12, it suffices to show that V ⊥ = 〈ϕ, i1ϕ, i2ϕ, i3ϕ〉. Since i1 is the
multiplication by i and i3ϕ = ii2ϕ we need to show that i2ϕ is orthogonal to
V . Any element in V is of the form x · ϕ. We may assume x is unit. Hence

〈i2ϕ, x · ϕ〉 = −〈ϕ, i2(x · ϕ)〉 = 〈ϕ, x · i2ϕ〉 = −〈x · ϕ, i2ϕ〉.
Thus 〈i2ϕ, x · ϕ〉 = 0.

Conversely, assume V is quaternionic. Thus its orthogonal complement
V ⊥ is also quaternonic. Take ϕ ∈ V ⊥. By Lemma 1.3 it suffices to show that
V = Vϕ.

We have V ⊥ = 〈ϕ, i1ϕ, i2ϕ, i3ϕ〉. By Lemma 1.12 there is a subspace
D ⊂ R

5 such that D ·ϕ = V . Since V is complex, by Lemma 1.1, V = Vϕ. �

For our approach, to make the description at least partially invariant, we
need to modify the quaternionic structure (i1, i2, i3) a little bit. The modifica-
tion depends on the choice of an admissible space V . Let j1 = i1 and we define
j2 as follows

j2 = i2 on V, j2 = −i2 on V ⊥.
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Finally, let j3 = j1j2. Then (j1, j2, j3) equals (i1, i2, i3) on V and (i1,−i2,−i3)
on V ⊥. The triple (j1, j2, j3) is in fact a quaternionic structure (since V and
V ⊥ are invariant with respect to (i1, i2, i3)). Moreover,

jk(x · ϕ) = x · jk(ϕ), ϕ ∈ Δ.

Hence, all complex structures j1, j2 and j3 commute with multiplication by
vectors.

Now, we move to a description of a quaternionic structure on D. As
discussed in the previous subsection take

J1 = J(1, 0, 0), J2 = J(0, 1, 0), J3 = (0, 0,−1).

Then J3 = J1J2 and JkJl = −JlJk for distinct k, l. There are unit spinors (not
unique) ϕ1, ϕ2, ϕ3 ∈ V ⊥ such that

x · iϕk = Jk(x) · ϕk.

Moreover, define three 2–forms ωk by

ωk(x, y) = 〈Jk(x), y〉, x, y ∈ D.

Then

x · ωk · ϕk = ωk · x · ϕk + 2(x�ωk) · ϕk

= 2(x�ωk) · ϕk = 2Jk(x) · ϕk = x · (iϕk),

which implies

ωk · ϕk = 2iϕk.

This relation shows that ωk belongs to the Lie algebra dual to su(2).

Remark 1.14. If V = 〈s3, s4〉C, then we may take, for example,

ϕ1 = s1, ϕ2 =
1√
2
(s1 + is2), ϕ3 =

1√
2
(s1 − s2).

Moreover, the 2–forms ωk are

ω1 = e12 + e34, ω2 = −e13 + e24, ω3 = e14 + e23

and the corresponding complex structures J1, J2, J3 are given by the following
matrices

J1 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , J2 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , J3 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

We would like to add that a construction of a quaternionic structure from
the given data was studied in [7] where the authors use the approach from [9].
Obtained (almost) complex structures agree with our approach.
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1.5. Conjugacy Classes

In this subsection we find a condition for admissible spaces, to induce conjugate
Lie algebras (equivalently, groups) isomorphic to su(2). More precisely, we deal
with the problem when su(2)V and su(2)V ′ are conjugate for V, V ′ admissible.
Recall that su(2)V is the Lie algebra of all ω such that ω · ϕ = 0 for any
ϕ ∈ V ⊥.

Lemma 1.15. Assume V ⊂ Δ is an admissible space and let g ∈ Spin(5). Then
gV is also admissible.

Proof. Since g acts as a complex linear map, it follows that the space gV is
complex. Moreover, let ψ ∈ (gV )⊥ and let ϕ ∈ V . By the invariance of the
Hermitian product, we see that g−1ψ ∈ V ⊥. Since V is admissible, it follows
that V ⊂ Wg−1ψ. Thus ϕ = x · (g−1ψ) for some x ∈ R

5. Hence

gϕ = (Ad(g)x) · ψ.

Since Ad(g)x is a vector in R
5, we have gϕ ∈ Wψ. This proves admissibility of

gV . �

Lemma 1.16. The isotropy group of a fixed element of the action of Spin(5) on
admissible subspaces is isomorphic to Spin(4).

Proof. It suffices to take ϕ = s1. Then V = 〈s3, s4〉C. It is easy to see that
gV = V if and only if g ∈ Spin(4) where we consider the spin group with
respect to the first component in the decomposition R

5 = R
4 ⊕ R. �

Lemmas 1.15 and 1.16 imply the following interpretation of Spin(5) in
terms of Grassmanians.

Corollary 1.17. Spin(5) acts transitively on the space of admissible subspaces.

Proof. By Theorem 1.13 any admissible space is of the form V =〈ψ, i1ψ, i2ψ, i3ψ〉
for some spinor ψ. Choose another admissible space V ′ induced in this way, by
a spinor ϕ. Since the action of Spin(5) on Δ is transitive, there is g ∈ Spin(5)
such that g ·ϕ = ψ. We know that i1 acts by multiplication, i2 commutes with
the action of g, whereas i3 is the composition of i1 and i3. Therefore

g · jϕ = jgϕ = jψ, j ∈ {id, i1, i2, i3}.

