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Abstract. The goal of the paper is twofold. First, we present an ana-
lytic method leading to a class of combinatorial identities with Bernoulli,
Euler and Catalan numbers based on considering specific multiple zeta-
like series and infinite products. The developed method allows us to nat-
urally extend Hoffman’s combinatorial identity that led to the famous
evaluation of the multiple zeta value ζ({2}k) in 1992. Second, we present
new evaluations of two multiple zeta-like series with their consequences
to combinatorial identities, and, as a by-product of our technical con-
siderations, we establish two combinatorial identities with a trinomial
coefficient and Stirling numbers respectively.

Mathematics Subject Classification. 05A19, 11M32, 11B68.

Keywords. Combinatorial identities, multinomial sums, multiple zeta val-
ues.

1. Introduction

In 1992, Hoffman [8, Proposition 2.4] discovered the remarkable identity
∑

∑k
i=1 imi=k
mi≥0

1
m1! · · · mk!

·
(

B2

2 · 2!

)m1

· · ·
(

B2k

2k · (2k)!

)mk

=
1

4k · (2k + 1)!
,

(1.1)
where mi’s are non-negative integers satisfying the diophantine equation∑k

i=1 imi = k with k ∈ N and Bk denoting the k-th Bernoulli number.
Hoffman found the above identity (1.1) in order to evaluate the famous val-
ues ζ({2}k) := ζ(2, 2, . . . , 2) with k repetitions of the argument 2, where
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ζ(s1, . . . , sk) denotes the so-called multiple zeta value defined by

ζ(s1, . . . , sk) :=
∑

n1>···>nk≥1

1
ns1

1 · · · nsk

k

, (1.2)

with si ∈ N and s1 ≥ 2 for sake of the convergence of the infinite series in (1.2).
The multiple zeta values ζ(s1, . . . , sk) were introduced by Hoffman [8] and
Zagier [14] in 1992 as a generalization of the single Riemann zeta values ζ(s) :=∑∞

n=1 1/ns, s ∈ N, s ≥ 2. It is worth mentioning that multiple zeta values play
an important role in quantum physics by calculations with Feynman diagrams,
or in knot theory. For more information on these attractive values, we refer
interested readers to the books Gil and Fresán [1] and Zhao [15] providing an
interesting exposition of this branch of mathematics. In addition to the value
ζ(s1, . . . , sk) defined above, we also define the corresponding multiple zeta-star
value ζ�(s1, . . . , sk) by changing the strict inequalities below the sum in (1.2)
to non-strict ones, i.e.

ζ�(s1, . . . , sk) :=
∑

n1≥···≥nk≥1

1
ns1

1 · · · nsk

k

, (1.3)

with identical conditions on the arguments si as by ζ(s1, . . . , sk).
Identity (1.1) is closely connected with the formula

ζ({2}k) =
π2k

(2k + 1)!
, (1.4)

and Hoffman’s [8] original proof of (1.4) requires (1.1) which he deduced by
means of analytical methods. However, the connection of ζ({2}k) and (1.1)
presented in [8] subsume combinatorial ideas and concepts from abstract alge-
bra.

1.1. Objectives

It is generally known that relations between multiple zeta values imply com-
binatorial identities, see Eie [5] for an overview of such results. However, we
feel that there is still space for further investigations in this direction.

In contrast to Hoffman’s approach, the technical objective of our paper
is to provide a fully analytical link between the combinatorial identities of the
type like in (1.1) on the one hand and of the general nested zeta-like infinite
series

ϕk(an) :=
∑

n1>···>nk≥1

1
an1 · · · ank

, (1.5)

ϕ�
k(an) :=

∑

n1≥···≥nk≥1

1
an1 · · · ank

, (1.6)

on the other hand. This is the purpose of the auxiliary Lemma 3.1 and of the
identities in (3.5) and in (3.6) that form the technical base of our method.
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Secondly, Hoffman [8] proved identity (1.1) as a counterpart to (1.4),
i.e. to the closed-form evaluation of ϕk(n2). Hence, there is a natural question
about the corresponding combinatorial counterpart relating to the evaluation
of ϕ�

k(n2) = ζ�({2}k). To our best knowledge, we are not aware of any pub-
lished counterpart corresponding to

ζ�({2}k) = (−1)k−1 · (
4k − 2

) · B2k

(2k)!
· π2k. (1.7)

We present such combinatorial identity in Theorem 2.1. Nevertheless, we can
pose analogous questions in case of other suitable an’s, say an = (2n − 1)2

or an = n(n + 1). While the identities generated by the ‘odd variant’ an =
(2n−1)2 are stated in Theorem 2.2, the identities generated by an = n ·(n+1)
are presented in Theorems 2.5 and 2.6. Based on Lemma 3.1, the proofs of
Theorems 2.1 and 2.2 will be almost self-evident. In contrast to this, the proofs
of Theorems 2.5 and 2.6 require more effort.

For the purpose of obtaining any combinatorial identities by means of the
tools presented in this work, we always need the closed forms of both ϕk(an)
and ϕ�

k(an). For an = n2, these evaluations are given above in (1.4) and (1.7),
for an = (2n − 1)2 these are also known and we will present them later. Yet,
the closed forms of ϕk(n · (n + 1)) and ϕ�

k(n · (n + 1)) stated in Theorem 2.3
and Theorem 2.4 respectively are new. Moreover, we apply these theorems in
a slightly different way compared to how we apply the evaluations of ϕk(an)
and ϕ�

k(an) with an = n2 or an = (2n − 1)2. Our considerations thus lead to
the combinatorial identities presented in Theorems 2.5 and 2.6, where Catalan
numbers occur. Hence, the part devoted to the analysis of ϕk(n · (n + 1)) and
ϕ�

k(n · (n + 1)) and their consequences can be considered as main.
Lastly, we bring up two combinatorial identities presented in Corollar-

ies 4.1 and 4.2. Both these results follow as a by-product of the auxiliary
Lemma 3.2. Even if the mentioned corollaries do not belong to our main goals,
and therefore postponed to Sect. 4, we include them in this paper with regard
to their visual attractiveness.

