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Abstract. The purpose of the present paper is to carry out a detailed study
of a sequence of positive linear operators acting on continuous function
spaces on an arbitrary real interval and constructed by means of (Borel)
integrated means with respect to two families of probability Borel mea-
sures on the underlying interval and a positive real parameter. The study
is mainly focused on their approximation properties in weighted spaces
of continuous functions with respect to wide classes of weights. Pointwise
estimates as well as weighted norm estimates are also established. In the
final section a weighted asymptotic formula is obtained.
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1. Introduction

In the papers [11,12,14] the authors introduced and studied a wide class of
positive linear operators acting on spaces of continuous functions defined on a
general convex compact subset of a locally convex space. Their construction is
carried out in terms of (Borel) integrated means with respect to two families
of probability Borel measures on the underlying domain and a positive real
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parameter. In the finite dimensional setting and for a special choice of the
involved parameters, these operators turn into the classical Kantorovich oper-
ators and this was the reason why the authors referred to them as generalized
Kantorovich operators. Furthermore, this class of operators extends the one of
Bernstein-Schnabl operators, widely studied, e.g., in [1,2] and the references
therein, and, together with them, they share a nonmarginal relevance in fac-
ing, within such general domains, some approximation problems for continuous
functions as well as for the solutions of special classes of initial-boundary value
differential problems.

Very recently, in the paper [3] we used similar (Bochner) integrated
means in Banach space settings in order to achieve some representation/appro-
ximation formulae for strongly continuous operator semigroups acting on such
spaces. The method we employed led us to consider the following sequence of
positive linear operators defined by

Cn(f)(x) :=
∫

J

· · ·
∫

J

f

(
x1 + . . . xn + rxn+1

n + r

)
dμx(x1) . . . dμx(xn)dμn(xn+1),

where J is an arbitrary interval, x ∈ J , n ≥ 1, r ≥ 0, μx and μn are probability
Borel measures on J and f is a continuous real-valued function on J with
at most quadratic growth. In the case where J is a compact interval, these
operators are just the generalized Kantorovich operators we have mentioned
previously. Moreover, for r = 0, they turn into the Bernstein-Schnabl operators
on noncompact intervals already studied in [9].

Actually, in the paper [3] the operators Cn, n ≥ 1, have an ancillary role
and we limited ourselves to investigate very few approximation properties of
them. In the present paper we carry out a more detailed study of such operators
because they reveal to have an interest on their own in approximating wide
classes of real-valued functions defined on noncompact intervals. Moreover,
according to the particular examples we exhibit in Examples 2, the operators
Cn, n ≥ 1, generalize, by means of an unifying approach, several well known
approximation processes on noncompact intervals, such as Szász-Mirakjan op-
erators, Baskakov operators, Post-Widder operators, and Gauss-Weierstrass
operators.

We mainly focus in studying their approximation properties in weighted
function spaces of continuous functions on J with respect to wide classes
of weights. We also establish pointwise estimates for uniformly continuous
bounded functions as well as with respect to weighted norms.

Due to the generality of the parameters involved in the definition, the
operators Cn, n ≥ 1, can be also used for approximating p-fold integrable
functions (1 ≤ p < +∞) and we reserve such possible development in a forth-
coming paper.

In the final section we establish a weighed asymptotic formula, which
could be possibly used in studying some classes of evolution equations on



Vol. 78 (2023) Means on Noncompact Real Intervals Page 3 of 24 250

noncompact intervals along the directions shown, e.g., in [9] and the reference
therein. This also will be subject of further investigations.

2. Notations and Preliminary Results

Throughout the paper we shall denote by J an arbitrary noncompact real
interval with endpoints r1 := inf J ∈ R∪ {−∞} and r2 := supJ ∈ R∪ {+∞}.

Let F(J,R) be the space of all real valued functions defined on J . As usual
we shall denote by C(J) (resp., Cb(J)) the space of all real valued continuous
(resp., continuous and bounded) functions on J . The space Cb(J), endowed
with the natural (pointwise) order and the sup-norm ‖·‖∞, is a Banach lattice.
We shall also consider the (closed) subspaces of Cb(J)

C0(J) := {f ∈ C(J)| limx→ri
f(x) = 0 whenever ri /∈ J, i = 1, 2},

C∗(J) := {f ∈ C(J)| limx→ri
f(x) ∈ R whenever ri /∈ J, i = 1, 2}.

Observe that a function f ∈ C(J) belongs to C0(J) if for every ε > 0
there exists a compact subset K of J such that |f(x)| ≤ ε for every x ∈ J \K.
Moreover we shall consider the space K(J) of all real valued continuous func-
tions f : J → R whose support Supp(f) is compact in J (here Supp(f) :=
{x ∈ J |f(x) 	= 0}). We observe that K(J) is dense in C0(J) and, if J is com-
pact, K(J) = C(J).

We also recall that the symbol UCb(J) (resp., UC2
b (J)) stands for the

space of all uniformly continuous and bounded functions on J (resp., the
space of all twice differentiable functions on J with uniformly continuous and
bounded second-order derivative).

A bounded weight on J is a function w ∈ Cb(J) such that w(x) > 0 for
every x ∈ J . Then the symbol Cw

b (J) (resp., Cw
0 (J)) will stand for the Banach

lattice of all functions f ∈ C(J) such that wf ∈ Cb(J) (resp., wf ∈ C0(J))
endowed with the natural order and the weighted norm ‖ · ‖w defined by
‖f‖w := ‖wf‖∞ (f ∈ Cw

b (J)).
Clearly, Cb(J) ⊂ Cw

b (J) and ‖ · ‖w ≤ ‖w‖∞‖ · ‖∞ on Cb(J). In particular,
if w ∈ C0(J), then Cb(J) ⊂ Cw

0 (J). Moreover, the space C0(J) is dense in
Cw

0 (J) and, if w ∈ C0(J), then C∗(J) is dense in Cw
0 (J) as well.

Now let B(J) be the σ-algebra of all Borel subsets of J and denote by
M+(J) (resp., M+

b (J), M+
1 (J)) the cone of all Borel (resp., bounded, prob-

ability Borel) measures on J . If μ ∈ M+(J), we shall denote by L1(J, μ) the
space of all Borel measurable functions such that ‖f‖1 :=

∫
J

|f | dμ < +∞. We
also denote by λ1 the Borel-Lebesgue measure on J and, for every x ∈ J, by
εx the point-mass measure concentrated at x, i.e., for every B ∈ B(J),

εx(B) :=
{

1 if x ∈ B,
0 if x /∈ B.
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The symbol 1 denotes the constant function with constant value 1.Furthermore,
for every k ∈ N and x ∈ J , we shall set

ek(t) := tk and ψx(t) := t − x (t ∈ J). (1)

Finally note that, if μ ∈ M+
1 (J) and ek ∈ L1(J, μ) for some k ≥ 2, then

eh ∈ L1(J, μ) for every 1 ≤ h ≤ k because |eh| ≤ 1 + |ek|.