Hence gV = V ′. �

To justify, in a sense, the above fact let us count appropriate dimensions.
We have dim Spin(5) = 10 and dim Spin(4) = 6. Since the space of all possi-
ble admissible subspaces is, by Theorem 1.13, the quaternionic Grassmanian
Gr1(H2), its dimension is dim Gr1(H2) = 4.

Proposition 1.18. Let g ∈ Spin(5). We have

Ad(g)su(2)V = su(2)g−1V .
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Proof. Let ω ∈ su(2)V , i.e., ω ·ϕ = 0 for all ϕ ∈ V ⊥. Thus 0 = (Ad(g)ω) · (gϕ),
which implies Ad(g)su(2)V = su(2)gϕ. Since gϕ ∈ (gV )⊥, by admissibility of
gV , proposition follows. �
Corollary 1.19. Let g ∈ Spin(5). Then Ad(g)su(2)V = su(2)V , for V admissi-
ble, if and only if gV = V . In particular, the stabilizer of su(2)V with respect
to the adjoint action of Spin(5) is isomorphic to Spin(4).

Let us compare the above considerations with a quaternionic approach.
Choose a quaternionic structure (j1, j2, j3) on Δ in the way such that each jk

commutes or anticommutes with the multiplication by vectors (see subsection
1.7). Consider the natural action of H on Δ: for a = a0 + a1i + a2j + a3k ∈ H

and ϕ ∈ Δ let

a · ϕ = a0ϕ + a1j1ϕ + a2j2ϕ + a3j3ϕ.

This action commutes with the action of Spin(5). Moreover, by Theorem 1.13
each admissible space is of the form Vϕ = {a · ϕ | a ∈ H} for each ϕ ∈ Δ.
These arguments give another proof of Lemma 1.16.

The quotient space Δ/H of this action, which is isomorphic to R
4, is the

space of all admissible spaces. In addition, for fixed ϕ and any ψ ∈ V ⊥
ϕ the

action of H on ϕ and ψ spans Δ.

2. Invariant Description of SU(2)–Structures

Let (M, g) be a spin 5–manifold with the corresponding Riemannian structure
g. Denote by Spin(M) the spinor structure (with the structure group Spin(5))
and let S be the associated spinor bundle, S = Spin(M) ×Spin(5) Δ, where
Δ = C

4 is as in the first section. An SU(2)–structure on M is a reduction P
of the frame bundle SO(M) to the structure group SU(2) ⊂ SO(5). We can
extend P to PSpin(5) = P ×SU(2) Spin(5). Alternatively, as shown by Conti
and Salamon [9], an SU(2)–structure is given by a quadruplet (α, ω1, ω2, ω3)
consisting of a 1–form α and 2–forms ω1, ω2, ω3 such that

ωk ∧ ωl = δklv and (X�ω1 = Y �ω2 ⇒ ω3(X,Y ) > 0)

for some 4–form v satisfying α∧v 
= 0. The third approach is the following [9].
Fix a unit spinor field ϕ. Then we define a subundle P as the set of all frames
u such that ϕ(x) = [u, ϕ0], where u is a frame over x ∈ M and ϕ0 ∈ Δ is a
fixed unit spinor. Then P is an SU(2) structure with SU(2) = Stab(ϕ0).

Motivated by the final approach and the discussions in the first section we
may consider the following approach to SU(2)–structures: Fix an admissible
space V ⊂ Δ, denote the corresponding Lie algebra by su(2)V and its Lie
group by SU(2)V . In other words, su(2)V = su(2)ϕ0 for any ϕ0 ∈ V ⊥ (see
Theorem 1.4). If P is an SU(2)V –structure we may define the space (of real
dimension 4) of certain spinor fields

SP = {ϕ ∈ S | there exists ϕ0 ∈ V ⊥ such that ϕ = [u, ϕ0] for any u ∈ P}.
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Since spinors from V ⊥ are the fixed points of the action of SU(2)V , it follows
that, in fact, S is a real 4–dimensional subspace. Directly from the definition
we see that SP is isomorphic to V ⊥ (and V ). Any spinor field in SP is said to
induce given SU(2)–structure P .

There is a natural subbundle in the spinor bundle S over the SU(2)–
structure.

Definition. Assume P is an SU(2)–structure on a spin manifold M . We say
that a subbundle V in the spinor bundle S is adapted to P if it is of the form
V = P ×SU(2) V , where V is an admissible space in Δ such that SU(2) =
SU(2)V .

Consider the almost complex structure on S induced by j1 on Δ (see also
discussion on a quaternionic structure below). From the definition it follows
that the adapted subbundle is complex 2–dimensional.

Notice that two spinor fields ϕ and ψ, which are sections of V⊥, i.e., an
orthogonal complement of the adapted subbundle, do not in general induce
the same SU(2)–structure. Indeed, assume ϕ defines the underlying SU(2)–
structure P , i.e., ϕ = [u, ϕ0], u ∈ P , where SU(2) = Stab(ϕ0). Then ψ defines
the same structure if and only if ψ = [u, ψ0], u ∈ P , for some ψ0 in the
admissible space V . In other words, ϕ and ψ must lie in the space SP for some
P (which they induce).

We may consider the quaternionic structure i2 on S induced from the
quaternionic structure i2 on Δ. Therefore, i3 = i1 ◦ i2, where i1 = j1, defines
an additional almost complex structure on S and (i1, i2, i3) forms a triple of
almost complex structures [6]. By Theorem 1.13 we have the following result.

Corollary 2.1. An admissible subbundle V is quaternionic with respect to the
quaternionic structure (i1, i2, i3).