2. Results

In connection with the objectives described above, we can formally split this
section into two parts. While the simpler part is formed by Theorems 2.1
and 2.2, the main part concerns Theorems 2.3–2.6.

We start with a pair of identities including Hoffman’s identity (1.1) cor-
responding to ε = 1. Notice that changing the involved parameter to ε = −1
causes a change on the right-hand side, where a Bernoulli number appears.
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Theorem 2.1. Suppose that k ∈ N0. Then

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

ε · B2i

2i · (2i)!

)mi

=
1

4k · (2k)!
·

⎧
⎪⎨

⎪⎩

1
2k + 1

if ε = 1,

(
2 − 4k

) · B2k if ε = −1.

A similar pair of identities is stated in the following theorem. We believe
that the formula corresponding to ε = −1 is especially interesting since its left-
-hand side involves Bernoulli numbers whereas its right-hand side is a simple
expression with the Euler number E2k.

Theorem 2.2. Suppose that k ∈ N0. Then

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
((

4i − 1
) · ε · B2i

2i · (2i)!

)mi

=
1

4k · (2k)!
·
{

1 if ε = 1,

E2k if ε = −1.

To obtain the identities in Theorems 2.5 and 2.6, we utilize the following
two theorems dealing with the evaluation of the nested series ϕk(n · (n + 1))
and ϕ�

k(n · (n + 1)) respectively.

Theorem 2.3. Suppose that k ∈ N. Then

∑

n1>···>nk≥1

k∏

j=1

1
nj · (nj + 1)

=
1

k + 1
·
� k

2 �∑

i=0

(−1)i ·
(

2k − 2i

k

)
· π2i

(2i)!
.

The closed form for the non-strict variant ϕ�
k(n · (n + 1)) presented in

Theorem 2.4 is slightly different than the evaluation of ϕk(n·(n+1)) presented
in Theorem 2.3 as it is involving the so-called Dirichlet η-function η(s) :=∑∞

n=1(−1)n−1/ns, s > 0.

Theorem 2.4. Suppose that k ∈ N, k ≥ 2. Then

∑

n1≥···≥nk≥1

k∏

j=1

1
nj · (nj + 1)

=
2 · (−1)k

k − 1
·
� k

2 �∑

i=0

(2i − 1) ·
(

2k − 2i − 2
k − 2

)
· η(2i),

where η(0) := 1/2.

Remark. Notice that the above formula holds true for integers k ≥ 2 only.
Evidently, the missing case relating to k = 1 can be calculated immediately
since we have ϕ�

1(n · (n+1)) =
∑∞

n=1 1/(n · (n+1)) = 1 by telescoping. Beside
this, we can also apply Theorem 2.3 due to ϕ1(an) = ϕ�

1(an).
The last two theorems imply two pairs of elegant combinatorial identities

involving Catalan numbers.
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Theorem 2.5. Suppose that k ∈ N. Then

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

ε

2i
·
(

2i

i

))mi

=

{
Ck if ε = 1,

−Ck−1 if ε = −1.

Finally, we state the last pair of combinatorial identities that represents
a kind of weighted variant of Theorem 2.5.

Theorem 2.6. Suppose that k ∈ N, k ≥ 2. Then

∑

∑k
i=1 imi=k
mi≥0

Wk(m) ·
k∏

i=1

1
mi!

·
(

ε

2i
·
(

2i

i

))mi

=

{
Ck − Ck−1 if ε = 1,

−Ck−2 if ε = −1,

where Wk(m) = Wk(m1, . . . ,mk) is the weight function defined by

Wk(m) :=
k∑

t=2

t · mt

2t − 1
. (2.1)

3. Proofs

3.1. Auxiliary Lemma and Its Consequences

We first state and prove the following simple technical tool which forms the
base for the combinatorial identities described in this paper.

Lemma 3.1. Let {an}∞
n=1 be an arbitrary sequence of real numbers such that

the infinite product
∏∞

n=1 (1 − x/an) converges, where x is an arbitrary real
number satisfying the condition |x| < max |an|. Choose a fixed parameter ε = 1
or ε = −1. Then

∞∏

n=1

(
1 − x

an

)ε

=
∞∑

k=0

xk ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−ε · Si

i

)mi

, (3.1)

where

Si :=
∞∑

n=1

1
ai

n

. (3.2)

Remark. Even if we restricted the possible values for the parameter ε to ±1
only, one can easily generalize Lemma 3.1 accordingly. Since the cases ε �= ±1
will not be important for our later considerations, we omit them.

Proof of Lemma 3.1. Let ε = 1 or ε = −1 be fixed according to the assump-
tions of the lemma. Since x satisfies the condition |x| < max |an|, we can
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rewrite the convergent infinite product on the left-hand side of (3.1) in the
following way:

Pε(x) :=
∞∏

n=1

(
1 − x

an

)ε

= exp

( ∞∑

n=1

ε · ln
(

1 − x

an

))

= exp

( ∞∑

n=1

∞∑

k=1

−ε

k
· xk

ak
n

)

=
∞∑

j=0

1
j!

·
( ∞∑

k=1

xk · −ε

k
·

∞∑

n=1

1
ak

n

)j

.

Further, we employ the notation introduced in (3.2) and calculate also the j-th
power of the middle infinite series:

Pε(x) =
∞∑

j=0

1
j!

·
( ∞∑

k=1

xk · −ε · Sk

k

)j

=
∞∑

j=0

1
j!

·
∞∑

k=j

xk ·
∑

∑k
i=1 imi=k∑k
i=1 mi=j
mi≥0

(
j

m1, . . . ,mk

)
·

k∏

i=1

(−ε · Si

i

)mi

.