3. Positive Approximation Processes Generated by Integrated
Means on Noncompact Real Intervals

In this section we introduce the main object of study of the paper. We begin
by presenting some preliminaries.

A continuous selection of probability Borel measures on J is a family
(μx)x∈J of probability Borel measures on J such that, for every f ∈ Cb(J),
the function U(f) defined by

U(f)(x) :=
∫

J

f dμx (x ∈ J) (2)

is continuous on J . If such a selection is assigned, for every n ≥ 1 and x ∈ J ,
the symbols μn

x and μx,n will stand, respectively, for the product measure
on Jn of μx with itself n-times and for the image measure of μn

x under the
mapping πn : Jn → J defined by

πn(x1, . . . , xn) :=
x1 + . . . + xn

n
((x1, . . . , xn) ∈ Jn) . (3)

Moreover, extending formula (2), if f ∈ ⋂x∈J L1(J, μx) we continue to
denote by U(f) the function

U(f)(x) :=
∫

J

f dμx (x ∈ J). (4)

From now on, we shall fix a real number r ≥ 0, a continuous selection
(μx)x∈J of probability Borel measures on J satisfying, for each x ∈ J ,

e1 ∈ L1(J, μx) and
∫

J

e1 dμx = x,

and a sequence (μn)n≥1 of probability Borel measures on J .
For every n ≥ 1 and x ∈ J , let λx,n,r be the image measure of μn

x ⊗ μn under
the mapping σn,r : Jn+1 → J defined, for every (x1, . . . , xn+1) ∈ Jn+1, by

σn,r(x1, . . . , xn+1) =
n

n + r
πn(x1, . . . , xn) +

r

n + r
xn+1 =

x1 + . . . + xn + rxn+1

n + r

(see (3)). Then, the positive linear operators (Cn)n≥1 we are interested in
studying are defined by setting, for every f ∈ ⋂n≥1,x∈J L1(J, λx,n,r), n ≥ 1,
and x ∈ J ,
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Cn(f)(x) :=
∫

J

f dλx,n,r

=
∫

J

∫
Jn

f

(
x1 + . . . + xn + rxn+1

n + r

)
dμn

x(x1, . . . , xn) dμn(xn+1)

=
∫

J

. . .

∫
J

f

(
x1 + . . . + xn + rxn+1

n + r

)
dμx(x1) . . . dμx(xn) dμn(xn+1).

(5)

For the sake of simplicity we shall restrict the operators Cn, n ≥ 1, to the
subspace of those functions f ∈ C(J) such that f ∈ ⋂n≥1,x∈J L1(J, λx,n,r) and
Cn(f) ∈ C(J) for every n ≥ 1. Such functions will be referred to as admissible
functions with respect to the selection (μx)x∈J , the sequence (μn)n≥1 and
r ≥ 0. The linear subspace of all of them will be denoted by La(J). From
assumption (2) and the continuity property of the product measure (see [15,
Proposition 13.12] and [13, Theorem 30.8]) it follows that Cb(J) ⊂ La(J).

We note that for r = 0 the above operators turn into the Bernstein-
Schnabl operators Bn associated with (μx)x∈J , introduced and studied in [9].
In this particular case the space of all admissible functions will be denoted
by Ca(J). More specifically, we have that λx,n,0 = μx,n and, for any f ∈⋂

n≥1,x∈J L1(J, μx,n), n ≥ 1 and x ∈ J ,

Bn(f)(x) :=
∫

J

f dμx,n =
∫

Jn

f

(
x1 + . . . + xn

n

)
dμn

x(x1, . . . , xn)

=
∫

J

. . .

∫
J

f

(
x1 + . . . + xn

n

)
dμx(x1) . . . dμx(xn).

(6)

The operators Cn are, indeed, related to the operators Bn, as the next
result shows.

Proposition 1. Let f ∈ La(J). Then, for every n ≥ 1, In(f) ∈ Ca(J) and

Cn(f) = Bn(In(f)), (7)

where

In(f)(x) :=
∫

J

f

(
n

n + r
x +

r

n + r
t

)
dμn(t) (x ∈ J).

Proof. Let f ∈ La(J); then f, Cn(f) ∈ C(J) and, for every n ≥ 1 and x ∈ J ,
f ◦ σn,r ∈ L1(J, μn

x ⊗ μn). Fix n ≥ 1 and x ∈ J . As a consequence of Fubini-
Tonelli Theorem,

(i) For every x1, . . . , xn ∈ J , f ◦ σn,r(x1, . . . , xn, ·) ∈ L1(J, μn);
(ii)

∫
J

f ◦ σn,r(·, . . . , ·, t) dμn(t) ∈ L1(J, μn
x);

(iii) In (5) one can exchange the integration order.

From (i), by choosing x1 = x2 = . . . = xn = x, we get that In(f) is well
defined and, since f is continuous, it is obvious that In(f) ∈ C(J). Moreover,
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(ii) means that In(f) ◦ πn ∈ L1(J, μn
x) and, hence, In(f) ∈ L1(J, μx,n). From

this, being n and x arbitrarily chosen, it follows that In(f) ∈ Ca(J).
Finally, (iii) guarantees that (7) holds true. �

As explained in the Introduction, the operators Cn, n ≥ 1, have been
briefly studied in the setting of spaces of real-valued continuous functions with
at most quadratic growth. In the current paper we attempt to study them in
their full generality and in wider classes of weighted function spaces. A similar
attempt has been carried out in [9] in the case r = 0, i.e., for Bernstein-Schnabl
operators defined by (6).

Below we discuss some examples (see also [3, Section 5.2]). Due to the
generality of the parameters involved in the definition, many other examples
can be furnished. For additional ones in the compact framework we refer to
[11,12,14].

Examples 2. 1. Let (αp)p≥1 be a (finite or infinite) sequence of positive con-
tinuous functions on J such that

∑∞
p=1 αp = 1 uniformly on compact subsets

of J . Moreover, consider (ap)p≥1 in J and set, for every x ∈ J ,

μx :=
∞∑

p=1

αp(x)εap
.

Then (μx)x∈J is a continuous selection of probability Borel measures.
In this case, for every f ∈ Ca(J), n ≥ 1 and x ∈ J , we have

Bn(f)(x) =
∞∑

p1=1

. . .
∞∑

pn=1

αp1(x) . . . αpn
(x)f

(
ap1 + . . . + apn

n

)

and hence, for every f ∈ La(J),

Cn(f)(x) =

∞∑
p1=1

. . .

∞∑
pn=1

αp1(x) . . . αpn(x)

∫
J

f

(
ap1 + . . . + apn

n + r
+

r

n + r
t

)
dμn(t).

In particular, set J = [0,+∞[ and, for every x ≥ 0, let μx be one of the
following measures on [0,+∞[:

(i) μx :=
∞∑

k=0

e−xxk

k!
εk,

(ii) μx :=
1

1 + x

∞∑
k=0

(
x

1 + x

)k

εk.

The corresponding operators Cn, n ≥ 1, associated with (μx)x≥0 and
(μn)n≥1 are, in case (i),

Cn(f)(x) :=
∞∑

k=0

e−nx (nx)k

k!