If an admissible subbundle V is fixed, we have, additionally, a quater-
nionic structure (j1, j2, j3) induced from (i1, i2, i3) on Δ. These two structures
differ only by a sign (for i2 and i3 on the orthogonal complement V⊥ of the
admissible distribution).

Corollary 2.2. An admissible distribution is quaternionic with respect to a
quaternionic structure (j1, j2, j3).

It is important to notice that the spinor fields ϕ, j1ϕ, j2ϕ and j3ϕ (equiv-
alently, ϕ, i1ϕ, i2ϕ, i3ϕ) induce the same SU(2)–structure. In other words, if
ϕ ∈ SP , then jkϕ ∈ SP for any k = 1, 2, 3. Indeed, each complex structure jk

on Δ commutes with the action of Spin(5), i.e., jk(gs) = g(jks), g ∈ Spin(5),
s ∈ Δ. Therefore, if ϕ is induced by a spinor ϕ0 ∈ Δ, then jkϕ is induced by
jkϕ0. Since the quaternionic structure (j1, j2, j3) leaves the admissible space V
and its orthogonal complement V ⊥ invariant, it follows that jkϕ induces the
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same SU(2)–structure as ϕ. Therefore if ϕ is fixed, any spinor field ψ defining
the same SU(2)–structure is given by

ψ = a0ϕ + a1j1ϕ + a2j2ϕ + a3j3ϕ =
3∑

k=0

akjkϕ, a0, a1, a2, a3 ∈ R,

where j0 denotes the identity. Form these considerations, we also see that

∇jk = 0, k = 1, 2, 3,

where ∇ is a connection in the spinor bundle induced from the Levi-Civita
connection on M . This follows from the fact that each jk commutes with the
action on Spin(5). Let us gather these observations in the proposition below.

Proposition 2.3. For any two spinor fields ϕ,ψ defining the same SU(2)–
structure, i.e., ϕ,ψ ∈ SP , there is a quaternion (a0, a1, a2, a3) such that ψ =∑3

k=0 akjkϕ.

We may describe the above arguments on the level of principal bundles.
Namely, fix a group SU(2) ⊂ Spin(5). We may assume that SU(2) is induced
by a unit spinor ϕ0 ∈ V ⊥ for some admissible space V . There is a bijection
between SU(2) structures on M and sections σ of the associated homogeneous
bundle N = Spin(M) ×Spin(5) (Spin(5)/SU(2)) – reduction P ⊂ Spin(M) to a
subgroup SU(2) defines σP ∈ Γ(N) as follows

σP (x) = [u, e], u ∈ P,

where e is the coset induced by the neutral element. We wish to show that there
is a bijection between Γ(N) and Γ(V⊥

1 )/H1, where V⊥
1 denotes the bundle of

unit spinors in V⊥ and the right action of unit quaternions on sections ϕ of
this bundle is given by conjugation

ϕ · a = a0ϕ − a1j1ϕ − a2j2ϕ − a3j3ϕ, a = (a0, a1, a2, a3) ∈ H1.

The correspondence is the following: Let σ ∈ Γ(N). Since Spin(5)/SU(2) is
isomorphic to S

7 ⊂ Δ, the isomorphism depending on ϕ0, section σ induces a
spinor field ϕσ ∈ Γ(S). It suffices to show that ϕσ ∈ V⊥

1 and changing ϕ0 by
ϕ0a, a ∈ H1, leads to ϕσa. Indeed, σ may be treated as an equivariant function
σ : Spin(M) → Spin(5)/SU(2). Hence, the induced spinor at x ∈ M is given
by ϕ(x)σ(u) · ϕ0, π(u) = x. Thus ϕ(x) belongs to the same admissible space
as ϕ0. Secondly, substituting ϕ0 by ϕ0a, a ∈ H1, we get

σ(u)(ϕ0a) = (σ(u)ϕ0)a = ϕ(x)a.

Let us relate how to derive the quadruplet (α, ωi) defining an SU(2)–
structure in the sense of [9] from the admissible distribution V. A choice of
an SU(2)–structure P gives existence of a codimension one distribution D,
defined as D = P ×SU(2) D, where the existence of D follows from the first
section, and a unit orthogonal vector field ζ called Reeb. ζ is induced by a
vector y ∈ R

5 in Lemma 1.1. Fix an admissible distribution V and consider
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the induced SU(2)–structure P . Denote by su(2)+ the Lie algebra dual to
su(2) (compare the first section for details). Since the adjoint representation
of SU(2) on su(2)+ is trivial, the bundle

su+(M) = P ×SU(2) su(2)+
of 2–forms is trivial. Hence, there are global linearly independent three 2–forms
ω1, ω2, ω3. Consider, moreover, the quaternionic structure (J1, J2, J3) on the
distribution D described as follows (see subsection 1.7):

Jk(X) · ϕk = X · j1ϕk,

where ϕk are three R–linearly independent spinor fields in V⊥ (the represen-
tation of SU(2) on V⊥ is trivial).

Proposition 2.4. The forms α and ωk defining an SU(2)–structure in the sense
of [9] may be given by the following relations

α = ζ�, ωk(X,Y ) = g(Jk(X), Y ).

Proof. We may choose a local section of the orthonormal frame (e1, e2, e3, e4, e5)
such that the quadruplet (α, ωk) defining an SU(2)–structure in the sense of
[9] is given by (see [9])

α = e�
5, ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23.

