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Abstract. In this paper it is provided an explicit embedding for complete
metric spaces having a star-finite base of its uniformity into the universal
space κω0 ×R

ω0 , where κ ≥ ω0 is the cellularity of the space and κω0 is the
Baire space of weight κ. From this result, similar embeddings for general
Bourbaki-complete uniform spaces as well as for metric spaces are derived.
In particular, these embeddings partially preserve the uniform structure of
the original space. Several examples of Bourbaki-complete metric spaces
having no star-finite base for its metric uniformity are constructed.
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1. Introduction

The central topic of this paper is the uniform notion of Bourbaki-completeness
which was introduced in [12] in the frame of metric spaces and that later was
generalized to uniform spaces in [13].

This notion is stronger than usual completeness in metric and uniform
spaces. Basic examples of Bourbaki-complete spaces are finite dimensional Ba-
nach space and uniformly discrete spaces. On the other hand, not every com-
plete uniform space is Bourbaki-complete. For instance, any infinite dimen-
sional Banach space and any metric hedgehog J (κ), κ≥ω0, (see [7, Example
4.1.5]) are complete metric spaces failing Bourbaki-completeness. Richer
examples can be found in [12,17].
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In this paper we collect several classical results concerning Bourbaki-
completeness. These are classical in the sense that parallel results are known for
the complete uniform spaces and the complete metric spaces (see for instance
[7]), as well as, for the cofinally complete uniform spaces and cofinally complete
metric spaces (see for instance [16,18,29]).

More precisely, we find respective universal spaces for the Bourbaki-
complete uniform and metric spaces (Theorems 4.3 and 5.8) and from them
we derived results about the Bourbaki-complete uniformization (Theorem 4.8)
and Bourbaki-complete metrization (Theorem 6.5). These results on uniformi-
zation and metrization were known (see [13,17]) and are, respectively, related
to the topological properties of δ-completeness ([8]) and strong-metrizability
([23]).

The novelty here is the use of a universal space, which preserves partially
the uniformity of the embedded Bourbaki-complete spaces. The main technical
tool used in the embedding results is the star-finite modification of a unifor-
mity (Theorems 3.2, 4.2, 5.7, 6.3 and 7.1), since Bourbaki-complete uniform
spaces and complete uniform spaces having a base of star-finite covers for their
uniformity are strongly related (Theorem 2.4, see also [14]). On the other hand,
in order to show the independence of this two kinds on uniform concepts we
construct two examples (Examples 7.3 and 7.5) of Bourbaki-complete spaces
do not having a base of star-finite covers for their respective uniformities.

At the end of this paper we study the stronger notion of cofinal Bourbaki-
completeness, also originally introduced in [12,13]. The main objective of ad-
dressing cofinal Bourbaki-completeness is to give an example (Example 8.16)
of a metric space which is cofinally complete and Bourbaki-complete metric at
the same time but which is not metrizable by any cofinally Bourbaki-complete
metric because, precisely, it is not strongly paracompact but only strongly
metrizable. In particular, this space is another example of Bourbaki-complete
metric space which does not have a star-finite base for its uniformity (Theorem
8.3). Besides, we characterize the metric spaces which are cofinally complete
and Bourbaki-complete at the same time through an intermediate property
called uniform complete paracompactness (Theorem 8.13).

Please, notice that the main part of the results of this paper is included
in the Ph.D. Thesis of the author [22] which was defended in 2019 at the
University Complutense of Madrid (UCM).

2. Preliminaries

The aim of this section is to explain the relation between the stronger uniform
notion of Bourbaki-completeness and the uniformities having a star-finite base.
These notions are defined next. Basic facts about uniform spaces can be found
in [5,18,32].

The following notation is useful in order to define Bourbaki-completeness.
Let A be a subset of a uniform space (X,μ) and U ∈ μ, then:
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• St (A,U) =
⋃ {U ∈ U : U ∩ A �= ∅};

• St0 (A,U) = A;
• Stm (A,U) = St

(
Stm−1 (A,U) ,U) , ∀m ∈ N;

• St∞ (A,U) =
⋃

m∈N
Stm (A,U);

• if A = {x}, instead of Stm ({x} ,U) write Stm (x,U) , ∀m ∈ N ∪ {∞}.
Observe that, if U ∈ U satisfies that U ⊂ Stm (A,U) for some m ∈ N and
some A ⊂ X then there exists a finite chain U0, U1, ..., Ui ∈ U of length i ≤ m
such that A ∩ U0 �= ∅, Ui = U and Uj−1 ∩ Uj �= ∅ for every j = 1, ..., i.

In the frame of metric spaces (X, d), Bε denotes the cover of all the open
balls Bd (x, ε) of centre x ∈ X and radius ε > 0. In this case, write:

• Bm
d (x, ε) = Stm−1 (Bd(x, ε) ,Bε), ∀m ∈ N;

• B∞
d (x, ε) =

⋃
m∈N

Bm
d (x, ε).

Definition 2.1 ([12]). A filter F of a uniform space (X,μ) is said to be Bourbaki-
Cauchy if

∀U ∈ μ ∃m ∈ N, ∃U ∈ U s.t. Stm (U,U) ∈ F .

A uniform space (X,μ) is Bourbaki-complete if every Bourbaki-Cauchy filter
clusters.

Clearly Bourbaki-completeness implies usual completeness as every
Cauchy filter is a Bourbaki-Cauchy filter, and in fact this property is strictly
stronger as not every complete uniform space is Bourbaki-complete.

Example 2.2 [12, Example 16]. The metric hedgehog J (κ), κ ≥ ω0, is a com-
plete metric space which is not Bourbaki-complete. Let A be a set of cardinal
κ ≥ ω0. The metric hedgehog J (κ) of κ spininess is defined as follows. Let
I = [0, 1] ⊂ R and consider the product I × A. Next, take the equivalence
relation ∼ on I × A defined by

(x1, α1) ∼ (x2, α2) if and only if x1 = x2 = 0.