∫ +∞

0

f

(
k + rs

n + r

)
dμn(s), (8)
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for every f ∈ La([0,+∞[), n ≥ 1 and x ≥ 0 and, in the case (ii),

Cn(f)(x) :=
∞∑

k=0

1
(1 + x)n

(
n + k − 1

k

)(
x

1 + x

)k ∫ +∞

0

f

(
k + rs

n + r

)
dμn(s)

(9)

for every f ∈ La([0,+∞[), n ≥ 1 and x ≥ 0.
Specializing the measures μn, n ≥ 1, we obtain more specific examples.

Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers such that 0 ≤ an <
bn ≤ 1 (n ≥ 1) and set

μn =
1

bn − an
1[an,bn]λ1, (10)

where 1[an,bn] is the characteristic function of the interval [an, bn].
Then, for r > 0, operators (8) turn into

Cn(f)(x) =
1

bn − an

∞∑
k=0

e−nx (nx)k

k!

∫ bn

an

f

(
k + rs

n + r

)
ds

=
1

bn − an

n + r

r
e−nx

∞∑
k=0

(nx)k

k!

∫ k+rbn
n+r

k+ran
n+r

f(ξ) dξ.

(11)

In particular, for r = 1,

Cn(f)(x) =
n + 1

bn − an
e−nx

∞∑
k=0

(nx)k

k!

∫ k+bn
n+1

k+an
n+1

f(ξ) dξ. (12)

The above operators are strictly related to the generalization of the Szász-
Mirakjan-Kantorovich operators we have introduced and studied in [10] and
which are defined by

C∗
n(f)(x) =

n

bn − an
e−nx

∞∑
k=0

(nx)k

k!

∫ k+bn
n

k+an
n

f(t) dt, (13)

where f ranges in a suitable function space on [0,+∞[.
Actually these last operators can be recovered by the operators (12)

by means of the formula C∗
n(f) = Cn(Mn(f)) (f ∈ La(J), n ≥ 1), where

Mn(f)(s) = f
(

n+1
n s
)

(s ≥ 0).
Similarly, by choosing the sequence (μn)n≥1 defined by (10), the operators

(9) turn into

Cn(f)(x) =
1

bn − an

∞∑
k=0

1

(1 + x)n

(
n + k − 1

k

)(
x

1 + x

)k ∫ bn

an

f

(
k + rs

n + r

)
ds

=
1

bn − an

n + r

r

∞∑
k=0

1

(1 + x)n

(
n + k − 1

k

)(
x

1 + x

)k ∫ k+ran
n+r

k+rbn
n+r

f(ξ) dξ

(14)
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for every f ∈ La([0,+∞[), n ≥ 1 and x ≥ 0.
2. For every x ≥ 0 set

μx :=
{

ϕ(x, ·)λ1 if x > 0;
ε0 if x = 0,

where the function ϕ(x, ·) is defined on [0,+∞[ by

ϕ(x, s) :=
{

e−s/x

x if s > 0;
ε0 if s = 0.

Moreover, fix a family of measures (μn)n≥1 in M+
1 ([0,+∞[) and r ≥ 0. Then,

for every f ∈ La(J),

Cn(f)(x) :=

⎧⎨
⎩

nn

xn(n−1)!

∫ +∞
0

ds
∫ +∞
0

sn−1e− ns
x f
(

ns+rt
n+r

)
dμn(t) if x > 0;∫ +∞

0
f
(

rt
n+r

)
dμn(t) if x = 0.

If, for instance, we choose μn = εbn
, where (bn)n≥1 is a sequence of

positive real numbers, we have

Cn(f)(x) :=

⎧⎨
⎩

nn

xn(n−1)!

∫ +∞
0

sn−1e− ns
x f
(

ns+rbn

n+r

)
ds if x > 0;

f
(

rbn

n+r

)
if x = 0.

(15)

3. Fix μ ∈M+(J) and consider a continuous positive function ϕ : J × J → R

satisfying

(a)
∫

J

ϕ(x, y) dμ(y) = 1 for every x ∈
◦
J ;

(b) for every compact subset K ⊂ J there exists h ∈ L1(J, μ) such that
ϕ(x, y) ≤ h(y) for every x ∈ K and y ∈ J .

Set μx := ϕ(x, ·)μ (x ∈ J). Then (μx)x∈J is a continuous selection of proba-
bility Borel measures.

For instance, fix a strictly positive function α ∈ C(R) and, for every
x ∈ R, let μx be the normal distribution in R with mean value x and variance
2α(x), i.e., μx = ϕ(x, ·)λ1 where, for x, y ∈ R,

ϕ(x, y) :=
1√

4πα(x)
e− 1

4α(x) (y−x)2 .

Then (μx)x∈R is a continuous selection of probability Borel measures on R.
The operators Cn, n ≥ 1, associated with (μx)x∈R and (μn)n≥1 are the

operators defined by

Cn(f)(x) =
√

n

4πα(x)

∫ +∞

−∞
ds

∫ +∞

−∞
f

(
ns + rt

n + r

)
e− n

4α(x) (
ns+rt
n+r −x)2dμn(t)

for every f ∈ La(R), x ∈ R and n ≥ 1 (see [8]).
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4. Some Functional-Analytic Properties

In this section we investigate the behaviour of the operators Cn, n ≥ 1, in
some function spaces and, especially, in weighted function spaces.

From now on we fix a bounded weight w on J and we assume that

w−1 is convex; (16)

moreover, we also suppose that

w−1 ∈
⋂
x∈J

L1(J, μx) ∩
⋂
n≥1

L1(J, μn), (17)

and

Nw := sup
x∈J,n≥1

w(x)
n + r

(
n

∫
J

w−1 dμx + r

∫
J

w−1 dμn

)
< +∞. (18)

From (16) and (17) it follows that

w−1 ∈
⋂

n≥1,x∈J

L1(J, λx,n,r), (19)

since, for each n ≥ 1, x ∈ J and x1, . . . , xn ∈ J ,

w−1

(
x1 + . . . + xn + rxn+1

n + r

)
≤ w−1(x1) + . . . + w−1(xn) + rw−1(xn+1)

n + r
,

and hence∫
J

w−1 dλx,n,r ≤ 1
n + r

(
n

∫
J

w−1 dμx + r

∫
J

w−1 dμn

)
< +∞.

From (19) it also follows that w−1λx,n,r ∈ M+
b (J) for every x ∈ J and

n ≥ 1.
From now on, we shall assume that for every n ≥ 1 the mapping

x ∈ J �→ w−1λx,n,r ∈ M+
b (J) is continuous w.r.t. the weak topology, (20)

i.e., for every ϕ ∈ Cb(J) the function x ∈ J �→ ∫
J

ϕw−1 dλx,n,r is continuous
or, equivalently, the function Cn(ϕw−1) is continuous.