Interchanging the summation order and canclelling j! imply

Pε(x) =
∞∑

k=0

xk ·
k∑

j=0

∑

∑k
i=1 imi=k∑k
i=1 mi=j
mi≥0

k∏

i=1

1
mi!

·
(−ε · Si

i

)mi

=
∞∑

k=0

xk ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−ε · Si

i

)mi

.

This concludes the proof. �

The importance of the previous lemma consists in its connection with the
nested infinite series ϕk(an) and ϕ�

k(an) defined in (1.5) and in (1.6). Actually,
it is well-known that

∞∏

n=1

(
1 − x

an

)
= 1 +

∞∑

k=1

(−x)k · ϕk(an), (3.3)

∞∏

n=1

(
1 − x

an

)−1

= 1 +
∞∑

k=1

xk · ϕ�
k(an), (3.4)
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see, e.g. Genčev [6, Lemma 2.1 and Eq. (24)]. Therefore, comparing the coeffi-
cients of both power series representations for the infinite products P±1(x) in
Lemma 3.1 with the above expansions (3.3) and (3.4) gives apparently

ϕk(an) = (−1)k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

, (3.5)

ϕ�
k(an) =

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

Si

i

)mi

. (3.6)

We would like to point out that if the series Si can be calculated in the closed
form for every i ∈ N then the above relations provide a (somewhat cumber-
some) way for calculating the closed forms of ϕk(an) and ϕ�

k(an).
The above facts, however, do not imply specific combinatorial identi-

ties immediately. To obtain our results presented in Sect. 2 with the help of
Lemma 3.1, it is necessary to find another suitable closed-form evaluations of
the corresponding series ϕk(an) and ϕ�

k(an). The standard way is based on find-
ing the closed form of the infinite products P±1(x) in (3.1) and, consequently,
on finding their expansions into Maclaurin series. The second alternative way
consists in considering a specific transformation of the nested series ϕk(an),
ϕ�

k(an) into a simple infinite series. This usually comes into focus when the
standard way is difficult or inconvenient. As we will see later, we will make
use of such alternative when an = n · (n + 1) and ε = −1. Further details are
described in the next sections that are devoted to the proofs of our theorems.

3.2. Proof of Theorem 2.1

We split this subsection into two parts. In the first part, we present a simple
proof of Hoffman’s identity (1.1) corresponding to ε = 1 in Theorem 2.1. In
the second part, we deal with the proof of the case ε = −1.

Proof of Hoffman’s identity. Setting an = n2 in (1.5) yields ϕk(n2) = ζ({2}k).
Since (see [9, p. 88, Theorem 2.6.1] for the infinite product evaluation)

∞∏

n=1

(
1 − x2

n2

)
=

sin(πx)
πx

=
∞∑

k=0

(−1)k · (πx)2k

(2k + 1)!
,

the relation in (3.3) implies that

ϕk

(
n2

)
=

π2k

(2k + 1)!
(3.7)

by equating the coefficients of the same powers of x. Indeed, this is equivalent
to formula (1.4).
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On the other hand, we have Si =
∑∞

n=1 1/n2i = ζ(2i). Thus, in virtue of
(3.5), (3.7) and by Euler’s evaluation

ζ(2i) = (−1)i−1 · (2π)2i

2 · (2i)!
· B2i, i ∈ N, (3.8)

we find that

π2k

(2k + 1)!
= (−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−ζ(2i)

i

)mi

= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

(−1)i

i
· (2π)2i

2 · (2i)!
· B2i

)mi

= (2π)2k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

B2i

2i · (2i)!

)mi

.

Comparing the left-hand side at the beginning with the last expression and
dividing by (2π)2k imply Hoffman’s combinatorial formula immediately. �

Proof of Theorem 2.1 for ε = −1. The proof is, in essence, the same as the
proof of Hoffman’s identity except that we apply the evaluation

ϕ�
k

(
n2

)
= ζ�({2}k)

= (−1)k−1 · π2k · (
4k − 2

) · B2k

(2k)!
(3.9)

following from (3.4) and from the relation (see also the remark following
immediately after the end of this proof)

∞∏

n=1

(
1 − x2

n2

)−1

=
πx

sin(πx)

=
∞∑

k=0

(−1)k−1 · (
4k − 2

) · B2k

(2k)!
· (πx)2k. (3.10)

Hence, utilizing (3.6) with Si = ζ(2i), and (3.9), one deduces that

(−1)k−1 · π2k · (
4k − 2

) · B2k

(2k)!

=
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

ζ(2i)
i

)mi
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= (−1)k · (2π)2k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
( −B2i

2i · (2i)!

)mi

.

The proof of Theorem 2.1 for ε = −1 follows now easily by comparing the
left-hand side with the last expression and by dividing by (2π)2k. �

Remark. The presented expansion of the function πx/ sin(πx) into the Maclau-
rin series is well-known. We refer readers to the paper Chen et al. [4, p. 828],
where a simple proof of the identity

csc(x) =
2
x

·
∞∑

k=0

(−1)k−1 · (
4k − 2

) · B2k

(2k)!
· x2k, |x| < π,

is given. Of course, multiplying this relation by x and changing the variable x
to πx implies the Maclaurin expansion on the right-hand side of (3.10).

3.3. Proof of Theorem 2.2

Proof. Assume first that ε = 1. Since (see [9, p. 88, Theorem 2.6.1] for the
infinite product evaluation)

∞∏

n=1

(
1 − x2

(2n − 1)2

)
= cos

(πx

2

)
=

∞∑

k=0

(−1)k

(2k)!
·
(πx

2

)2k

,

we deduce by this and by (3.3) that

ϕk

(
(2n − 1)2

)
=

π2k

4k · (2k)!
.

Moreover, we have

Si =
∞∑

n=1

1
(2n − 1)2i

=
(
1 − 4−i

) · ζ(2i)

= (−1)i−1 · (
4i − 1

) · π2i

2 · (2i)!
· B2i,

where the last equality follows from (3.8). Hence, using the above relations
and (3.5), we obtain

π2k

4k · (2k)!
= (−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

(−1)i · (
4i − 1

) · π2i

2i · (2i)!
· B2i

)mi

= π2k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
((

4i − 1
) · B2i

2i · (2i)!