Then locally V⊥ = 〈s1, s2〉C (compare the fundamental example in subsect.
1.4). It suffices to choose ϕ1, ϕ2, ϕ3 as in Remark 1.14. �

Remark 2.5. The relations contained in Proposition 2.4, adapted to the con-
sidered setting, have been already obtained in [6].

3. Characterization of the Intrinsic Torsion and its Modules

In this section we want to derive a decomposition of the module of all possible
intrinsic torsions via spinorial approach.

Let M be a spin 5–manifold with the corresponding Riemannian struc-
ture g. Let SO(M) be a frame bundle of oriented orthonornal frames and
Spin(M) ⊃ SO(M) the induced spin structure with the structure group Spin(5).
The Levi–Civita connection ∇ on M induces a connection form ω on SO(M)
and ω̃ on Spin(M). Let P ⊂ SO(M) be an SU(2)–structure. Identifying
2–forms with skew–symmetric endomorphism, i.e., considering the isomor-
pism Λ2((R5)∗) ≡ so(5) and taking into account the decomposition so(5) =
su(2) ⊕ su(2)⊥ = su(2) ⊕ su(2)+ ⊕ R

4 described in the previous sections, we
have the following subbundles of 2–forms

su(M) = P ×SU(2) su(2),

su⊥(M) = P ×SU(2) su(2)⊥,

su+(M) = P ×SU(2) su(2)+.
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Since the adjoint action on su(2)+ is trivial, the bundle su+(M) admits, as
mentioned earlier, three global linearly independent 2–forms.

An su(2)–component of ω induces a Riemannian connection ∇P on M .
The intrinsic torsion of the considered SU(2)–structure is a (1, 2)–tensor field
ξ of the form

ξXY = ∇P
XY − ∇XY.

From the definition of ξ is follows that ξ ∈ T ∗M ⊗ su⊥(M).
Moreover, ω̃ and its su(2)–component induce connections on the spinor

bundle S = Spin(M) ×Spin(5) Δ = P ×SU(2) Δ. Denote them by ∇ and ∇P

(as on M), respectively. If ϕ ∈ S is a spinor field defining P , it follows that
∇P ϕ = 0.

Let V be a subbundle adapted to P . Let V be the corresponding admissi-
ble space, V ⊥ is its orthogonal complement in Δ. It is clear from the previous
considerations that with respect to the map ω 	→ ω · ϕ0 for a fixed spinor
ϕ0 ∈ V ⊥, we have an isomorphism of su(2)⊥ onto 〈ϕ0〉⊥. It can be shown [9]
that with respect to this isomorphism

1
2
ξX · ϕ = −∇Xϕ,

where we consider ξX as an element of su(2)⊥. More precisely, ξX is treated
as an invariant function from P to su(2)⊥.

Denote by T the space T ∗(M)⊗su⊥(M) of all possible intrinsic torsions.
This space splits into irreducible modules under the action of the group SU(2).
In [6], the authors, applying the intuition developed in [4], show how to rewrite
∇ϕ for a fixed unit spinor field ϕ inducing the considered SU(2)–structure
into components lying in each irreducible component of T . Let us recall this
approach. Since for a unit spinor field ϕ, ∇Xϕ is orthogonal to ϕ is follows
that there is a linear map Sϕ : TM → D and three one–forms βϕ

k on M such
that

∇Xϕ = Sϕ(X) · ϕ +
∑

k

βϕ
k (X)ikϕ.

Here, (i1, i2, i3) is a quaternionic structure on S, i2 anticommutes with the
multiplication by vectors, i1 is induced by multiplication by the volume element
[6]. Let Sϕ(ζ) = V ϕ, where ζ is the Reeb field. Thus, we may write,

Sϕ = Sϕ
D + α ⊗ V ϕ,

where α is a one–form dual to ζ and SD is an endomorphism of D. Analogously,
we may “decompose” each βk with respect to the splitting D ⊕ 〈ζ〉 as

βϕ
k = βϕ,D

k + fϕ
k α
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for some function fϕ
k . Finally, Sϕ

D splits as (we skip writing indices ϕ and D
to make the formula more readable) [6]

Sϕ
D = λ0IdD + S0 +

∑
k

λkJk +
∑

k

σk,

where S0 ∈ su(M) = P ×SU(2) su(2) and σk is traceless, symmetric and such
that Jlσk = (−1)δkl+1σkJl, l = 1, 2, 3. Thus elements λ0, λk, fk, S0, σk, βϕ,D

k , V ϕ

(k = 1, 2, 3) are the components with respect to the splitting of T into irre-
ducible modules [6,9]

T = 7R ⊕ 4su(2) ⊕ 4(R4)∗ pointwise.

3.1. Partial Invariance

The aim is to make the above decomposition independent of the choice of ϕ ∈
SP . Let V be a subbundle in S adapted to P and let V ⊂ Δ be corresponding
admissible subspace. We introduce a slight modification. Instead of considering
the quaternionic structure (i1, i2, i3) and elements ϕ, i1ϕ, i2ϕ, i3ϕ spanning V⊥

we consider the quaternionic structure (j1, j2, j3). For a unit spinor field ϕ we
may write

∇Xϕ = Sϕ(X) · ϕ +
∑

k

βϕ
k (X)jkϕ. (8)

The first main result of this section gives partial invariance.