Remark 1. We observe that conditions (16), (17), (18), and (20) are satisfied
for example by every w ∈ Cb(J) such that infJ w > 0 (in particular by w = 1),
by every polynomial weight wm(x) = (1 + xm)−1 (m ∈ N, x ≥ 0) and by the
families of measures (μx)x∈J and (μn)n≥1 considered in Examples 2.

Proposition 3. Assume that conditions (16), (17), (18), and (20) are fulfilled.
Then
(1) Cw

b (J) ⊂ La(J). In particular w−1 ∈ La(J);
(2) Cn(w−1) ∈ Cw

b (J) and ‖Cn(w−1)‖w ≤ Nw for every n ≥ 1;
(3) for every n ≥ 1, Cn(Cw

b (J)) ⊂ Cw
b (J), Cn is continuous from Cw

b (J)
into Cw

b (J) and ‖Cn‖Cw
b (J) = ‖Cn(w−1)‖w ≤ Nw, where Nw is defined

by (18);
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(4) if n ≥ 1, Cn maps continuously Cb(J) into Cb(J) and ‖Cn‖Cb(J) = 1.

Proof. If f ∈ Cw
b (J), then |f | ≤ ‖f‖ww−1. Therefore, for any n ≥ 1 and

x1, . . . , xn+1 ∈ J ,∣∣∣∣f
(

x1 + . . . + xn + rxn+1

n + r

)∣∣∣∣ ≤ ‖f‖ww−1

(
x1 + . . . + xn + rxn+1

n + r

)

≤ ‖f‖w
w−1(x1) + . . . + w−1(xn) + rw−1(xn+1)

n + r
.

Hence, for a given x ∈ J ,∫
J

dμx(x1) . . .

∫
J

∣∣∣∣f
(

x1 + . . . + rxn+1

n + r

)∣∣∣∣ dμn(xn+1)

≤ ‖f‖w
1

n + r

(
n

∫
J

w−1 dμx + r

∫
J

w−1 dμn

)
< +∞.

Thus f ∈ L1(J, λx,n,r). Finally, Cn(f) = Cn(fww−1) is continuous by
virtue of (20). This proves Statement (1).

In order to prove Statement (2), we first remark that, thanks to Part (1),
for a given n ≥ 1, Cn(w−1) ∈ C(J). On the other hand, for every x ∈ J ,

w(x)Cn(w−1)(x)

≤
∫
J

dμx(x1) . . .

∫
J

w(x)w−1

(
x1 + . . . + xn + rxn+1

n + r

)
dμn(xn+1)

≤
∫
J

dμx(x1) . . .

∫
J

w(x)
w−1(x1) + . . . + w−1(xn) + rw−1(xn+1)

n + r
dμn(xn+1)

= w(x)
1

n + r

(
n

∫
J

w−1 dμx + r

∫
J

w−1 dμn

)
≤ Nw

and hence Part (2) follows. As for Statement (3), let n ≥ 1 and f ∈ Cw
b (J).

Then |Cn(f)| ≤ Cn(|f |) = Cn(w−1(w|f |)) ≤ ‖f‖wCn(w−1); hence Cn(f) ∈
Cw

b (J) and ‖Cn(f)‖w ≤ ‖Cn(w−1)‖w‖f‖w. Thus ‖Cn‖Cw
b (J) ≤ ‖Cn(w−1)‖w.

On the other hand, by definition of operator norm, ‖Cn‖Cw
b (J) ≥ ‖Cn(w−1)‖w,

being ‖w−1‖w = 1.
Finally, Statement (4) is a consequence of Part (3), assuming w = 1. �

Proposition 4. Assume that conditions (16), (17), (18), and (20) are fulfilled
and consider a weight w ∈ C0(J) Then, for every n ≥ 1, Cn maps Cw

0 (J) into
itself, it is continuous and ‖Cn‖Cw

0 (J) = ‖Cn(w−1)‖w.

Proof. Let f ∈ Cw
0 (J), so that wf ∈ C0(J); hence, for a fixed ε > 0, we can

find a compact subset K of J such that, for every x ∈ J\K, |w(x)f(x)| ≤
ε

‖Cn(w−1)‖w
. Therefore, for every x ∈ J ,

|Cn(f)(x)| ≤
{∫

K

+
∫

J\K

}
|f | dλx,n,r ≤ max

K
|f | +

ε

‖Cn(w−1)‖w
Cn(w−1)(x),
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from which it follows that

|w(x)Cn(f)(x)| ≤ w(x)max
K

|f | + εw(x)Cn(w−1)(x) ≤ w(x)max
K

|f | + ε.

On the other hand, since w ∈ C0(J), there exists a compact subset K1 of J
such that w(x)maxK |f | ≤ ε for every x ∈ J \K1; hence |w(x)Cn(f)(x)| ≤ 2ε.
Arguing as in the proof of Part (3) of Proposition 3, we get ‖Cn‖Cw

0 (J) ≤
‖Cn(w−1)‖w.

To obtain the converse inequality, let (ϕp)p≥1 be an increasing sequence
in K(J) such that 0 ≤ ϕp ≤ 1 for every p ≥ 1 and supp≥1 ϕp = 1. Then, for
every x ∈ J , by using Beppo Levi’s theorem, we get

w(x)Cn(w−1)(x) = w(x)
∫

J

w−1 dλx,n,r = w(x)
∫

J

sup
p≥1

w−1ϕp dλx,n,r

= sup
p≥1

w(x)
∫

J

w−1ϕp dλx,n,r

= sup
p≥1

w(x)Cn(w−1ϕp)(x) ≤ sup
p≥1

‖Cn(w−1ϕp)‖w

≤ sup
p≥1

‖Cn‖Cw
0 (J)‖w−1ϕp‖w

≤ sup
p≥1

‖Cn‖Cw
0 (J)‖ϕp‖∞ ≤ ‖Cn‖Cw

0 (J),

and this completes the proof. �

Remark 2. Assume that J = [0,+∞[ and denote by Cw
∗ ([0,+∞[) the space of

all f ∈ Cw
b (J) such that limx→+∞ w(x)f(x) ∈ R. Under the same assumptions

of Proposition 4, assume that

Cn(w−1) ∈ Cw
∗ ([0,+∞[) (n ≥ 1). (21)

Then, for every n ≥ 1, Cn(Cw
∗ ([0,+∞[)) ∈ Cw

∗ ([0,+∞[) and ‖Cn‖Cw∗ ([0,+∞[) =
‖Cn(w−1)‖w.

In fact, fix n ≥ 1 and f ∈ Cw
∗ ([0,+∞[); moreover let l := limx→+∞ w(x)

f(x). Then g = f − lw−1 ∈ Cw
0 ([0,+∞[), so that, by means of Proposition 4,

Cn(g) ∈ Cw
0 ([0,+∞[) and, hence Cn(f) = Cn(g) + lCn(w−1) ∈ Cw

∗ ([0,+∞[).
For example, operators (13), and hence operators (12), satisfy (21) with

respect to the weights wm(x) = (1 + xm)−1, for every m ≥ 1 (see [10, Remark
3.2]).