)mi

.

Dividing the last relation by π2k implies the validity of Theorem 2.2 for ε = 1.
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The proof for ε = −1 proceeds analogously with the help of the well-
-known expansion

1
cos(x)

=
∞∑

k=0

(−x2
)k · E2k

(2k)!
,

where E2k denotes the 2k-th Euler number. We leave the proof details to
readers. �

3.4. Proof of Theorem 2.3

3.4.1. Technical Lemma. Before we approach the proof of Theorem 2.3, we
prove a technical statement in Lemma 3.2 that will be important later. In
addition to this, Lemma 3.2 implies also two specific combinatorial identities.
In order not to distract attention from the main exposition line, we present
these corollaries not until in Sect. 4.

Lemma 3.2. Suppose that k ∈ N0 and n ∈ R. Then

k∏

i=0

(n − i) =
k∑

i=0

ci,k ·
i∏

t=0

(2n − t), (3.11)

where

ci,k :=
(−1)i+k

22k−i+1 · i!
·

i+k−1∏

t=i

(2k − t). (3.12)

Proof. We will proceed by induction with respect to k. Of course, for k = 0
formula (3.11) holds trivially. Next, assume that (3.11) is true for a fixed
k ∈ N0. Then

k+1∏

i=0

(n − i) = (n − k − 1) ·
k∑

i=0

ci,k ·
i∏

t=0

(2n − t) (3.13)

by the inductive assumption. Since

n − k − 1 =
2n − i − 1

2
− 2k − i + 1

2
,

we deduce by this and by (3.13) that

k+1∏

i=0

(n − i) =
k∑

i=0

ci,k

2
·

i+1∏

t=0

(2n − t) −
k∑

i=0

ci,k

2
· (2k − i + 1) ·

i∏

t=0

(2n − t)

=
k+1∑

i=1

ci−1,k

2
·

i∏

t=0

(2n − t) −
k∑

i=0

ci,k

2
· (2k − i + 1) ·

i∏

t=0

(2n − t).

Next, we separate the first summand from the last sum corresponding to i = 0
and the last term from the first sum corresponding to i = k+1. Moreover, this
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and merging the remaining summands of both sums into a single sum allow
us to write

k+1∏

i=0

(n − i) = −2k + 1
2

· c0,k · 2n +
ck,k

2
·

k+1∏

t=0

(2n − t)

+
k∑

i=1

(ci−1,k

2
− ci,k

2
· (2k − i + 1)

)
·

i∏

t=0

(2n − t)

=
k+1∑

i=0

γi,k+1 ·
i∏

t=0

(2n − t),

where

γ0,k+1 := −2k + 1
2

· c0,k,

γi,k+1 :=
ci−1,k

2
− (2k − i + 1) · ci,k

2
, i = 1, . . . , k,

γk+1,k+1 :=
ck,k

2
.

To finish the induction step, it suffices to show that γi,k+1 = ci,k+1 for
i = 0, . . . , k + 1, where the form of ci,k+1 corresponds to ci,k defined in (3.12)
with k +1 instead of k. Thus, by the definitions of γi,k+1 above and by (3.12),
we deduce that

γ0,k+1 = −2k + 1
2

· (−1)k

22k+1
·

k−1∏

t=0

(2k − t)

= (2k + 1) · (−1)k+1

22k+2
·

k−1∏

t=0

(
2(k + 1) − (t + 2)

)

=
(−1)k+1

22k+2
·

k+1∏

t=1

(
2(k + 1) − t

)

=
(−1)k+1

22k+3
·

k∏

t=0

(
2(k + 1) − t

)
= c0,k+1,

as expected. Similarly for γi,k+1 with i = 1, . . . , k:

γi,k+1 =
(−1)i+k−1

2 · 22k−i+2 · (i − 1)!
·

i+k−2∏

t=i−1

(2k − t)

− (2k − i + 1) · (−1)i+k

2 · 22k−i+1 · i!
·

i+k−1∏

t=i

(2k − t)

=
(−1)i+k+1

22k−i+3 · i!
·
(

i+k−2∏

t=i−1

(2k − t)

)
· (

i + 2(k − i + 1)
)
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=
(−1)i+k+1

22k−i+3 · i!
·

i+k−2∏

t=i−2

(2k − t)

=
(−1)i+k+1

22k−i+3 · i!
·

i+k∏

t=i

(2(k + 1) − t) = ci,k+1.

Finally, due to the fact that ck,k = 1/2k+1 following directly from (3.12), we
easily see that γk+1,k+1 = ck,k/2 = 1/2k+2 = ck+1,k+1. This concludes the
proof by induction. �

3.4.2. The Proof. The proof of Theorem 2.3 presented below makes use of the
gamma function defined by

Γ(z) := lim
n→∞

nz · n!∏n
i=0(i + z)

, z ∈ C\Z−
0 .

Since Γ(z + 1) = z · Γ(z) as follows from the definition above, we readily see
that

N∏

n=1

(n + z) =
Γ(N + z + 1)

Γ(z + 1)
, N ∈ N0, (3.14)

whenever the right-hand side exists. See [9, Chap. 3] or [13, Sect. 1.1] for more
details on the gamma function.

Proof of Theorem 2.3. For calculating the value of the series ϕk(n · (n + 1)),
we take into account its generating function in (3.3) and express the closed
form of the corresponding infinite product. We obtain

P1(x) =
∞∏

n=1

(
1 − x

n · (n + 1)

)

= lim
N→∞

N∏

n=1

(
n + 1

2 −
√

x + 1
4

)
·
(
n + 1

2 +
√

x + 1
4

)

n · (n + 1)
,

where x is sufficiently small. Thanks to (3.14), we immediately infer that

P1(x) = lim
N→∞

Γ
(
N+ 3

2−
√

x+ 1
4

)

Γ
(

3
2−

√
x+ 1

4

) · Γ
(
N+ 3

2+
√

x+ 1
4

)

Γ
(

3
2+

√
x+ 1

4

)

Γ(N + 1) · Γ(N + 2)
.