Then the quotient I × A/ ∼ is the set of points of J (κ) and we endowed this
set with the following metric γ : J (κ) × J (κ) → [0,∞)

γ ([(x1, α1)] , [(x2, α2)]) =

{
|x1 − x2| if α1 = α2;
x1 + x2 if α1 �= α2.

To prove the completeness of (J (κ) , γ) is easy. Moreover, it is not difficult to
see that every filter of (J (κ) , γ) is Bourbaki-Cauchy since for every ε > 0,

J (κ) = B m
γ ([0, α] , ε)

where m =
[
ε−1
]
+ 1 and

[
ε−1
]

denotes the integer part of ε−1. Since J (κ) is
not compact, the space cannot be Bourbaki-complete.

In spite of this strength, Bourbaki-completeness and completeness are
actually closely related through the star-finite modification of the uniformity
defined next.
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Definition 2.3. A cover C of a set X is star-finite if every C ∈ C meets at most
finitely many C ′ ∈ C.

It is well-known that if μ is a uniformity on a Tychonoff space X, then
the family of all the star-finite covers from μ is a base for a compatible uni-
formity, that is, it generates the topology of X. Moreover, the elements of this
base can be chosen being open covers ([20, Proposition 28, Chapter IV]). This
uniformity, called the star-finite modification of μ, is denoted by sfμ. For in-
stance, any weak uniformity, that is, any uniformity induced by a collection of
real-valued continuous functions ([19]), has a star-finite base.

The relation of Bourbaki-completeness, completeness and the star-finite
modification of a uniformity, is stated in the following result which is proved
in [14].

Theorem 2.4 ([14, Theorem 16]). A uniform space (X,μ) is Bourbaki-complete
if and only if (X, sfμ) is complete.

On a product X =
∏

i∈I Xi of uniform spaces we always denote by π the
product uniformity. Observe that if each uniformity μi on the respective factor
Xi satisfies that μi = sfμi, then the product uniformity π on X also has a
star-finite base. On the other hand, if Y is a subspace of (X,μ) and μ = sfμ
then the subspace uniformity on Y also has a star-finite base. Similarly, it is
easy to see that Bourbaki-completeness is also a productive property and it is
also inherited by closed subspaces (see [14]).

Theorem 2.5. The uniformity induced by the norm on a Banach space has a
star-finite base if and only if the space is finite dimensional.

Proof. If the space is infinite dimensional then it is not Bourbaki-complete as
it is proved in [12, Corollary 10]. Therefore, by Theorem 2.4, the uniformity
induced by the metric cannot have a star-finite base because the space is
complete.

On the other hand, consider the real-line (R, |·|) endowed with the usual
Euclidean norm and let du be the usual Euclidean metric induced by the
norm. It is well-known, that the uniformity induced by the norm is exactly the
weak uniformity induced by all the real-valued Lipschitz functions on (R, du).
Indeed, fixed x ∈ X,

Bdu
(x, ε) = {y ∈ X : |x − y| < ε} = {y ∈ X : |Id(x) − Id(y)| < ε}

where the identity function Id : (R, du) → (R, |·|) is certainly a Lipschitz
function. Therefore the uniformity induced by the norm has a star-finite base.

Any finite dimensional Banach space is uniformly homeomorphic to a
product (Rn, π), n ∈ N where on each factor R we consider the uniformity
induced by |·|. Hence the result follows by productivity. �
Example 2.6. Every uniformly zero-dimensional space has a star-finite base
for its uniformity. This is clear since, by definition, every uniformly zero-
dimensional has a base of partitions for its uniformity. Anyway, as we recall in
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Remark 4.4, every uniformly zero-dimensional space is uniformly homeomor-
phic to a subspace of the product space (κα, π), with κ, α ≥ ω0. This space is
defined as follows. Given a discrete space A of cardinal κ ≥ ω0 we identify it
with its cardinal and we endowed it with the 0-1 metric

χ (x, y) =

{
0 if x = y

1 if x �= y.

More precisely, in this paper we will in general identify a cardinal κ with the
above uniformly discrete space. In this case, π denotes the product uniformity
on κα where on each factor κ we consider the uniformity induced by the metric
χ. By productivity it follows that on κα the product uniformity π has a star-
finite base. In particular, any uniform subspace of (κα, π) has a star-finite base
for the inherited uniformity.

In the following sections it is shown that a universal space for the complete
uniform spaces having a star-finite base, as well as, for the Bourbaki-complete
spaces, is provided by a product of uniformly discrete spaces and of real-lines,
that is,

((
∏

i∈I

κi

)

× R
α, π

)

, α ≥ ω0.

By all the foregoing, this space is Bourbaki-complete and π satisfies that sfπ =
π.

3. Embedding of a Bourbaki-Complete Metric Space Whose
Metric Uniformity has a Star-Finite Base

Let (X, d) be a complete metric space satisfying that sfμd = μd. By Theorem
2.4, (X, d) is in particular Bourbaki-complete. In this section we prove that
there is an embedding

ϕ : (X, d) →
((
∏

n∈N

κn

)

× R
ω0 , π

)

,

where {κn : n ∈ N} is a countable family of cardinals, which preserves partially
the uniform structure of the metric space (X, d). Observe that in this case, the
product uniformity π is metrizable by the the metric ρ + t, where ρ denotes
the “first difference metric” on the uniformly zero-dimensional space

∏
n∈N

κn,
that is,

ρ (〈xn〉n, 〈yn〉n) =
{

0 if xn = yn for every n ∈ N

1/n if xj = yj for every j = 1, ..., n − 1 and xn �= yn
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and with t denoting the product metric on R
ω0 , that is,

t (〈xn〉n , 〈yn〉n) =
∞∑

n=1

(du (xn, yn) ∧ 1) /2n

where ∧ denotes the infimum. In later sections, this embedding’s result will
be extended to the general case of the Bourbaki-complete uniform and metric
spaces.