In the special case r = 0, Propositions 3 and 4 hold true under simpler
assumptions. More precisely, consider a bounded weight w on J verifying (16)
and assume that

w−1 ∈
⋂
x∈J

L1(J, μx) and Mw := sup
x∈J

w(x)
∫

J

w−1 dμx < +∞. (22)
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Clearly, condition (18) implies (22) for r = 0. Moreover, condition (20)
turns into the following one: for every n ≥ 1 the mapping

x ∈ J �→ w−1μx,n ∈ M+
b (J) is continuous w.r.t. the weak topology, (23)

i.e., for every ϕ ∈ Cb(J) the function Bn(ϕw−1) is continuous.
Therefore we obtain the following result.

Corollary 5. Assume that conditions (16), (22) and (23) are fulfilled. Then

(1) Cw
b (J) ⊂ Ca(J). In particular w−1 ∈ Ca(J);

(2) Bn(w−1) ∈ Cw
b (J) and ‖Bn(w−1)‖w ≤ Mw for every n ≥ 1;

(3) for every n ≥ 1, Bn(Cw
b (J)) ⊂ Cw

b (J), Bn is continuous from Cw
b (J)

into Cw
b (J) and ‖Bn‖Cw

b (J) = ‖Bn(w−1)‖w ≤ Mw ;
(4) Bn (n ≥ 1) maps continuously Cb(J) into Cb(J) and ‖Bn‖Cb(J) = 1.

Moreover, if in addition w ∈ C0(J), we have

(5) for every n ≥ 1, Bn maps Cw
0 (J) into Cw

0 (J), it is continuous and
‖Bn‖Cw

0 (J) = ‖Bn(w−1)‖w;
(6) if J = [0,+∞[, assuming that, for any n ≥ 1, Bn(w−1) ∈ Cw

∗ ([0,+∞[),
then, for any n ≥ 1, Bn(Cw

∗ ([0,+∞[)) ∈ Cw
∗ ([0,+∞[) and ‖Bn‖Cw∗ ([0,+∞[)

= ‖Bn(w−1)‖w.

Remark 3. As far as we know, Proposition 5 represents an improvement of the
results in [9].

Coming back to the study of operators Cn, the following proposition
holds.

Proposition 6. Let n ≥ 1. Assume that

lim
x→ri

λx,n,r(I(b, rj)) = 0 for every b ∈
◦
J and i, j = 1, 2, i 	= j, (24)

where, recalling that r1 = inf J ∈ R ∪ {−∞} and r2 = supJ ∈ R ∪ {+∞},
I(b, rj) denotes the interval whose endpoints are b and rj. Then, for every
f ∈ La(J) such that limx→ri

f(x) ∈ R,

lim
x→ri

Cn(f)(x) = lim
x→ri

f(x).

In particular, if (24) is satisfied, then

(1) Cn maps C0(J) into itself, it is continuous and ‖Cn‖C0(J) = 1;
(2) Cn maps C∗(J) into itself, it is continuous and ‖Cn‖C∗(J) = 1.

Proof. Let f ∈ La(J) such that limx→ri
f(x) = l ∈ R. Without loss of gen-

erality, we may assume that l = 0. Otherwise, since Cn(1) = 1, it should be
enough to replace f with f − l1.
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Then, for a fixed ε > 0, there exists b ∈
◦
J such that |f(x)| ≤ ε/2 for

every x ∈ I(b, ri). If supI(b,rj) |f | = 0, then

|Cn(x)(f)| =

∣∣∣∣∣
(∫

I(b,ri)

+
∫

I(b,rj)

)
f dλx,n,r

∣∣∣∣∣ ≤
∫

I(b,ri)

|f | dλx,n,r ≤ ε/2.

Assume now that supI(b,rj) |f | 	= 0. From (24) it follows that there

exists c ∈
◦
J such that, for every x ∈ I(c, ri) with i 	= j, λx,n,r(I(b, rj)) ≤(

supI(b,rj) |f |
)−1

ε/2 . Hence, for x ∈ I(c, ri),

|Cn(f)(x)| ≤
(∫

I(b,ri)

+
∫

I(b,rj)

)
|f | dλx,n,r ≤ ε

2
+ λx,n,r(I(b, rj)) sup

I(b,rj)

|f | ≤ ε,

that is limx→ri
Cn(f)(x) = 0. �

5. Approximation Properties

In this section we shall discuss the approximation properties of the sequence
(Cn)n≥1 in the setting of weighted function spaces.

In [3, Remark 3.2] it has been already proven that, for J = [0,+∞[, if
e1 ∈ La(J) and if there exists C ≥ 0 such that

∫
J

e1 dμn ≤ C for every n ≥ 1
and

∫
J

e1 dμx = x for every x ∈ J, then, for every uniformly continuous and
bounded function f , we have that

lim
n→∞ Cn(f)(x) = f(x) (25)

for every x ∈ J . Moreover, under the additional assumptions that e2 ∈ La(J),
supx∈K

∫
J

e2 dμx < +∞ for every compact subinterval K of J and
supn≥1

∫
J

e2 dμn < +∞, then, for every f ∈ Cb(J),

lim
n→∞ Cn(f) = f (26)

uniformly on compact subintervals (see [3, Proposition 3.1]).
In order to deepen such approximation properties in weighted function

spaces, from now on we assume that

e1 ∈
⋂
x∈J

L1(J, μx) ∩
⋂
n≥1

L1(J, μn) and
∫

J

e1 dμx = x (x ∈ J). (27)

From (27), by simple calculations, it follows that e1 ∈ La(J).
We preliminarily remark that, if for some m ≥ 1,

em ∈
⋂
x∈J

L1(J, μx) ∩
⋂
n≥1

L1(J, μn), (28)
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then em ∈ ⋂n≥1,x∈J L1(J, λx,n,r) for any r ∈ [0, 1]. In fact, for r ∈ [0, 1] fixed,∫
J

|em| dλx,n,r

≤
∫

J

. . .

∫
J

( |x1| + . . . + |xn| + r|xn+1|
n + r

)m

dμx(x1) . . . dμx(xn) dμn(xn+1)

≤ 1
n + r

(
n

∫
J

|em| dμx + r

∫
J

|em| dμn

)
< +∞.

The following lemma concerning the operators Bn will be useful. For a
detailed proof see [9, Lemma 4.1].

Lemma 7. For a given k ≥ 1 assume that ek ∈ ⋂x∈JL1(J, μx). Then ek ∈⋂
n≥1,x∈JL1(J, μx,n) and, for every n ≥ 1,

Bn(ek) =
1
nk

∑
k1+...+kn=k

(
k

k1, . . . , kn

)
U(ek1) . . . U(ekn

),

where
(

k
k1, . . . , kn

)
= k!

k1!...kn! and the operator U is defined by (4).