Let us now consider the limit of the terms with the variable N . Indeed,
invoking the formula (see [13, p. 117])

lim
N→∞

t∏

s=1

Γ(N + as)
Γ(N + bs)

= 1,

t∑

s=1

as =
t∑

s=1

bs,
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with t = 2, a1,2 = 3
2 ±

√
x + 1

4 and b1 = 1, b2 = 2, we deduce that

P1(x) =
1

Γ
(

3
2 −

√
x + 1

4

)
· Γ

(
3
2 +

√
x + 1

4

)

= − 1
πx

· sin
(π

2
+

π

2
√

1 + 4x
)

= −cos
(

π
2

√
1 + 4x

)

πx
, (3.15)

where we utilized the relation Γ(z+1) = z ·Γ(z) and Euler’s reflection formula
Γ(z) · Γ(1 − z) = π/ sin(πz), z /∈ Z.

Next, we expand the cosine function in (3.15) into the Maclaurin series
and extract the coefficients of the powers of x:

P1(x) =
1

πx
·

∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

· (1 + 4x)n

=
1

πx
·

∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

·
n∑

k=0

(
n

k

)
· (4x)k

=
1

πx
·

∞∑

k=0

(4x)k ·
∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

·
(

n

k

)

=
1

πx
·

∞∑

k=1

(4x)k

k!
·

∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

·
k−1∏

i=0

(n − i),

where the last outer sum is extended over k ∈ N since for k = 0, the corre-
sponding term is cos(π/2) = 0. Further, we apply Lemma 3.2 on the last finite
product which yields

P1(x) =
1

πx
·

∞∑

k=1

(4x)k

k!
·

k−1∑

i=0

ci,k−1 ·
∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

·
i∏

t=0

(2n − t),

(3.16)

with ci,k defined in (3.12). Let us further denote the inner infinite series
in (3.16) by Ri, i.e.

Ri :=
∞∑

n=0

(−1)n−1

(2n)!
·
(π

2

)2n

·
i∏

t=0

(2n − t), i ∈ N0.

To finish the proof, it is enough to express the closed form of Ri which can be
realized as follows:

Ri =
∞∑

n=� i+1
2 �

(−1)n−1

(2n − i − 1)!
·
(π

2

)2n
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=
∞∑

n=0

(−1)n+� i+1
2 �−1

(
2
(
n + � i+1

2 	) − i − 1
)
!
·
(π

2

)2(n+� i+1
2 �)

= (−1)� i+1
2 �−1 ·

(π

2

)2� i+1
2 �−δi ·

∞∑

n=0

(−1)n

(2n + δi)!
·
(π

2

)2n+δi
,

where we set

δi := 2 ·
⌈

i + 1
2

⌉
− i − 1

=
1 + (−1)i

2
, i ∈ N0.

Consequently, it is not difficult to observe that this leads to

Ri = (−1)� i+1
2 �−1 ·

(π

2

)i+1

·
{

sin
(

π
2

)
for i even,

cos
(

π
2

)
for i odd

= (−1)� i+1
2 �−1 ·

(π

2

)i+1

· δi.

These calculations and (3.16) imply now that

P1(x) =
1

πx
·

∞∑

k=1

(4x)k

k!
·

k−1∑

i=0

ci,k−1 · (−1)� i+1
2 �−1 ·

(π

2

)i+1

· δi

=
1

πx
·

∞∑

k=1

(4x)k

k!
·
� k−1

2 �∑

i=0

c2i,k−1 · (−1)i ·
(π

2

)2i+1

=
∞∑

k=1

xk−1 · 4k

k!
·
� k−1

2 �∑

i=0

(−1)i+k−1 · π2i

22k · (2i)!
·
2i+k−2∏

t=2i

(2k − t − 2)

=
∞∑

k=0

(−x)k · 1
(k + 1)!

·
� k

2 �∑

i=0

(−1)i · π2i

(2i)!
·
2i+k−1∏

t=2i

(2k − t)

=
∞∑

k=0

(−x)k · 1
k + 1

·
� k

2 �∑

i=0

(−1)i · π2i

(2i)!
·
(

2k − 2i

k

)
.

If we compare the coefficients of the same powers of x in the last infinite series
and in (3.3), we conclude the proof of Theorem 2.3. �

3.5. Proof of Theorem 2.4

3.5.1. Initial Discussion. According to (3.3) and (3.4), it would seem likely
that we utilize (3.15) and find the closed form of ϕ�

k(n · (n + 1)) by means of
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the relation

−πx

cos
(

π
2

√
1 + 4x

) = 1 +
∞∑

k=1

xk · ϕ�
k(n · (n + 1)).

Unfortunately, after making several attempts, we were currently unable to find
a suitable way for arriving at a compact form of coefficients of the expansion
with the involved secant function into Laurent series centered at x = 0.

This is the reason why we opt for another approach based on an effective
transformation of the series ϕ�

k(n · (n + 1)). In order to realize this transfor-
mation, we apply the following general theorem proved by the author in [7,
Theorem 2.1].

Theorem 3.1. Let p(n), q(n) be real polynomials. Put R(n) = p(n)/q(n) and
suppose that the following conditions are satisfied:

(C1) the infinite series
∑∞

n=1 R(n) converges,
(C2) R(n) �= 0 for all n ∈ N,
(C3) R(m) �= R(n) for all pairs (m,n) ∈ N

2 with m �= n,
(C4) the derivative R′(n) �= 0 for all n ∈ N,
(C5) there exists l0 ∈ N such that R(n) > 0 for all n > l0.