Observe that for every U ∈ μ it is always possible to choose a family of
points {xi : i ∈ I} of X such that the family of sets {St∞ (xi,U) : i ∈ I} is a
uniform cover of (X,μ) satisfying that

St∞ (xi,U) ∩ St∞ (xj ,U) = ∅, ∀i �= j.

This cover is called the family of all the chained components induced by U ,
where each set St∞ (xi,U) is a chained component. Moreover, if U < P and
P is a uniform partition of (X,μ), then

{St∞ (xi,U) : i ∈ I} < P.

Clearly, the family of all the chained components induced by a uniform cover
is always a uniform partition.

Next, let (X,μ) be a uniform space and let P the family of all the uniform
partitions of (X,μ). Define

ϑ (X,μ) = sup {|P| : P ∈ P} .

For a connected uniform space, or in general, for a uniformly connected uniform
space (X,μ), it is satisfied that ϑ (X,μ) = 1. Recall that a uniformly connected
space (or well-chained space) is a uniform space (X,μ) such that for every
U ∈ μ, X = St∞ (x,U) for any x ∈ X.

The following technical lemma will be useful.

Lemma 3.1. Let U be a uniform cover of a uniform space (X,μ). Let
{St∞ (xi,U) , i ∈ I} be the family of all the chained components induced by
U . Write:

• Ai
1 = St2 (xi,U) , ∀i ∈ I;

• Ai
n =

⋃{
U ∈ U : U ⊂ Stn+1 (xi,U) , U ∩ (X\Stn−1 (xi,U)

) �= ∅} , ∀n ∈
N, ∀i ∈ I.

Let A (U) =
{
Ai

n : Ai
n �= ∅, n ∈ N, i ∈ I

}
. Then A (U) is a uniform cover sa-

tisfying that

Ai
n ∩ Aj

m = ∅, ∀i �= j and Ai
n ∩ Ai

m = ∅ if |n − m| > 1.

In particular, U refines A (U) and A (U) ∈ sfμ.

Proof. It is clear. �
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Theorem 3.2. Let (X, d) be a complete metric space such that μd = sfμd. Then
there exists an embedding

ϕ : (X, d) →
((
∏

n∈N

κn

)

× R
ω0 , ρ + t

)

where each κn is a cardinal, ϕ is uniformly continuous and ϕ (X) is a closed
subspace of the arrival space

(∏
n∈N

κn

) × R
ω0 . Moreover, ϑ (X, d) ≤ sup{∏n

j=1 κj : n ∈ N

}
.

Proof. (For similar techniques used in this proof see first [2] and after [10].)
Take {Un : n ∈ N} a family of star-finite open covers being a base for the metric
uniformity μd and such that Un+1 < Un for every n ∈ N. Without loss of gen-
erality assume that for every n ∈ N, Un refines B1/n = {Bd(x, 1/n) : x ∈ X}.
Next, for every n ∈ N, let Pn = {St∞(xin ,Un) : in ∈ In} be the family of all
the chained components of X induced by Un. Notice that Pn+1 < Pn for every
n ∈ N. Take the cardinal κ1 = |I1| and order the elements of the partition P1

by writing

P1 :=
{
P(α1) : α1 < κ1

}
(where α1 < κ1 means 0 ≤ α1 < κ1).

Then, for every α1 < κ1 let P(α1) =
{
P ∈ P2 : P ⊂ P(α1)

}
and κ(α1) =

∣
∣P(α1)

∣
∣.

Next, put κ2 = sup
{
κ(α1) : α1 < κ1

}
. In particular, it is clear that

κ1 × κ2 ≥ ∣∣{(α1, α2) : α1 < κ1, α2 < κ(α1)

}∣
∣ ≥
∣
∣
∣
∣
∣

⋃

α1<κ1

P(α1)

∣
∣
∣
∣
∣
= |I2|

Moreover, order each P(α1) as follows:

P(α1) :=
{
P(α1,α2) : α2 < κ(α1)

}
.

Next, suppose that for n ∈ N we have defined the families of sets

P(α1,α2,...,αn−1) =
{
P ∈ Pn : P ⊂ P(α1,α2,...,αn−1)

}
,

where α1 < κ1 and αj < κ(α1,...,αj−1) for every j = 2, ..., n − 1, and let
κ(α1,α2,...,αn−1) =

∣
∣P(α1,α2,...,αn−1)

∣
∣. Also, suppose that the family

P(α1,α2,...,αn−1) is ordered as follows:

P(α1,α2,...,αn−1) :=
{
P(α1,α2,...,αn−1,αn) : αn < κ(α1,α2,...,αn−1)

}
.

Then, by induction, define P(α1,α2,...,αn)=
{
P ∈ Pn+1 : P ⊂ P(α1,α2,...,αn)

}

and κ(α1,α2,...,αn) =
∣
∣P(α1,α2,...,αn)

∣
∣. Finally, order each family of sets

P(α1,α2,...,αn) as before:

P(α1,α2,...,αn) :=
{
P(α1,α2,...,αn,αn+1) : αn+1 < κ(α1,α2,...,αn)

}
.

Now, for every n ∈ N put

κn+1 = sup
{
κ(α1,α2,...,αn) : α1 < κ1, αj < k(α1,...,αj−1), j = 2, ..., n

}
.
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Observe that

κ1 × κ2 × ... × κn × κn+1

≥ ∣∣{(α1, α2, ..., αn, αn+1) : α1 < κ1, αj < k(α1,...,αj−1), j = 2, ..., n + 1
}∣
∣

≥
∣
∣
∣
⋃{P(α1,...,αn) : α1 < κ1, αj < k(α1,...,αj−1), j = 2, ..., n

}∣∣
∣ = |In+1| .