Therefore, if U(eh) is continuous for every 1 ≤ h ≤ k, then ek ∈ Ca(J).
In particular, if e4 ∈ ⋂x∈JL1(J, μx) then, for every n ≥ 1 and x ∈ J ,

Bn(1) = 1, Bn(e1) = e1, Bn(e2) =
n − 1

n
e2 +

U(e2)
n

, (29)

Bn(ψx)(x) = 0, Bn(ψ2
x)(x) =

U(e2)(x) − x2

n
, (30)

Bn(ψ4
x)(x) =

1
n3

(
U(e4)(x) − 4xU(e3)(x) + 3(n − 1)U(e2)2(x)

− 6(n − 2)x2U(e2)(x) + 3(n − 1)x4
)
, (31)

where the function ψx is defined in (1).

After these preliminaries we are ready to prove the following lemma.

Lemma 8. Assume that, for a given m ∈ N, (28) holds true. Then
(1) For any n ≥ 1,

Cn (em) =
1

(n + r)m

[(
rm

∫
J

em dμn

)
1 + nmBn (em)

+m
m−1∑
q=1

rqnm−q

(∫
J

eq dμn

)
Bn (em−q)

]
. (32)

In particular, Cn(1) = 1,

Cn(e1) =
(

r

n + r

∫
J

e1 dμn

)
1 +

n

n + r
e1 (33)
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and

Cn(e2) =
(

r2

(n + r)2

∫
J

e2 dμn

)
1 +

(
2rn

(n + r)2

∫
J

e1 dμn

)
e1

+
n2

(n + r)2
Bn(e2). (34)

(2) If

U(ei) ∈ C(J) for every i = 1, . . . , m, (35)

then em ∈ La(J) ∩ Ca(J).
Conversely, if for every i = 1, . . . , m, ei ∈ La(J), then ei ∈ Ca(J).

(3) Under assumptions (28), ψm
x ∈ L1(J, λx,n,r); in particular,

Cn(ψx)(x) =
r

n + r

(∫
J

e1 dμn − x

)
, (36)

Cn(ψ2
x)(x) =

1
(n + r)2

(
r2
∫

J

ψ2
x dμn + n2Bn(ψ2

x)(x)
)

≤ 1
(n + r)2

(
r2
∫

J

ψ2
x dμn + n

(∫
J

e2 dμx − x2

))
(37)

and, for every q ≥ 2, q even,

Cn(ψq
x)(x) ≤ 2q−1

[(
r

n + r

)q ∫
J

ψq
x dμn +

(
n

n + r

)q

Bn(ψq
x)(x)

]
. (38)

(4) Under assumption (35), ψm
x ∈ La(J) ∩ Ca(J).

Proof. Part (1). Formula (32) has been proven in [12, Lemma 1.2] and from
it, by simple calculations, we get (33)–(34).

Concerning Part (2), in order to show that em ∈ La(J), it sufficies to
prove that Cn(em) ∈ C(J); this happens (see (32)) if Bn(ei) ∈ C(J), i.e.,
ei ∈ Ca(J), for every i = 1, . . . , m. By applying Lemma 7 this last condition
is verified under (35). The converse follows directly from (32).

Formulae (36)–(37) in Part (3) are direct consequence of (33)–(34). The
proof of (38) is based on the observation that, if q is an even number and
x1, . . . , xn+1, x ∈ J , then(

x1 + . . . + xn + rxn+1

n + r
− x

)q

≤ 2q−1

[(
r

n + r

)q

(xn+1 − x)q +
(

n

n + r

)q (
x1 + . . . + xn

n
− x

)q]
.

Finally, Part (4) follows from (32) and Lemma 7. �
In order to achieve the desired approximation properties, we shall appeal

to the following Korovkin-type theorem which has been obtained in [7] (see [7,
Example 4.9, 1] and [6, Example 2.3, 3] or, more directly, [4, Corollaries 6.13
and 6.14]).
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Theorem 9. Let w ∈ C0(J) be a weight such that e2 ∈ Cw
0 (J). If (Ln)n≥1

is a sequence of (bounded) positive linear operators from Cw
0 (J) into Cw

0 (J)
satisfying
(i) sup

n≥1
‖Ln‖ < +∞,

(ii) lim
n→∞ Ln(h) = h in Cw

0 (J) for every h ∈ {1, e1, e2},
then, for every f ∈ Cw

0 (J), limn→∞ Ln(f) = f in (Cw
0 (J), ‖ · ‖w).

From now on, we assume that

sup
n≥1

∫
J

e2 dμn < +∞, (39)

so that supn≥1

∫
J

e1 dμn < +∞.

Theorem 10. The following statements hold true:
(1) Under assumption (39), let w ∈ C0(J) be a weight on J such that (16),

(17), (18), and (20) are fulfilled and assume that e2 ∈ Cw
0 (J). Then, for

every f ∈ Cw
0 (J),

lim
n→∞ Cn(f) = f in (Cw

0 (J), ‖ · ‖w) (40)

and the convergence is uniform on compact subsets of J . In particular,
for every f ∈ Cb(J), limn→∞ Cn(f) = f uniformly on compact subsets
of J .

(2) Assume that J = [0,+∞[ and that (21) holds true. Furthermore suppose
that

lim
n→∞ ‖Cn(w−1) − w−1‖w = 0. (41)

Then

lim
n→∞ Cn(f) = f for every f ∈ C∗

w([0,+∞[). (42)

Proof. (1) First of all we note that e2 ∈ La(J) ∩ Ca(J) since U(e2) ∈ C(J)
(see (35)). Furthermore, (Cn)n≥1 is equibounded by virtue of Propositions
3 and 4. By Theorem 9, in order to get (40), it is sufficient to prove that
limn→∞ Cn(h) = h with respect to ‖ · ‖w, for every h ∈ {1, e1, e2}.

From (33) it follows that

‖Cn(e1) − e1‖w ≤ ‖w‖∞
rM1

r + n
+

r

n + r
‖e1‖w → 0.

where M1 =: supn≥1

∫
J

e1 dμn. Moreover, by means of (34) and (29),

‖Cn(e2) − e2‖w ≤ ‖w‖∞
M2r

2

(n + r)2
+

2nrM1

(n + r)2
‖e1‖w +

1

n
(‖e2‖w + ‖U(e2)‖w) → 0,

where M2 = supn≥1

∫
J

e2 dμn.
We remark that U(e2) ∈ Cw

0 (J) because (34) implies that Bn(e2) ∈
Cw

0 (J) and (29) holds true. This completes the proof of Statement (1).
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As for Statement (2), fix f ∈ Cw
∗ ([0,+∞[); then the function g = f −

lw−1 ∈ Cw
0 ([0,+∞[), where l := limx→+∞ w(x)f(x). Hence ‖Cn(f) − f‖w ≤

‖Cn(g) − g‖w + l‖Cn(w−1) − w−1‖w, and so the result follows. �

Remark 11. 1) According to Remark 1, Theorem 10 applies for every w ∈
Cb(J) such that infJ w > 0 (in particular for w = 1) and, if J = [0,+∞[,
for every polynomial weight wm(x) = (1 + xm)−1 (m ∈ N, x ≥ 0) and for the
measures in Examples 2.
2) We point out that operators (13), and hence operators (12), satisfy (41)
with respect to the weights wm(x) = (1 + xm)−1, for every m ≥ 1 (see [10,
Proposition 2.1]).