Set Q := deg q(n). Then for every k ∈ N we have

∑

n1≥···≥nk≥1

k∏

j=1

R(nj) =
∞∑

l=1

(−1)l

(l − 1)!
· R′(l) · Rk−1(l) ·

∏Q
d=2 Γ(1 − βd(l))∏Q

d=1 Γ(1 − αd)

(3.17)

whenever the right-hand side converges with αd’s defined by the unique factor-
ization

q(n) = a0 ·
Q∏

d=1

(n − αd),

βd’s are all roots of the equation R(n) = R(l), with the unknown variable n
and a discrete parameter l, and β1(l) := l denotes its trivial solution.

Remark. It is not hard to see that for p(n) = 1 and q(n) = n2, Theorem 3.1
immediately implies the identity

ζ�({2}k) = 2 η(2k), k ∈ N,

where η denotes the Dirichlet η-function. Consequently, according to the rela-
tion η(s) = (1 − 21−s) · ζ(s), Theorem 3.1 enables us to prove the evaluation
of ζ�({2}k) in (3.9) by applying (3.8).
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3.5.2. The Proof. We are now ready to present the proof of Theorem 2.4 based
on the transformation identity (3.17).

Proof of Theorem 2.4. If we set p(n) = 1 and q(n) = n·(n+1) in Theorem 3.1,
then R(n) = 1/(n·(n+1)) and the conditions (C1)–(C5) are obviously satisfied.
Indeed, the left-hand side of (3.17) coincides with the investigated series ϕ�

k(n ·
(n + 1)) and, as follows from the form of q(n), we have a0 = 1, α1 = 0 and
α2 = −1. Solving the equation R(n) = R(l) with respect to the unknown n
implies its solutions β1(l) = l and β2(l) = −l − 1. Consequently, by applying
the transformation (3.17), we get for every k ∈ N

ϕ�
k(n · (n + 1)) =

∑

n1≥···≥nk≥1

k∏

j=1

1
nj · (nj + 1)

=
∞∑

l=1

(−1)l

(l − 1)!
· −2l − 1
(l · (l + 1))k+1

· (l + 1)!

=
∞∑

l=1

(−1)l−1 · 2l + 1
lk · (l + 1)k

. (3.18)

To finish the proof, we will first decompose the rational part of the summand
in (3.18) into partial fractions and then we perform the summation. To realize
the decomposition, we employ

1
lk · (l + 1)k

= (−1)k ·
k∑

i=1

(
2k − i − 1

k − 1

)
·
(

(−1)i

li
+

1
(l + 1)i

)
, k ∈ N,

(3.19)

see, e.g. Smirnov [12, p. 38]. Differentiating this identity with respect to l
yields

−k · (2l + 1)
lk+1 · (l + 1)k+1

= (−1)k ·
k∑

i=1

(
2k − i − 1

k − 1

)
·
(

i · (−1)i−1

li+1
− i

(l + 1)i+1

)
,

and, after evident simplifications, we arrive at the sought decomposition

2l + 1
lk+1 · (l + 1)k+1

=
(−1)k

k
·

k+1∑

i=2

(i − 1) ·
(

2k − i

k − 1

)
·
(

(−1)i−1

li
+

1
(l + 1)i

)
.

Reducing the parameter k to k−1 in the last identity and applying it on (3.18)
allow us to evaluate ϕ�

k := ϕ�
k(n · (n + 1)) for k ≥ 2 as follows:

ϕ�
k =

(−1)k−1

k − 1
·

k∑

i=2

(i − 1) ·
(

2k − i − 2
k − 2

)

×
(

(−1)i−1
∞∑

l=1

(−1)l−1

li
+

∞∑

l=1

(−1)l−1

(l + 1)i

)
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=
(−1)k−1

k − 1
·

k∑

i=2

(i − 1) ·
(

2k − i − 2
k − 2

)
· (

((−1)i−1 − 1) · η(i) + 1
)

=
(−1)k

k − 1
·
(

k∑

i=2

(i − 1) ·
(

2k − i − 2
k − 2

)
· (

((−1)i + 1) · η(i)
)

−
k∑

i=2

(i − 1) ·
(

2k − i − 2
k − 2

))

=
(−1)k

k − 1
·
(� k

2 �∑

i=1

(2i − 1) ·
(

2k − 2i − 2
k − 2

)
· 2 η(2i) −

(
2k − 2
k − 2

))

=
2 · (−1)k

k − 1
·
� k

2 �∑

i=0

(2i − 1) ·
(

2k − 2i − 2
k − 2

)
· η(2i), (3.20)

where we used η(0) = 1/2 and the identity
∑k

i=2(i − 1) · (
2k−i−2

k−2

)
=

(
2k−2
k−2

)

whose standard proof we leave to readers. Finally, we find out that the form
in (3.20) completely coincides with the formula in Theorem 2.4. The proof is
complete. �
3.6. Proof of Theorem 2.5

For the proof of Theorem 2.5, we need the closed-form evaluation of the se-
ries Si defined in (3.2) with an = n · (n + 1). The proof of Theorem 2.5 is
therefore preceded by the following lemma, where we provide the closed form
for Si.

3.6.1. Auxiliary Summation Result.

Lemma 3.3. Suppose that i ∈ N. Then

∞∑

n=1

1
ni · (n + 1)i

=
(−1)i−1

2
·
(

2i

i

)
+2 · (−1)i ·

� i
2�∑

j=1

(
2i − 2j − 1

i − 1

)
· ζ(2j).

(3.21)

Proof. We evaluate the investigated series by employing the partial fraction
decomposition in (3.19). Denoting the series on the left-hand side in (3.21)
as Si, we deduce by (3.19) that

Si =
∞∑

n=1

(−1)i ·
i∑

j=1

(
2i − j − 1

i − 1

)
·
(

(−1)j

nj
+

1
(n + 1)j

)
.