Proposition 3.1. Sϕ is independent on the choice of ϕ ∈ SP . Moreover, the
one–forms βϕ

k change with respect to the following formula: if ψ =
∑3

k=0 akjkϕ,
where j0 is the identity, then

βψ
1 = (a2

0 + a2
1 − a2

2 − a2
3)β

ϕ
1 + 2(a1a2 − a0a3)β

ϕ
2 + 2(a0a2 + a1a3)β

ϕ
3

βψ
2 = 2(a1a2 + a0a3)β

ϕ
1 + (a2

0 − a2
1 + a2

2 − a2
3)β

ϕ
2 + 2(a2a3 − a0a1)β

ϕ
3

βψ
3 = 2(a1a3 − a0a2)β

ϕ
1 + 2(a2a3 + a0a1)β

ϕ
2 + (a2

0 − a2
1 − a2

2 + a2
3)β

ϕ
3 .

Proof. For ϕ0 ∈ V denote by (ϕ0)H the following quadruplet of elements span-
ning V :

(ϕ0)H = (ϕ, j1ϕ, j2ϕ, j3ϕ).

We have a natural action of a = (a0, a1, a2, a3) ∈ H on V (compare subsection
1.8), namely

a · ϕ0 =
∑

k

akjkϕ0,

where j0 is the identity. We have

(a · ϕ0)�
H = ρ(a) · (ϕ0)�

H , ρ(a) =

⎛
⎜⎜⎝

a0 a1 a2 a3

−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0

⎞
⎟⎟⎠
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Notice that for a 
= 0, ρ(a)−1 = 1
‖a‖2 ρ(ā) (ρ is one of possible inclusions of H

into gl(4,R)).
Take two unit spinor fields ϕ,ψ defining the same SU(2)–structure. Let

Sϕ, Sψ and βϕ
k , βψ

k be the corresponding elements with respect to the decom-
position (8). Firstly, we will show that Sϕ = Sψ. We have

∇Xψ = a0∇Xϕ +
∑

k

akjk(∇Xϕ)

= a0S
ϕ(X) · ϕ + a0

∑
l

βϕ
l (X)jlϕ

+
∑

k

akjk(Sϕ(X) · ϕ) +
∑
k,l

akβϕ
l (X)jk(jlϕ).

Since, by the definition of jk, jk(Sϕ(X) · ϕ) = Sϕ(X) · jkϕ, we get

∇Xψ = Sϕ(X) · ψ −
∑

k

akβϕ
k (X)ϕ

+ (a0β
ϕ
1 (X) + a2β

ϕ
3 (X) − a3β

ϕ
2 (X))j1ϕ

+ (a0β
ϕ
2 (X) + a3β

ϕ
1 (X) − a1β

ϕ
3 (X))j2ϕ

+ (a0β
ϕ
3 (X) + a1β

ϕ
2 (X) − a2β

ϕ
1 (X))j3ϕ.

Hence, Sϕ = Sψ. Moreover, by the considerations at the beginning of the
proof

ϕH = ρ(ā)ψH,

where a = (a0, a1, a2, a3). Substituting this relation we get the desired formula
for the change of βϕ

k . �

Remark 3.2. Notice that the components of each βψ
k constitute the Hopf fibra-

tion (compare Proposition 1.11 and its proof). Moreover, treating (βϕ
1 , βϕ

2 , βϕ
3 )

as a trivialization of su(2)+ isomorphic to su(2), transformation for the one-
forms βϕ

k restricted to unit quaternions is just the adjoint action of SU(2) on
su(2).

3.2. Full Invariance

Let us now show how to decompose ∇Xϕ to obtain all “components” indepen-
dent of ϕ. Recall that the multiplication of two–forms in so(5) by ϕ0 ∈ Δ is a
surjective map onto 〈ϕ0〉⊥ with the kernel su(2). Moreover, restricted to the
su(2)+ (the dual to su(2)) it is an isomorphism onto V ⊥ ∩ 〈ϕ0〉⊥, where V is
admissible space such that ϕ0 ∈ V ⊥. Hence, the component

∑3
k=0 βϕ

k (X)jkϕ
in (8) can be written as

∑
k

βϕ
k (X)jkϕ = ωϕ

X · ϕ,
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where ωϕ
X ∈ su+(M) is a 2–form. Therefore, for a unit spinor field ϕ we have

∇Xϕ = Sϕ(X) · ϕ + ωϕ
X · ϕ, (9)

The advantage of the use of ωϕ is that we do not specify the “coordinates”
(j1ϕ, j2ϕ, j3ϕ) on the space V⊥ ∩ 〈ϕ〉⊥. Moreover, Sϕ and ωϕ do not depend
on the choice of ϕ in SP .

Proposition 3.3. There exists an endomorphism S : TM → D and an element
ω ∈ T ∗(M) ⊗ su+(M), such that

∇Xϕ = S(X) · ϕ + ωX · ϕ, (10)

for any unit spinor field ϕ ∈ SP .

Proof. Fix a spinor field ϕ and let ψ =
∑3

k=0 akjkϕ ∈ SP . Then (9) holds. We
will show that Sψ = Sϕ and ωϕ

X = ωψ
X . We have

∇Xψ = a0∇Xϕ +
∑

k

akjk∇Xϕ

= a0S
ϕ(X) · ϕ + a0ω

ϕ
X · ϕ +

∑
k

akjk(Sϕ(X) · ϕ) +
∑

k

akjk(ωϕ
X · ϕ)

= a0S
ϕ(X) · ϕ +

∑
k

akSϕ(X) · jkϕ + a0ω
ϕ
X · ϕ +

∑
k

akωϕ
X · jkϕ

= Sϕ(X) · ψ + ωϕ
X · ψ.

We used the fact that for any k, jk(Z · ϕ) = Z · jkϕ, where X ∈ TM , and
jk(η · ϕ) = η · jkϕ, where η is a two–form. �

Notice that ωX splits as

ωX = ωXD
+ α(X)ωζ .