Moreover, as {Un : n ∈ N} is a base for the uniformity μd,

ϑ (X, d) ≤ sup {|In| : n ∈ N} ≤ sup

⎧
⎨

⎩

n∏

j=1

κj : n ∈ N

⎫
⎬

⎭
.

Notice that for every n ∈ N there exists a unique (α1, ..., αn) ∈ ∏n
j=1 κj

such that x ∈ P(α1,...,αn). Besides, (α1, ..., αn, αn+1) extends (α1, ..., αn), so
there exists a unique σ(x) ∈∏n∈N

κn such that the restriction σ(x)|n of σ(x)
over the first n’s coordinates is exactly (α1, ..., αn). Therefore, it is possible to
define the map

σ : (X, d) →
(
∏

n∈N

κn, ρ

)

x �→ σ (x) .

Recall, that for every x ∈ X and every n ∈ N there exists a unique in ∈ In

such that Pσ(x)|n = St∞ (xin ,Un) = Pσ(xin )|n.
Now, for every n ∈ N let A (Un) = {Am,in : m ∈ N, in ∈ In} the open

cover from Lemma 3.1 induced by Un, and define the sets An
m =⋃ {Am,in : in ∈ In}, m ∈ N. Then the cover An = {An

m : m ∈ N} is uniform
and linear, that is, An is a uniform countable cover satisfying that

An
m ∩ An

l = ∅ whenever |m − l| > 1.

Take εn > 0 such that {Bd (x, εn) : x ∈ X} < Un < An. Applying the same
techniques than in [10, Lemma 1.2] there exists a uniformly continuous function
hn : (X, d) → (R, du) such that h−1

n ((m − 1,m + 1)) = An
m for every m ∈ N.

Moreover, the following is always satisfied (see [10, Lemma 1.2] again):

if d (x, y) ≤ εn then |hn (x) − hn (y)| ≤ 10
ε2
n

· d (x, y)

Next, recall that it is possible to write Un = {Uj,in , j ∈ N, in ∈ In} where
Uj,in ∩ Uj′,i′

n
= ∅ if in �= i′n as the covers Un are star-finite and then every

chained component Pσ(xin )|n , in ∈ In, contains at most countable many U ∈
Un.
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Since for every x ∈ X and for every n ∈ N, there exists a unique in ∈ In

such that σ (x) |n = σ (xin) |n, we can define the map

ϕ : (X, d) →
((
∏

n∈N

κn

)

× (R × R
ω0)ω0 , π

)

x �→ ϕ (x) =
(

σ (x) ,
〈
hn (x) , 〈d (x,X\Uj,in)〉j∈N

〉

n∈N

)

.

• The map ϕ is injective. Let x, y ∈ X, x �= y and take some ε < d(x, y)
such that y /∈ Bd (x, ε). Since {Un : n ∈ N} is a base for the uniformity inducing
the topology on X, for some n ∈ N it is possible to choose Uj,in ∈ Un such
that x ∈ Uj,in ⊂ Bd (x, ε). Then d (x,X\Uj,in) > 0 and d (y,X\Uj,in) = 0.
Therefore, ϕ (x) �= ϕ (y) and ϕ is an injective map.

• The map ϕ is uniformly continuous. The map ϕ will be uniformly con-
tinuous if it is uniformly continuous when we compose it with the projections.
So first, see that σ is a uniformly continuous map since whenever d (x, y) < εn

then Pσ(x)|n = Pσ(xin )|n = Pσ(y)|n for a unique in ∈ In. Therefore, σ (x) |n =
σ (y) |n and then ρ (x, y) < 1

n+1 . Next, let d (x, y) < εn again, then

du (hn (x) , hn (y)) + t
(
〈d (x, X\Uj,in)〉j∈N

, 〈d (y, X\Uj,in)〉j∈N

)

= |hn (x) − hn (y)| +
∞∑

j=1

|d (x, X\Uj,in) − d (y, X\Uj,in)| · 2−j

≤ |hn (x) − hn (y)| +

∞∑

j=1

d (x, y) · 2−j

≤ 10
ε2
n

· d (x, y) + d (x, y) =
(

10
ε2
n
+ 1
)

· d (x, y) .

• The map ϕ is closed. Before proving that ϕ is closed, we need the fol-
lowing claim.

Claim. Let Y ⊂ ϕ (X) and F a Cauchy filter of the subspace (Y, π|Y ).
Then ϕ−1 (F) is a Bourbaki-Cauchy filter of (X, d). �

Proof of the claim. Let F be a Cauchy filter of (Y, π|Y ). Then, fixed k ∈ N,
since F is Cauchy, there is some W ∈ F , W =

(
V × (∏n∈N

Un

)) ∩ Y , where,
for some x0 ∈ X and some ik ∈ Ik, V = Bρ (σ (x0) , 1/k), σ (x0) |k = σ (xik) |k
and Uk = Bdu

((hk (x0) , 1/k) × R
ω0), and Un = R × R

ω0 for every n �= k.
As the fixed ik ∈ Ik such that σ (x0) |k = σ (xik) |k is unique, then

ϕ−1 (W ) =
{

x ∈ Pσ(xik)|k : |hk (x) − hk (x0)| < 1/k
}

⊂ h−1
k ((hk (x0) − 1/k, hk (x0) + 1/k)) ∩ Pσ(xik)|k.