Splitting the inner finite sum into two sums with respect to the parity of j
implies

Si = (−1)i ·
� i
2 �∑

j=1

(
2i − 2j

i − 1

)
·

∞∑

n=1

(
1

(n + 1)2j−1
− 1

n2j−1

)
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+ (−1)i ·
� i

2�∑

j=1

(
2i − 2j − 1

i − 1

)
·

∞∑

n=1

(
1

(n + 1)2j
+

1
n2j

)

= (−1)i−1 ·
� i
2 �∑

j=1

(
2i − 2j

i − 1

)
+ (−1)i ·

� i
2�∑

j=1

(
2i − 2j − 1

i − 1

)
· (

2 ζ(2j) − 1
)

= (−1)i−1 ·
(� i

2 �∑

j=1

(
2i − 2j

i − 1

)
+

� i
2�∑

j=1

(
2i − 2j − 1

i − 1

))

+ 2 · (−1)i ·
� i

2�∑

j=1

(
2i − 2j − 1

i − 1

)
· ζ(2j)

= (−1)i−1 ·
i∑

j=1

(
2i − j − 1

i − 1

)
+ 2 · (−1)i ·

� i
2�∑

j=1

(
2i − 2j − 1

i − 1

)
· ζ(2j).

Since for the first sum we have
∑i

j=1

(
2i−j−1

i−1

)
= 1

2 · (2i
i

)
, the identity in (3.21)

now follows. This completes the proof. �

3.6.2. The Proof.

Proof of Theorem 2.5. The basis of the proof consists in the crucial Eq. (3.5)
with an = n · (n + 1). However, instead of comparing whole expressions on
the left- and right-hand sides of (3.5), we only compare specific coefficients of
powers of π occurring in them. This is certainly possible since π is transcen-
dental. For the proof of Theorem 2.5, it suffices to consider the coefficients of
π0, i.e.

[
π0

]
ϕk(n · (n + 1)) =

[
π0

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

,

where we used the standard notation with [πp]
∑m

i=0 ci · πi := cp.
Assume now that ε = 1. Then, by Theorem 2.3, we immediately obtain

[
π0

]
ϕk(n · (n + 1)) =

1
k + 1

·
(

2k

k

)
= Ck, (3.22)

where Ck denotes the k-th Catalan number. Similarly, we can find the cor-
responding coefficient on the right-hand side. For this purpose, it suffices to
consider the coefficients [π0]Si that can readily be obtained by Lemma 3.3.
Hence,

[
π0

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi
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= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

− [
π0

]
Si

i

)mi

= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

(−1)i

2i
·
(

2i
i

))mi

=
∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

1
2i

·
(

2i
i

))mi

. (3.23)

Finally, by equating the obtained coefficients in (3.22) and in (3.23), we con-
clude the proof of Theorem 2.5 for ε = 1.

For the case ε = −1, it suffices to apply Theorem 2.4 accordingly. In
analogy with (3.22), we deduce that

[
π0

]
ϕ�

k(n · (n + 1)) =

⎧
⎨

⎩

1 for k = 1,

(−1)k−1

k − 1
· (

2k−2
k−2

)
for k ≥ 2

= (−1)k−1 · Ck−1.

Further, the proof is almost identical with the considerations in the previous
part taking into account that it is necessary to apply (3.6). The details are left
to readers. �

3.7. Proof of Theorem 2.6

Proof. The proof of Theorem 2.6 is similar to the proof of Theorem 2.5. First,
assume that ε = 1. The idea consists in considering the equality

[
π2

]
ϕk(n · (n + 1)) =

[
π2

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

following from (3.5), i.e. we equate the coefficients of π2 only. For the left-hand
side, we deduce from Theorem 2.3 that

[
π2

]
ϕk(n · (n + 1)) =

−1
2(k + 1)

·
(

2k − 2
k

)
=

Ck − Ck−1

−6
.

To analyse the corresponding coefficient of π2 of the right-hand side of the
above equality, we first investigate the coefficients [π0]Smi

i , i ≥ 1, and [π2]Smi
i ,

i ≥ 2. For short, we write the linear combination for Si, see Lemma 3.3, as
Si =

∑�i/2	
j=0 αj,i · π2j . Consequently,

α0,i =
(−1)i−1

2
·
(

2i

i

)
,
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α1,i =
(−1)i

3
·
(

2i − 3
i − 1

)
,

and, accordingly,
[
π0

]
Smi

i = αmi
0,i , (3.24)

[
π2

]
Smi

i = mi · αmi−1
0,i · α1,i. (3.25)

These facts imply

[
π2

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0,
m1<k

(
k∏

i=1

(−1
i

)mi

mi!

)
· [

π2
] (

Sm1
1 · Sm2

2 · · · Smk

k

)
,

where it was necessary to append the condition m1 < k for excluding the
k-tuple (m1, . . . ,mk) = (k, 0, . . . , 0) from the summation range since the cor-
responding summand does not involve any π2-term due to S1 = 1. Therefore,
by this and by (3.24) and (3.25), we obtain

[
π2

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0,
m1<k

(
k∏

i=1

(−1
i

)mi

mi!

)
·

∑

∑k
i=2 ti=1
ti≥0

k∏

i=2

[
π2ti

]
Smi

i

= (−1)k ·
∑

∑k
i=1 imi=k
mi≥0,
m1<k

⎛

⎝
k∏

i=1

(−α0,i
i

)mi

mi!

⎞

⎠ ·
k∑

t=2

mt · α1,t

α0,t
.

Since α1,t
α0,t

= − t
6(2t−1) , we finally get after performing usual simplifications

that

[
π2

]
(−1)k ·

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(−Si

i

)mi

= −1
6

·
∑

∑k
i=1 imi=k
mi≥0

(
k∏

i=1

1
mi!