3.3. Intrinsic Torsion Explicitly

Let us now provide an explicit formula for the intrinsic torsion. We proceed
analogously as in [4]. Fix an SU(2)–structure on M . Take any ϕ ∈ SP and
define a 3–form Ψ as follows

Ψ(X,Y,Z) = −〈XY Z · ϕ,ϕ〉, X, Y, Z ∈ TM.

An easy calculation shows that Ψ does not depend on the choice of ϕ ∈ SP .

Lemma 3.4. For any ϕ ∈ SP the following relation holds

(p(X)�Ψ) · ϕ = X · ϕ, X ∈ TM,

where p : TM → TM is given by p(X) = X − 1
2α(X)ζ. In particular, if

XD ∈ D, then

(XD�Ψ) · ϕ = XD · ϕ.
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Proof. We may assume that ϕ = s1. Then it can be verified that

Ψ = e125 + e345 and α = e5.

Let X =
∑5

j=1 xjej . Then

p(X) =
4∑

j=1

xjej +
1
2
x5e5,

which implies

(p(X)�Ψ) · ϕ=x1e25 · ϕ−x2e15 · ϕ+x3e45 · ϕ−x4e35 · ϕ+
1
2
x5(e12 + e34) · ϕ

= x1is4 + x2s4 − x3is3 − x4s3 + x5is1

= X · ϕ.

�

Now we may state an explicit formula for the intrinsic torsion.

Proposition 3.5. The intrinsic torsion ξ of an SU(2)–structure P is given by

ξX = −2S(X)�Ψ − 2ωX ,

where S and ωX are given by the formula (10).

Proof. Firstly notice that ωX ∈ su(2)+(M) ⊂ su(2)⊥(M). Secondly, by the
proof of Lemma 3.4 we see that p(X)�Ψ ∈ su(2)⊥(M). Moreover, by Lemma
3.4 we have

−1
2
ξX · ϕ = ∇Xϕ = S(X) · ϕ + ωX · ϕ = (p(S(X))�Ψ + ωX) · ϕ

for any ϕ ∈ SP . This ends the proof. �

Considering the decomposition S = SD + α ⊗ V , where SD ∈ End(D) is
a restriction of S and V = S(ζ) ∈ D, we have

ξX = −2SD(XD)�Ψ − 2α(X)V �Ψ − 2ωX .

In particular, for X = ζ,

ξζ = −2V �Ψ − 2ωζ .

3.4. Characteristic Connection

We end this section by providing a formula and conditions for existence of
the characteristic connection ∇c [2]. Recall, that ∇c is a metric connection
which has totally skew–symmetric torsion T c and which is also an SU(2)–
connection, i.e., ∇cϕ = 0 for any unit spinor ϕ ∈ SP defining the underlying
SU(2)–structure P .

In order to do so, we need some additional definitions. We rely on the
approach developed in [4]. We will derive a formula for ∇c using the formula for
characteristic connection for U(2) ⊂ SO(5) structures [12]. An U(2)–structure
on M , i.e., an almost contact metric structure, is defined by a 1–form α and an
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almost complex structure J on D = kerα (compatible with the metric). Fixing
an SU(2)–structure on M the choice of an U(2)–structure is not unique, in
fact, it can be any J taken from a quaternionic structure (we extend J to the
Reeb field trivially). We fix any such J and denote by F ∈ su+(M) the induced
2–form. There is a natural choice of a spinor ϕ associated with J . Namely, there
is unique, up to multiplication by complex numbers, unit ϕ ∈ V ⊥ such that
F · ϕ = 2j · ϕ = 2iϕ, where j is an almost complex structure on S (compare
Lemma 6.2 in [10]). Moreover, j, J and ϕ are also related by the formula
(compare subsection 1.3).

JX · ϕ = j(X · ϕ).

In fact, since j commutes with multiplication by vectors,

j(X · ϕ) = X · jϕ =
1
2
X · F · ϕ =

1
2
(F · X · ϕ − 2(X�F ) · ϕ) = J(X) · ϕ.

This implies

F (X,Y ) = g(X,JY ) = 〈X · ϕ, JY · ϕ〉 = 〈X · ϕ, j(X · ϕ)〉, X, Y ∈ TM.

Moreover, let ΨJ be a 3–form defined by

ΨJ (X,Y,Z) = Ψ(JX, JY, JZ) = −〈XY Z · ϕ, jϕ〉.
and Φ a 3–tensor in T ∗M ⊗ Λ2(T ∗M) given by

Φ(X,Y,Z) =
1
2
〈ωX · ϕ, (ZY − Y Z) · jϕ〉

Lemma 3.6. The following formula holds

(∇XF )(Y,Z) = 2ΨJ (S(X), Y, Z) + 2Φ(X,Y,Z),

where S is given by the formula (9).

Proof. Since j is ∇-parallel, we have

(∇XF )(Y,Z) = XF (Y,Z) − F (∇XY,Z) − F (Y,∇XZ)

= 〈Y ∇Xϕ, j(Z · ϕ)〉 + 〈Y · ϕ, j(Z · ∇Xϕ)〉.
Using the formula ∇Xϕ = S(X) · ϕ + ωX · ϕ we obtain

(∇XF )(Y,Z) = 〈Y S(X) · ϕ, j(Z · ϕ)〉 + 〈Y · ϕ, j(ZS(X) · ϕ)〉
+ 〈Y ωX · ϕ,Z · jϕ〉 + 〈Y · ϕ,ZωX · jϕ〉

= 2ΨJ(S(X), Y, Z) + 2Φ(X,Y,Z).