By the construction of hk there is some m ∈ N such that

h−1
k ((hk (x0) − 1/k, hk (x0) + 1/k)) ∩ Pσ(xik)|k ⊂ Am,ik ⊂ Stm+1 (xik ,Uk) .
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Therefore

ϕ−1 (W ) ⊂ Stm+1 (xik ,Uk)

and we have proved that ϕ−1 (F) is a Bourbaki-Cauchy filter in (X, d). �

Continue with the proof that ϕ is a closed map. Let C ⊂ X a closed subset
and let F be an ultrafilter in ϕ (C) which converges to some z ∈ (∏n∈N

κn

)×
(R × R

ω0)ω0 . Then F is a Cauchy ultrafilter of the subspace
(
ϕ (C) , π|ϕ(C)

)
.

By maximality of F and the above claim, ϕ−1 (F) is a Bourbaki-Cauchy ultra-
filter of (X, d). Then, ϕ−1 (F) converges in X because, by Theorem 2.4, (X, d)
is in particular Bourbaki-complete. By continuity of ϕ, ϕ

(
ϕ−1 (F)

)
converges

in ϕ (X). Since F = ϕ
(
ϕ−1 (F)

)
, by maximality, F converges in ϕ (X), that

is, z ∈ ϕ (C). Thus, ϕ (C) is a closed subspace of
(∏

n∈N
κn

)× (R × R
ω0)ω0 .

• The image ϕ (X) is a closed subspace of
(∏

n∈N
κn

)× (R × R
ω0)ω0 .

Since ϕ is a closed map, this is clear.
Finally, observe that, by the results in Bourbaki [5, II.2.3 Prop 5 p. 177,

p.180], the space
((∏

n∈N
κn

)× (R × R
ω0)ω0 , π

)
is uniformly equivalent to the

space
((∏

n∈N
κn

)× R
ω0 , ρ + t

)
and this complete the proof. �

Remark 3.3. The map ϕ of the above embedding is uniformly continuous.
However, the inverse map

ϕ−1 :
(
ϕ (X) , π|ϕ(X)

)→ (X, d)

is not necessarily uniformly continuous as it is shown next.
Let f ∈ C (R) be any continuous real-valued function not being uniformly

continuous for the metric du, that is, f /∈ Udu
(R), where Udu

(R) denotes the
family of all the uniformly continuous real-valued functions on (R, du). Put
d (x, y) = du (x, y)+du (f (x) , f (y)). It is well-known that d is compatible with
the Euclidean topology on R. Let F = Udu

(R)∪{f} and let wF denote the weak
uniformity on R induced by the family of functions ([32]). Then the uniformity
induced by d is exactly wF . Indeed, the identity map i : (R, d) → (R, wF ) is
uniformly continuous because any function g ∈ F is uniformly continuous for d.
Conversely, the identity map j : (R, wF ) → (R, d) is also uniformly continuous
because if du (i (x) , i (y)) < ε

2 and du (f (x) , f (y)) < ε
2 then d (x, y) < ε.

Observe that i, f ∈ F . Besides, the metric space (R, d) is complete because the
identity map id : (R, d) → (R, du) is uniformly continuous.

Since R is connected then the first factor can be deleted and then it is
only necessary to take R

ω0 into account, that is, we can restrict the embedding
ϕ from the previous result

ϕ : (R, d) → (Rω0 , π)

and it is also uniformly continuous.
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However the inverse homeomorphism ϕ−1 :
(
ϕ (R) , π|ϕ(R)

)→ (R, d) can-
not be uniformly continuous because the real-valued function

f ◦ ϕ−1 :
(
ϕ (R) , π|ϕ(R)

)→ (R, du)

cannot be uniformly continuous for the weak uniformity π on ϕ (R) inherited
from (Rω0 , π), as f /∈ Udu

(R). Recall that the product uniformity π on R
ω0

obtained as the product of the weak uniformities induced by du on each factor,
and it is exactly the weak uniformity induced by all the projections maps
pk : (Rω0 , π) → (R, du), k < ω0 ([32]).

4. Universal Space for Bourbaki-Complete Uniform Spaces

From the above result Theorem 3.2, we deduce an embedding for the complete
uniform spaces having a star-finite base for their uniformity (Theorem 4.2)
and for the general case of the Bourbaki-complete uniform spaces (Theorem
4.3). Besides, from this last result, we also obtain the characterization of the
Tychonoff spaces which are uniformizable by a Bourbaki-complete uniformity.

Lemma 4.1 ([32, Theorem 23.4], [28, Prop 1.1.4, Prop 2.2.3]). Let (X,μ) be
a uniform space. Let 〈Gn〉n∈N

be a normal sequence of open (uniform) covers
of X. Then there exists a (uniformly) continuous pseudometric d : X × X →
[0,∞) such that

B1/2n+1 < Gn < B1/2n−1 for every n ∈ N.

In addition, if
⋃

n∈N
Gn is a base for the topology of X, then ρ is compatible

with the topology of X, and if {Gn : n ∈ N} is a base for the uniformity
of μ, then ρ is compatible with the uniformity μ. When the topology of X is
Hausdorff, ρ is in fact a metric.

Theorem 4.2. Let (X,μ) be a complete uniform space such that μ = sfμ. Then
there exists an embedding

ϕ : (X,μ) →
⎛

⎝

⎛

⎝
∏

i∈I,n∈N

κi
n

⎞

⎠× R
α, π

⎞

⎠

where each κi
n is a cardinal endowed with the uniformly discrete metric χ, α ≥

ω0, ϕ is uniformly continuous and ϕ (X) is a closed subspace of
(∏

i∈I,n∈N
κi

n

)
×

R
α. Moreover, ϑ (X,μ) ≤ sup

{(∏n
j=1 κi

j

)
: n ∈ N, i ∈ I

}
.