We end this section by stating some estimates of the convergence in (25)
and (26) as well as the one in Theorem 10. The estimates will be given in
terms of the ordinary moduli of smoothness of the first and second order ω1

and ω2 (see, e.g., [1, Section 5.1]). Furthermore, they will be mainly stated in
the special case where J = [0,+∞[. Perhaps, for other kinds of noncompact
intervals, other different techniques would be implemented.

Proposition 12. Assume that e2 ∈ ⋂x∈J L1(J, μx) ∩⋂n≥1 L1(J, μn). Then
(1) For every f ∈ Cb(J), n ≥ 1, x ∈ J ,

|Cn(f)(x) − f(x)| ≤ 2
(
1 +
√

r2
∫

J
ψ2

x dμn + n
(∫

J
e2 dμx − x2

))
ω1

(
f, 1√

n

)
.

(2) If J = [0,+∞[, for every f ∈ UCb(J), n ≥ 1, x ∈ J ,

|Cn(f)(x) − f(x)| ≤ M1

(
1 +
(∫

J

e2 dμx + x2

)1/2
)2

ω2

(
f,

1√
n

)

+
(

2 + x +
∫

J

e1 dμn

)
ω1

(
f,

r

n + r

)
,

where M1 is a constant independent on f , n ≥ 1 and x ∈ J .

Proof. Part (1) follows directly from [1, Theorem 5.1.2 and the subsequent
remark] along with (30), (37), and [1, Lemma 5.1.1, Part (6)].

In order to prove Part (2), we shall appeal to [3, Theorem 4.3], where we
have established a similar estimate for the approximation of operators semi-
groups on Banach spaces. More precisely, consider the Banach space X :=
UCb([0,+∞[) endowed with the sup-norm and denote by (T (t))t≥0 the trans-
lation semigroup defined on it, i.e., for every x ≥ 0, f ∈ X and ξ ≥ 0,
T (x)(f)(ξ) := f(x + ξ). Clearly ‖T (x)‖ ≤ 1 for every x ≥ 0. Moreover, for
every n ≥ 1 and x ≥ 0, consider the bounded linear operator Kn(x) : X → X
defined by setting, for every f ∈ X and ξ ≥ 0,
Kn(x)(f)(ξ) :=

=
∫

J

dμx(s1) . . .

∫
J

dμx(sn)
∫

J

T

(
s1 + . . . + sn + rsn+1

n + r

)
(f)(ξ) dμn(sn+1).
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Thus, for every f ∈ X and x ≥ 0, T (x)(f)(0) = f(x) and Kn(f)(0) =
Cn(f)(x). Therefore, from formula (4.4) of [3, Theorem 4.3], we get

|Cn(f)(x) − f(x)| = |Kn(x)(f)(0) − T (x)(f)(0)| ≤ ‖Kn(x)(f) − T (x)(f)‖∞

≤ M1ω2

⎛
⎝f,

√∫
J

e2 dμx + x2

n

⎞
⎠+

(
2 + x +

∫
J

e1 dμn

)
ω1

(
f,

r

n + r

)
,

and hence Statement (2) follows again from [1, Lemma 5.1.1, Part (6)]. �

In order to present some estimates of the rate of convergence with respect
to the weighted norm (see (42)), we shall use a similarity technique.

Generally speaking, given an approximation process (Ln)n≥1 on some
Banach space X, if R : X → Y is an isometric isomorphism between X
and another Banach space Y with inverse S : Y → X, then it is possible to
construct an approximation process (L∗

n)n≥1 on Y by setting, for any n ≥ 1,
L∗

n := R ◦ Ln ◦ S. In such a case, (Ln)n≥1 and (L∗
n)n≥1 are said to be similar

or isomorphic. Clearly, for every u ∈ X,

‖Ln(u) − u‖X = ‖L∗
n(R(u)) − R(u)‖Y , (43)

so that the problem of estimating the rate of convergence for (Ln)n≥1 in X
may be transferred to the (possibly easier to handle) sequence (L∗

n)n≥1 in Y .
From now on, we shall assume that J = [0,+∞[. As in Remark 2 we

denote by Cw
∗ ([0,+∞[) the linear subspace of all f ∈ Cw

b ([0,+∞[) such that
limx→+∞ w(x)f(x) ∈ R. For the sake of simplicity, if f ∈ Cw

∗ ([0,+∞[), we set
(wf)(∞) := limx→+∞ w(x)f(x).

Consider the isometric isomorphism R : Cw
∗ ([0,+∞[) → C([0, 1]) defined

by setting, for every f ∈ Cw
∗ ([0,+∞[) and t ∈ [0, 1],

R(f)(t) =
{

(wf) (− log t) if 0 < t ≤ 1,
(wf)(∞) if t = 0.

Clearly, its inverse S : C([0, 1]) → Cw
∗ ([0,+∞[) is defined by

S(g)(x) := w−1(t)g(σ(x)) (x ≥ 0)

for every g ∈ C([0, 1]), where

σ(x) := e−x (x ≥ 0). (44)

For every n ≥ 1, we consider the similar positive linear operator
C∗

n : C([0, 1]) → C([0, 1]) defined by setting, for every g ∈ C([0, 1]),

C∗
n(g) := R(Cn(S(g))).

By virtue of (43), we have that, for every f ∈ Cw
∗ ([0,+∞[) and n ≥ 1,

‖Cn(f) − f‖w = ‖C∗
n(R(f)) − R(f)‖∞. (45)

Moreover (C∗
n)n≥1 is an approximation process in C([0, 1]).

We are now ready to state some estimates of the rates of convergence
with respect to the weighted norm ‖ · ‖w.
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Proposition 13. Let J = [0,+∞[. Under the same assumptions of Part 2) of
Theorem 10, for every f ∈ Cw

∗ ([0,+∞[) and n ≥ 1, we have that

‖Cn(f) − f‖w ≤ ‖Cn(w−1) − w−1‖w‖f‖w +
√

Nwω1(R(f), δn)

+
(

Nw +
1
2

)
ω2(R(f), δn),

where Nw is defined by (18), δn := sup0≤t≤1

√
αn(t) with

αn(t) =
{

w(− log t)Cn(w−1(σ − t1))(− log t) if 0 < t ≤ 1,
0 if t = 0,

and σ is defined by (44).

Proof. For every t ∈ [0, 1] consider the function ψt ∈ C([0, 1]) defined by
ψt(η) = η − t (0 ≤ η ≤ 1). Thus ψt = e1 − t1.