·
(

1
2i

·
(

2i

i

))mi
)

·
k∑

t=2

t · mt

2t − 1
,
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where we dropped the summation condition m1 < k corresponding to the
excluded k-tuple (m1,m2, . . . ,mk) = (k, 0, . . . , 0). Namely, for this choice the
involved finite sum

∑k
t=2 t·mt/(2t−1) vanishes. Equating the above coefficient

with
[
π2

]
ϕk(n · (n + 1)) and multiplying by −6 yield

∑

∑k
i=1 imi=k
mi≥0

(
k∏

i=1

1
mi!

·
(

1
2i

·
(

2i

i

))mi
)

·
k∑

t=2

t · mt

2t − 1
= Ck − Ck−1

which coincides with the statement of Theorem 2.6 for ε = 1 since the inner
finite sum involved on the left-hand side of the last relation can be identified
as the weight Wk(m) introduced in (2.1).

For ε = −1, the proof is conducted analogously. We omit the details and
leave them to readers. �

4. Remarks on Lemma 3.2

Even if Lemma 3.2 is rather a technical tool with respect to the main objectives
of this paper, the following two combinatorial identities can be of particular
interest.

4.1. Identity with a Trinomial

The relation in (3.11) can be treated as a class of identities with the parame-
ters k and n. For instance, setting n = k + p with k ∈ N0 and p ∈ N results in
the following formula with a trinomial coefficient on the right-hand side.

Corollary 4.1. Suppose that k ∈ N0 and p ∈ N. Then

k∑

i=0

(−2)i ·
(
k
i

)
(
2k+2p−i−1

2p−1

) = (−4)k ·
(
2p
p

)
(

2k+2p
k,p,k+p

) .

Outline of the proof. Set n = k + p with k ∈ N0, p ∈ N, in (3.11) and perform
standard simplifications. �

Specifically, by setting p = k, k ∈ N, the identity in the above corollary
reduces after simple manipulations to the refined form

k∑

i=0

1
(−2)i

·
(
k
i

)
(
3k+i−1
2k−1

) =
2k

(
4k
2k

) .

4.2. Identity with Stirling Numbers of the First Kind

The second identity following from (3.11) arises when considering the pow-
ers np, p = 1, . . . , k + 1, on both sides of it.
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Corollary 4.2. For k ∈ N0 and p ∈ N, we have
k∑

i=p−1

(−2)i

i!
·
[
i + 1

p

]
·
(

2k − i

k

)
= 2k−p+1 · (−2)k

k!
·
[
k + 1

p

]
,

where
[
m
n

]
denotes the signed Stirling number of the first kind.

Proof. From the definition of the Stirling number of the first kind (see [13,
p. 76], e.g.), we immediately deduce that

k∏

i=0

(n − i) =
k+1∑

t=1

nt ·
[
k + 1

t

]
,

i∏

t=0

(2n − t) =
i+1∑

t=1

(2n)t ·
[
i + 1

t

]
.

Therefore, for p = 1, . . . , k + 1 we conclude that

[np]
k∏

i=0

(n − i) =
[
k + 1

p

]
, (4.1)

and, taking into account the definition of ci,k in (3.12),

[np]

k∑

i=0

ci,k ·
i∏

t=0

(2n − t) = [np]

k∑

i=0

(−1)i+k

22k−i+1 · i! ·
(2k − i)!

(k − i)!
·
i+1∑

t=1

(2n)t
[
i + 1

t

]

=

k∑

i=p−1

(−1)i+k · k!

22k−i+1 · i! ·
(

2k − i

k

)
· 2p ·

[
i + 1

p

]

=
(−1)k · k!

22k−p+1
·

k∑

i=p−1

(−2)i

i!
·
(

2k − i

k

)
·
[
i + 1

p

]
.

(4.2)

Consequently, equating the expressions in (4.1) and in (4.2), we arrive at
[
k + 1

p

]
=

(−1)k · k!
22k−p+1

·
k∑

i=p−1

(−2)i

i!
·
(

2k − i

k

)
·
[
i + 1

p

]

which is equivalent to the formula in Corollary 4.2. The proof is complete. �

5. Concluding Remarks

5.1. Specific Generalizations

It is worth pointing out that Hoffman’s formula (1.1) can be generalized in
light of the known formulas for the multiple zeta values ζ({2i}k) and ζ�({2i}k),
i ∈ N, see Chen and Chung [2, p. 7], Chen et al. [3, Theorem 1, Proposition 3]
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for the closed-form evaluations of these values. For instance, for an = n4 and
ε = 1 we get

∑

∑k
i=1 imi=k
mi≥0

k∏

i=1

1
mi!

·
(

B4i

2i · (4i)!

)mi

=
2 · (−4)k

(4k + 2)!

with a slightly different structure than the form in Theorem 2.1 for ε = 1.
We notice, however, that the approach with evaluating the infinite prod-

uct P1(x) is not very suitable for obtaining the above formula since P1(x) =
sin(πx) sinh(πx)/(π2x2). Therefore, expanding the obtained function for P1(x)
into Maclaurin series directly gives its coefficients in the form of a convolution.
To obtain the coefficients of the Maclaurin expansion of P1(x) for the consid-
ered choice of an and ε, it is advisable to apply stronger methods described in
the afore-mentioned papers. Moreover, for ε = −1 and an = n4, the formula
corresponding to the relation above seems to be inevitably more complicated
in the sense that its right-hand side involves a finite sum which follows from
the closed form of ϕ�

k(n4) = ζ�({4}k), see [2, Eq. (2.1)].

5.2. Results on Similar Sums

We remark that Merca [10,11] studied specific sums over unrestricted integer
partitions with relations to Bernoulli numbers and values of the Riemann zeta
function. However, as far as we can see, none of Merca’s results seem to be
related to the results presented in this work.

Also, Zriaa and Mouçouf [16] investigated specific combinatorial sums in
their very recent research. Their method makes use of sums over partitions in
connection with the Faà di Bruno formula and derivatives of rational functions.
See [16, Theorem 3.3] for an identity involving Bell polynomials. But also these
results do not seem to be connected with our findings.
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