Proof. Let (X,μ) be a uniform space having a base of star-finite open covers
for the uniformity, and let

{U i : i ∈ I
}

be a base for μ. Then, for every U i ∈ μ,
i ∈ I there is a normal sequence

〈U i
n

〉
n∈N

of star-finite uniform open covers
such that U i

1 < U i. This can be obtained applying the axioms of uniformity
and [20, Proposition 8, Chapter IV].
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For every i ∈ I, let ρi be the pseudometric on X from Lemma 4.1 gener-
ated by the normal sequence

〈U i
n

〉
n∈N

. Then, the family of covers
{U i

n : n ∈ N
}

is a base of star-finite open covers of the space (X, ρi).
Let (Yi, ρ̂i) be the metric space obtained by doing the usual metric iden-

tification ∼ on (X, ρi):

x1 ∼ x2 if and only if ρi (x1, x2) = 0.

If ψi : (X, ρi) → (Yi, ρ̂i) denotes the quotient map induced by ∼, then

ψ−1
i (x̂) = {z ∈ X : ρi(x, z) = 0} ,

Â := ψi(A) = {x̂ : x ∈ A}
and

ψ−1
i

(
Bρ̂i

(x̂, ε)
)

= Bρi
(x, ε) .

Hence, the family of covers
{

Û i
n : n ∈ N

}
is a base of star-finite covers for the

metric uniformity on Yi induced by ρ̂i. In addition, the map ψi preserves the
uniform partitions induced by the covers U i

n, n ∈ N.
Let (Zi, di) denote the completion of (Yi, ρ̂i) and Vi

n denote the extension
to (Zi, di) of the covers Û i

n. Then
{Vi

n : n ∈ N
}

is a base of star-finite open
covers for the metric uniformity of (Zi, di) ([26, Lemma p. 370]).

By [32, Theorems 39.11 and 39.12] (X,μ) is uniformly homeomorphic to a
subspace of the product

∏
i∈I (Zi, di). In particular it is closed by completeness.

Denote by ϕi the embedding of (Zi, di) into
((∏

n∈N
κi

n

)× R
ω0 , ρ + t

)
from

Theorem 3.2, and let

ϕ :
∏

i∈I

(Zi, di) →
∏

i∈I

((
∏

n∈N

κi
n

)

× R
ω0 , t + ρ

)

be the product map ϕ =
∏

i∈I ϕi. Then, the restriction of ϕ over the uni-
form homeomorphic image of (X,μ) in

∏
i∈I (Zi, di) is the desired map. In-

deed, notice that ϕ(X) is closed in ϕ
(∏

i∈I Zi

)
=
∏

i∈I ϕi (Zi). Moreover,
by [5, II.2.3 Prop 5 p.177, p.180], the spaces

∏
i∈I

((∏
n∈N

κi
n

)× R
ω0
)

and(∏
i∈I,n∈N

κi
n

)
× R

α for α = sup {|I|, ω0} are uniformly equivalent when they
are endowed with their respective product uniformities. Finally, by Theorem
3.2,

ϑ (X,μ) ≤ sup {ϑ (X, ρi) : i ∈ I} = sup {ϑ (Zi, di) ; i ∈ I}

≤ sup

⎧
⎨

⎩

n∏

j=1

κi
j : n ∈ N, i ∈ I

⎫
⎬

⎭

as the quotient map ψi and the operation of completion preserve uniform
partitions. �
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Theorem 4.3. Let (X,μ) be a Bourbaki-complete uniform space. Then there
exists an embedding

ϕ : (X,μ) →
⎛

⎝

⎛

⎝
∏

i∈I,n∈N

κi
n

⎞

⎠× R
α, π

⎞

⎠ ,

where each κi
n is a cardinal endowed with the uniformly discrete metric χ, α ≥

ω0, ϕ is uniformly continuous and ϕ (X) is a closed subspace of
(∏

i∈I,n∈N
κi

n

)
×

R
α. Moreover, ϑ (X,μ) ≤ sup

{(∏n
j=1 κi

j

)
: n ∈ N, i ∈ I

}
.

Proof. Recall that by Theorem 2.4, (X, sfμ) is complete if and only if (X,μ)
is Bourbaki-complete. Therefore, if we compose the embedding

ϕ : (X, sfμ) →
⎛

⎝

⎛

⎝
∏

i∈I,n∈N

κi
n

⎞

⎠× R
α, π

⎞

⎠

from Theorem 4.2, with the identity map id : (X,μ) → (X, sfμ), we obtain a
universal space for the Bourbaki-complete uniform spaces immediately. Finally,
observe that ϑ (X,μ) = ϑ (X, sfμ). �

Remark 4.4. Whenever (X,μ) is a connected or uniformly connected space
then every uniform partition has cardinal 1 and hence, in the above embed-
dings, the discourse on the chained components is clearly not needed. That is,
one can straightly embed the Bourbaki-complete uniform space in a product
of real-lines, as in Remark 3.3.

On the other hand, uniformly zero-dimensional spaces represent the op-
posite situation. Observe that from Theorem 4.2 any complete uniformly zero-
dimensional space can be uniformly embedded, as a closed subspace, in a
product of uniformly discrete spaces where the embedding is given by the map
σ : (X,μ) →

(∏
i∈I,n∈N

κi
n, π
)

in the proof of Theorem 4.2 because the inverse

map σ−1 from Theorem 3.2 is uniformly continuous. Indeed, observe that, since
(X, d) is uniformly zero-dimensional the family of all the chained components
{Pn : n ∈ N} is a base for the uniformity of (X, d). Fix n ∈ N and suppose
that for x, y ∈ X, ρ (σ (x) , σ (y)) < 1/ (n + 1). Then σ (x) |n = σ (y) |n and
this implies that x, y belong to the same chained component of Pk for every
k = 1, ..., n. Therefore the map σ−1 is uniformly continuous. Finally, the ge-
neral case of the uniformly zero-dimensional uniform spaces proceeds like in
Theorem 4.2 and taking into the account that the product map of uniformly
continuous functions is uniformly continuous.