�
Consider now the Nijenhuis tensor of an almost contact metric structure

(M, g, α, J)

N(X,Y ) = (∇JXJ)Y − (∇JY J)X + (∇XJ)(JY ) − (∇Y J)(JX)
−α(Y )∇Xζ + α(X)∇Y ζ (11)

and treat it as a 3-tensor contracting it with the metric.
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Lemma 3.7. The Nijenhuis tensor may be described as follows

N(X,Y,Z) = 2ΨJ ((SJ + JS)X,Y,Z) − 2ΨJ((SJ + JS)Y,X,Z))

+ 2Φ(JX, Y, Z)−2Φ(JY,X,Z)+2Φ(X,JY,Z)−2Φ(Y, JX,Z)

− α(Y )(∇Xα)Z + α(X)(∇Y α)Z.

Proof. Firstly notice that

ΨJ(X,Y,Z) = Ψ(JX, JY, JZ) = Ψ(JX, Y, Z) = Ψ(X,JY,Z) = Ψ(X,Y, JZ).

Now, the formula follows by (11) and Lemma 3.6. �

We are almost ready to describe the characteristic connection ∇c for an
SU(2)–structure. Since an SU(2)–structure is a U(2)–structure, it follows that
∇c is also the characteristic connection for a U(2)–structure. By the results in
[12] it follows that such a connection is unique and its torsion T c equals

T c = α ∧ dα + dJF + N − α ∧ (ζ�N), (12)

where dJF (X,Y,Z) = −(dF )(JX, JY, JZ). The existence of ∇c implies that
N is a 3–form and the Reeb field ζ is Killing (with respect to the Levi–Civita
connection) [12].

Theorem 3.8. An SU(2)–structure on a spin 5–manifold M admits a charac-
teristic connection if and only if the Nijenhuis tensor is totally skewsymmetric,
the Reeb field is Killing and 4F (ωX) = δF .

Proof. The proof follows the same lines as the proof of Theorem 3.18 in [4].
Assume ∇c is a characteristic connection for an U(2)–structure on M . Then,
in particular, ∇cF = 0. Let ϕ be a unit spinor considered above, i.e., such that
j(X · ϕ) = J(X) · ϕ. By the formula for F and the fact that j is ∇c–parallel
we obtain

0 = (∇c
XF )(Y,Z) = XF (Y,Z) − F (∇c

XY,Z) − F (Y y,∇c
XZ)

= 〈Y · ∇c
Xϕ, j(Z · ϕ)〉 + 〈Y · ϕ, j(Z · ∇c

Xϕ)〉
= −2〈∇c

Xϕ, Y Z · jϕ〉 − 2g(Y,Z)〈∇c
Xϕ, jϕ〉.

Thus 〈∇c
Xϕ, Y Z · jϕ〉 = 0 for Y orthogonal to Z. This implies that ∇c

Xϕ is in
the span of jϕ. Concluding, a U(2) characteristic connection ∇c is in fact an
SU(2) connection, i.e. ∇cϕ = 0, if and only if 〈∇c

Xϕ, jϕ〉 = 0 for all X. Since
(see for example [4])

∇c
Xϕ = ∇Xϕ +

1
4
(X�T ) · ϕ,
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we have

0 = 〈∇c
Xϕ, jϕ〉 = 〈S(X) · ϕ + ωX · ϕ +

1
4
(X�T ) · ϕ, jϕ〉

= 〈ωX · ϕ, jϕ〉 +
1
4
F (X�T ) = F (ωX) +

1
4
T (F,X)

= F (ωX) +
1
4
δF.

Thus 4F (ωX) = −δF . �
Theorem 3.9. Consider an U(2)–structure (M, g, F, ζ, α) on a 5–dimensional
spin manifold induced from an SU(2)–structure. Assume that the Nijenhuis
tensor N is skew–symmetric, the Reeb field ζ is Killing and 4F (ωX) = −δF (X),
where ωX is given by (9). Then the torsion T c of the characteristic connection
∇c is given by the formula

T c(X,Y,Z) = 2SXY Z(Ψ(S(X), Y, Z) − Φ(JX, JY, JZ))

+ 2ΨJ ((SJ + JS)X,Y,Z) − 2ΨJ ((SJ + JS)Y,X,Z)

+ 2Φ(JX, Y, Z) − 2Φ(JY,X,Z) + 2Φ(X,JY,Z) − 2Φ(Y, JX,Z)

+
5
2
α(X)dα(Y,Z) − 5

2
α(Y )dα(X,Z) +

1
2
α(Z)dα(X,Y )

− α(X)dα(JY, JZ) + α(Y )dα(JX, JZ) − α(Z)dα(JX, JY ).
(13)

Proof. Follows by Lemma 3.7, formula (12) and the facts that ∇ζζ = 0 and
(ζ�N)(Y,Z) = −dα(Y,Z) + dα(JY, JZ) [12]. �

Notice that some components in the formula (13) as well as in the for-
mula for the Nijenhuis tensor in Lemma 3.7 may be derived and rewritten in
a different way. Firstly, we state and prove a formula analogous to the one
contained in Lemma 3.4. Namely, we have the following simple observation.

Lemma 3.10. For a fixed unit spinor ϕ, a vector X ∈ TM and the correspond-
ing almost complex structure J the following formula holds

−(α ∧ (JX)�) · ϕ = X · ϕ,

where α ∧ (JX)� lies in the R
4–component of so(5).