We preliminarily observe that, for any given n ≥ 1 and t ∈ [0, 1],

C∗
n(1)(t) =

{
(w Cn(w−1))(− log t) if 0 < t ≤ 1,
(wCn(w−1))(∞) if t = 0,

C∗
n(ψt)(t) =

{
(w Cn(w−1(σ − t1)))(− log t) if 0 < t ≤ 1,
0 if x = 0,

and

C∗
n(ψ2

t )(t) =
{

(w Cn(w−1(σ − t1)2))(− log t) if 0 < t ≤ 1,
0 if t = 0,

i.e.,

C∗
n(ψ2

t )(t) = αn(t) (0 ≤ t ≤ 1). (46)

For the sake of clarity, we specify that in the last two formulae we get 0
for t = 0 thanks to Proposition 4 and because w−1σ,w−1σ2 ∈ Cw

0 ([0,+∞[).
From Part (3) of Proposition 3 we infer in particular that

C∗
n(1)(t) ≤ Nw (0 ≤ t ≤ 1). (47)

Furthermore, since R(w−1) = 1, from (45) it follows that

‖C∗
n(1) − 1‖∞ = ‖Cn(w−1) − w−1‖w. (48)

Finally, by the Cauchy-Schwarz inequality for positive linear operators,
for every n ≥ 1 and t ∈ [0, 1], we have

|C∗
n(ψt)(t)| ≤

√
C∗

n(1)(t)
√

C∗
n(ψ2

t )(t) ≤
√

Nw

√
αn(t) ≤

√
Nwδn. (49)

By applying Theorem 2.2.1 in [17] (see also [16, Theorem 10]), for every
n ≥ 1, f ∈ Cw

∗ ([0,+∞[), 0 ≤ t ≤ 1 and δ > 0, we have

|C∗
n(R(f))(t) − R(f)(t)| ≤ |C∗

n(1)(x) − 1||R(f)(t)|

+
1
δ
|C∗

n(ψt)(t)|ω1(R(f), δ) +
(

C∗
n(1)(t) +

1
2δ2

C∗
n(ψ2

t )(t)
)

ω2(R(f), δ)
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and hence, thanks to (48), (49), (47) and (46), we get

|C∗
n(R(f))(t) − R(f)(t)| ≤ ‖Cn(w−1) − w−1‖w‖f‖w +

√
Nw

δn

δ
ω1(R(f), δ)

+
(

Nw +
αn(t)
2δ2

)
ω2(R(f), δ).

Taking the supremum with respect to t ∈ [0, 1], as well as setting δ = δn

and recalling (45), we get the result. �

6. An Asymptotic Formula

In this last section, under suitable conditions, we shall establish an asymptotic
formula for the operators Cn. To this end, from now on, we assume that
e4 ∈ ⋂x∈J L1(J, μx) ∩⋂n≥1 L1(J, μn) and

sup
n≥1

∫
J

e4 dμn < +∞. (50)

Moreover, we assume that there exists b ≥ 0 such that

b = lim
n→∞

∫
J

e1 dμn. (51)

For every x ∈ J , set

α(x) :=
1
2

(∫
J

e2dμx − x2

)
(52)

and

β(x) = r(b − x). (53)

Finally, consider the second order differential operator

V (f) := αf ′′ + βf ′ (f ∈ C2(J)).

Before stating the main result of this section, we note that, if
e2 ∈ ⋂x∈J L1(J, μx) ∩⋂n≥1 L1(J, μn), then the subspace

E2(J) :=
{

f ∈ C(J) | sup
x∈J

|f(x)|
1 + x2

< +∞
}

is contained in
⋂

x∈J L1(J, μx) ∩ ⋂n≥1 L1(J, μn). In general UC2
b (J) ⊂ E2.

Moreover, if e2 ∈ Cw
b (J), then E2(J) ⊂ Cw

b (J).
We are now in a position to state the following result which, in the case

where J is a compact subset of Rp, was shown in [12].

Theorem 14. Let w be a bounded weight on J such that (16), (17), (18), and
(20) are fulfilled and assume that e4 ∈ Cw

b (J). Moreover, suppose that (50)
and (51) hold true. Then, for every f ∈ UC2

b (J),

lim
n→∞w [n (Cn (f) − f) − V (f)] = 0 (54)
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uniformly on J . In particular limn→∞ n (Cn (f) − f) = V (f) uniformly on
compact subsets of J .

Proof. We first point out that, given our assumptions, U(ei) ∈ Cw
b (J) for every

i = 1, . . . , 4 (see (32)). According to [5, Theorem 1], to show (54), we have to
prove that (see (52) and (53))
(a) lim

n→∞ w(x)[nCn(ψ2
x)(x) − 2α(x)] = 0 uniformly on J ;

(b) lim
n→∞ w(x)xk [nCn(ψx)(x) − β(x)] = 0 uniformly on J (k = 0, 1);

(c) sup
n≥1, x∈J

w(x)[nCn(ψ2
x)(x)] < +∞;

(d) lim
n→∞ w(x)[nCn(ψ4

x)(x)] = 0 uniformly on J .

To show (a), we remark that, taking (37) into account, we have

w(x)|nCn(ψ2
x)(x) − 2α(x)|

≤
(

1 − n2

(n + r)2

)
‖U(e2) − e2‖w + w(x)

r2n

(n + r)2

(∫
J

ψ2
x dμn

)

and, by means of (50) and the fact that e4 ∈ Cw
b (J),

sup
x∈J,n≥1

w(x)
∫

J

ψ2
x dμn < +∞. (55)

From this we obtain Statement (a). Statement (b) is a consequence of (36) and
(51). As for Statement (c), it follows from (38) and (55). Finally, Statement
(d) is a consequence of (31), (38) and (50). �

Remark 4. From Theorem 14 it follows in particular that, if f ∈ UC2
b (J), then

‖Cn(f) − f‖w = o

(
1
n

)
as n → ∞

if and only if αf ′′ + βf ′ = 0 on J .

Examples 15. 1. If limn→∞(an + bn) ∈ R, then the measures μn defined by
(10) satisfy (50) and (51), with b = limn→∞ an+bn

2 . Hence, Theorem 14 applies,
for example, to the operators Cn defined by (11) with

V f(x) := xf ′′(x) + r(b − x)f ′(x) (f ∈ UC2
b ([0,+∞[), x ≥ 0)

and to the operators defined in (14) with

V f(x) := x(1 + x)f ′′(x) + r(b − x)f ′(x) (f ∈ UC2
b ([0,+∞[), x ≥ 0).

2. If the sequence (bn)n≥1 satisfies the assumptions limn→∞ bn = b ≥ 0 and
supb≥1 b4n < +∞, then the measures μn = εbn

satisfy (50) and (51), so Theorem
14 applies to the operators Cn defined by (15) with

V f(x) :=
x2

2
f ′′(x) + r(b − x)f ′(x) (f ∈ UC2

b ([0,+∞[), x ≥ 0).
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cata within the CRUI-CARE Agreement. The authors declare that no funds,
Grants, or other support were received during the preparation of this manu-
script.

Data availability Data sharing not applicable to this article as no datasets were
generated or analyzed during the current study.

Declarations
Conflict of interest The authors have no relevant financial or non-financial
interests to disclose.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

[1] Altomare, F., Campiti, M.: Korovkin-type approximation theory and its applica-
tions. De Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin
(1994)

[2] Altomare, F., Cappelletti Montano, M., Leonessa, V., Raşa, I.: Markov Opera-
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