From the above Theorem 4.3 it is possible to characterize the Tychonoff
spaces that are uniformizable by a Bourbaki-complete uniformity. These are
exactly the δ-complete spaces of Garćıa-Máynez (see [8] and the comments
after [13, Definition 2]).
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Definition 4.5. A Tychonoff space X is δ-complete if (X, sfu) is complete,
where u denotes the fine uniformity on X.

Next result, essentially contained in [13], is now clear.

Theorem 4.6 ([13, Theorem 10 and Theorem 13]) Let X be a space. The fol-
lowing statements are equivalent:
(1) X is δ-complete;
(2) (X, sfu) is Bourbaki-complete;
(3) (X, u) is Bourbaki-complete.

In the next result, we apply Theorem 4.3 to a Tychonoff space endowed
the fine uniformity u.

Definition 4.7. The cellularity of a space X is the supremum of the cardinal
of all the partitions by open sets of the space.

Theorem 4.8. For a space X the following statements are equivalent:
(1) X is uniformizable by a Bourbaki-complete uniformity;
(2) X is δ-complete;
(3) X is homeomorphic to a closed subspace of κα ×R

α where κ is a discrete
space of cardinality the cellularity of X;

(4) X is homeomorphic to a closed subspace of a product of locally compact
metric spaces.

Proof. (1) ⇒ (2). This implication follows from the easy fact that every
Bourbaki-complete uniform space is δ-complete.

(2) ⇒ (3) Since (X, sfu) is complete then, by Theorem 4.2, X can be
embedded as a closed subspace of

∏
i∈I,n∈N

κi
n×R

α where each κi
n is a cardinal

endowed with the discrete topology. Moreover, if κ is the cellularity of X then
κ ≥ sup

{
κi

n : i ∈ I, n ∈ N
}
. Thus, each κn can be identified with a subset of

κ and
∏

i∈I,n∈N
κi

n is a closed subspace of the product space κα.
(3) ⇒ (4) This is trivial.
(4) ⇒ (1) Every locally compact metrizable space is metrizable by a

uniformly locally compact metric. Indeed, for every x ∈ X let V x be an open
neighbourhood of x such that clXV x is compact. Put V = {V x : x ∈ X}. By [6,
Chap. IX, 9.4], X is metrizable by a metric d such that {Bd(x, 1) : x ∈ X} < V.
In particular clXBd (x, 1) is compact for every x ∈ X. Now, every uniformly
locally compact metric space is Bourbaki-complete by [12, Theorem 14] and
since Bourbaki-completeness is a productive property and hereditary by closed
subspaces (see [14]), the result follows. �

The equivalence of 2), 3) and 4) in the previous theorem was well-known
by Garćıa-Máynez (see [8,9]). Moreover, the metric hedgehog J (κ) where κ
is an Ulam-measurable cardinal is an example of topological complete space
(it is a complete metric space) which is not δ-complete. This follows from the
following result.
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Theorem 4.9. A connected Tychonoff space is realcompact if and only if it is
δ-complete.

Proof. Recall that a Tychonoff is realcompact if and only if (X, eu) is complete
(see for instance [18]) where eu denotes the well-known countable modification
(see [15]) of the fine uniformity u. Moreover, by the result of Morita that states
that every countable cover of cozero sets has a star-finite countable refinement
of cozero sets ([21] or [7, Lemma 5.2.4]) it follows that eu ⊂ sfu. Then realcom-
pactness implies, in general, δ-completeness. Since in addition X is connected,
every star-finite cozero cover of X is countable (see [7, Lemma 5.3.9]), that is,
eu = sfu. Therefore the result follows. �

5. Universal Metric Space for Bourbaki-Complete Metric
Spaces

Trivially Theorem 4.3 provides also a universal space for Bourbaki-complete
metric spaces. However, in the metrizable case, it would be preferable that this
universal space is also metric. Observe that for a Bourbaki-complete metric
space (X, d), the star-finite modification sμd is not metrizable in general and
therefore the universal space obtained from Theorem 4.3 is not metric. More
precisely, the following result holds.

Theorem 5.1. Let (X, d) be a Bourbaki-complete metric space. Then the uni-
form space (X, sfμd) is metrizable if and only if sfμd = μd.

Proof. One implication is clear, so let ρ be a metric on X such that μρ =
sfμd. In particular (X, ρ) is complete. Let sdX and sρX to denote the Samuel
compactification of (X, d) and (X, ρ), respectively ([33]). By [14, Theorem 3]
sdX and sρX are equivalent compactifications ([7]). By [11, Corollary 3], it is
known that (X, d) and (X, ρ) are uniformly homeomorphic. Therefore, since
both are complete, by [11, Corollary 3], sfμd = μρ = μd. �

In order to find a universal metric space for the Bourbaki-complete metric
spaces some technical results are needed. For the following definitions see [7,18]

Definition 5.2. A sequence 〈An〉n∈N
of open covers of a topological space X

is a complete sequence of covers if, for every filter F of X satisfying that
F ∩ An �= ∅ for every n ∈ N, then F has a cluster point.

Definition 5.3. A sequence of covers 〈Cn〉n∈N
of a set X is a decreasing sequence

of covers if for every n ∈ N, Cn+1 < Cn and for each C ∈ Cn, we have that
C =

⋃ {C ′ ∈ Cn+1 : C ′ ⊂ C}.

For (open) covers G1,G2, ...,Gn of a (space) set X, let G1 ∧ G2 ∧ ... ∧ Gn

be the (open) cover

{G1 ∩ G2 ∩ ... ∩ Gn : Gi ∈ Gi, i = 1, 2, ..., n} .
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In particular G1 ∧ G2 ∧ ... ∧ Gn refines Gi for each i = 1, ..., n. If 〈An〉n∈N
is a

sequence of covers of X and for every n ∈ N, put Cn = A1 ∧ ... ∧ An then,
〈Cn〉n∈N

is a decreasing sequence of covers.