Proof. By the definition of J , noticing that ζ · ϕ = jϕ, we have

−(α ∧ (JX)�) · ϕ = −ζ(JX) · ϕ = −j · j(X · ϕ) = X · ϕ.

�
By the lemma above we have

0 = ∇c
Xϕ = S(X) · ϕ + ωX · ϕ +

1
4
(X�T ) · ϕ

= −(α ∧ (JS(X))�) · ϕ + ωX · ϕ +
1
4
(X�T ) · ϕ.
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For an element η ∈ Λ2((R5)∗) ≡ so(5) denote its components with respect to
the decomposition so(5) = su(2)⊕ su(2)+ ⊕R

4 by η−, η+ and η4, respectively.
Then by the above

(X�T )4 · ϕ = −4(α ∧ (JS(X))�) · ϕ,

(X�T )+ · ϕ = 4ωX · ϕ.

Applying the formula (12) and noticing that the projection to the R
4 factor

equals η 	→ α ∧ (ζ�η), we get

2JV = (ζ�dα)� = 0,

4ωζ = (dα)+,

4S(XD) = XD�dα,

4ωXD
= (XD�N)+ + (XD�dJF )+.

where V = S(ζ) and XD ∈ D. Here, we used the facts that ζ�T = dα and
ζ�dα = 0 [12]. This gives the partial correspondence already established in [6]
between the approach by differential forms [9] and the spinorial approach [6]
in the case of the existence of the characteristic connection.

Remark 3.11. The formulas for the Nijenhuis tensor N and the torsion T c

of the characteristic connection contained in Lemma 3.7 and Theorem 3.9
depend on the almost complex structure J . Since J was chosen arbitrary from
a corresponding quaternionic structure associated with an SU(2)–structure,
these formulas are valid for any such choice. In the approach in [9] and [6]
the considered almost complex structure is induced by a 2–form ω1 or by the
almost complex structure j on S induced from the volume form and a fixed
unit spinor defining SU(2)–structure.

3.5. Intrinsic Torsion of a U(2)–Structure
Any SU(2)–structure in dimension 5 is a U(2)–structure, hence an almost
contact structure. Let us compare the intrinsic torsion of these two structures.
For the formula for the intrinsic torsion of a U(2)–structure, or more generally,
an U(n)–structure on a (2n + 1)–dimensional Riemannian manifold we refer
to [13].

Let M be a spin 5 dimensional manifold with the corresponding Rie-
mannian structure g. Consider an SU(2)–structure on M . Then, as we have
seen in the previous subsection, we may choose a U(2)–structure on M corre-
sponding to the choice of an almost complex structure J on the distribution
D = kerα, where α is a 1–form, whose existence follows from the choice of
an SU(2)–structure on M . Then J defines an endomorphism (denoted by the
same letter) J : TM → TM which is J in D and zero on ζ = α�. Moreover, let
F be the 2–form associated with J , F (X,Y ) = g(X,JY ). The intrinsic torsion
of the U(2)–structure is given by [13]

g(ξU(2)
X Y,Z) = −1

2
g(J(∇XJ)Y ), Z) + α(Z)(∇Xα)Y − 1

2
α(Y )(∇Xα)Z.
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Let us rewrite ξU(2), with the use of the objects defined in the previous
section, which are induced by the spinors defining the SU(2)–structure. In
fact, we have to deal with the first component. By Lemma 3.6 we have

g(J((∇XJ)Y ), Z) = F (∇XF )(Y, JZ) = 2ΨJ (S(X), Y, JZ) + 2Φ(X,Y, JZ).

Moreover, by the fact that (∇Xα)Y = (∇XF )(ζ, JY ) [8], we get

(∇Xα)Y = −2Φ(X,JY, ζ).

Finally,

g(ξU(2)
X Y,Z) = Ψ(S(X), Y, Z) − Φ(X,Y, JZ)

− 2α(Z)Φ(X,JY, ζ) + α(Y )Φ(X,JZ, ζ)

Recall that the intrinsic torsion of an SU(2)–structure is given by

g(ξXY,Z) = −2Ψ(S(X), Y, Z) − 2ωX(Y,Z).

The difference of ξ and ξU(2) should be of the form γ(X)F (Y,Z) for some
1–form γ. We believe this is the case and leave the details to the reader. This
follows from the fact that we have the splitting u(2) = su(2) ⊕ R, where the
second component is induced by the element J .
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[8] Cinea, D., González-Dávila, J.C.: A classification of almost contact metric man-
ifolds. Ann. Mat. Pura Appl. 4(156), 15–36 (1990)

[9] Conti, D., Salamon, S.: Generalized Killing spinors in dimension 5. Trans. Amer.
Math. Soc. 359(11), 5319–5343 (2007)

[10] Kim, E., Friedrich, T.: The Einstein-Dirac equation on Riemannian spin mani-
folds. J. Geom. Phys. 33(1–2), 128–172 (2000)

[11] Friedrich, T.: Dirac operators in Riemannian geometry, AMS, Graduate Studies
in Mathematics, (2000)

[12] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric
torsion in spring theory. Asian. J. Math. 6(2), 303–336 (2002)

[13] Gonzalez-Davila, J.C., Martin Cabrera, F.: Harmonic almost contact structures.
Israel J. Math. 181, 145–187 (2011)

[14] Mart́ın Cabrera, F.: Special almost Hermitian geometry. J. Geom. Phys. 55(4),
450–470 (2005)

[15] Mart́ın-Merchan, L.: Spinorial classification of Spin(7) structures, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5)21, 873–910 (2020)

Kamil Niedzia�lomski
Department of Mathematics and Computer Science
University of �Lódź
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