Definition 5.4. A a family of sets L of sets is directed provided that, for all,
L,M ∈ L, there exists N ∈ L such that L ∪ M ⊂ N .

Note that, for any cover A of X, the family {⋃ E : E ⊂ A : E is finite} is
a directed cover.

Lemma 5.5 ([17, Lemma 2.8]). Let 〈Un〉n∈N
be a decreasing complete sequence

of covers of a topological space X. Then the family
⋃

n∈N
Un contains a refine-

ment of every directed open cover of X.

Observe that the next result is a uniform extension of [17, Theorem 2.16].

Theorem 5.6. Let (X, d) be a Bourbaki-complete metric space. Then there
exists a complete sequence 〈Vn〉n∈N

of uniform star-finite open covers of (X, d)
such that

⋃Vn is a base of the topology of X.

Proof. For every n ∈ N, let An := A (B1/n

)
= {Am,in : m ∈ N, in ∈ N} the

cover from Lemma 3.1 induced by the cover of open balls
B1/n =

{
Bd(x, 1

n ) : x ∈ X
}
.

Next, define Un = A1 ∧ A2 ∧ ... ∧ An, n ∈ N. It is clear that 〈Un〉n∈N

is a decreasing sequence of star-finite uniform open covers of X since finite
intersection of star-finite uniform open covers is again star-finite, open and
uniform. Then 〈Un〉n∈N

is a complete sequence. Indeed, let F be a filter in X
such that for every n ∈ N there exists some U ∈ Un such that F ⊂ U for some
F ∈ F . In particular, F is a Bourbaki-Cauchy filter because, if U ∈ F for
some U ∈ Un, then

U ⊂ Am,in ⊂ Bm+1
d

(
xin , 1

n

)

for some m ∈ N and in ∈ In. Therefore, F clusters in X and 〈Un〉n∈N
is a

complete sequence.
Next, let G be an open cover of X and Gf be the directed open cover

given by finite unions of elements of G. By all the foregoing and by Lemma
5.5, there exists a cover U ⊂ ⋃n∈N

Un such that U < Gf . Now, for every U ∈ U
fix GU a finite subfamily of G such that U ⊂ ⋃GU . Note that for each n ∈ N,
the family Un (G) = Un ∪ {U ∩ G : U ∈ U ∩ Un and G ∈ GU} is a star-finite
open cover of X. Moreover, it is also uniform since Un ⊂ Un (G). Therefore,
the cover G has a refinement which is contained in

⋃
n∈N

Un (G).
Finally, let f : N×N → N be any bijection, and, for every n, j ∈ N, define

the covers Vf((n,j)) = Un

(B1/j

)
. The family of sets

⋃
(n,j)∈N×N

Vf((n,j)) is a
base for the topology of X. Indeed, let G be an open set of X and x ∈ G. Then
it is possible to choose some k ∈ N such that x ∈ Bd

(
x, 1

k

) ⊂ G. Consider the
open cover of balls B1/2k. By all the foregoing, B1/2k has a refinement contained
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in
⋃

n∈N
Un

(B1/2k

)
=
⋃

n∈N
Vf((n,2k)). Choose V ∈ ⋃n∈N

Vf((n,2k)) such that
x ∈ V . Then x ∈ V ⊂ Bd

(
y, 1

2k

)
for some y ∈ X. Since y ∈ Bd

(
x, 1

2k

)
then

x ∈ V ⊂ Bd

(
y, 1

2k

) ⊂ Bd

(
x, 1

k

) ⊂ G.

Thus,
⋃

(n,j)∈N×N
Vf((n,j)) is a base for the topology of X. �

Theorem 5.7. Let (X, d) be a Bourbaki-complete metric space. Then there
exists a complete metric d′ on X which is compatible with the topology of
X such that the metric uniformity μd′ has a base of star-finite covers and
μd ≥ μd′ . Moreover, ϑ (X, d) = ϑ (X, d′).

Proof. By Theorem 5.6, there exists a complete sequence 〈Vn〉n∈N
of uniform

star-finite open covers of (X, d) such that
⋃Vn is a base of the topology of X.

Observe that it is possible to take a complete normal sequence {Wn : n ∈ N}
of open covers from sfμd such that Wn < Vn for every n ∈ N and

⋃
n∈N

Wn

is a base for the topology of X. Indeed, take W1 = V1. By [20, Proposition
8, Chapter IV] there is an open cover A1 ∈ sfμd such that A∗

1 < W1. Put
W2 = V1 ∧ V2 ∧ A1. Then W∗

2 < W1, W2 < V2 and clearly, W2 is a uniform
star-finite open cover. Again, by [20, Proposition 8, Chapter IV], there is an
open cover A2 ∈ sfμd such that A∗

2 < W2. Put W3 = V1 ∧V2 ∧V3 ∧A2. Thus,
proceeding by induction we obtain the desired normal sequence.

By Lemma 4.1, there exists a uniformly continuous pseudometric d′ on
X such that (X, d′) has a base of star-finite open covers for the pseudometric
uniformity. Moreover, (X, d′) is complete because the sequence 〈Wn〉n∈N

is
complete. By the same lemma, since

⋃
n∈N

Wn is a base for the topology of
X which is in addition Hausdorff, then d′ is a metric compatible with the
topology of X. Finally, μd ≥ μd′ since Wn ∈ sfμd for every n ∈ N.

Now, since μd ≥ μd′ then ϑ (X, d) ≥ ϑ (X, d′). To check that ϑ (X, d) ≤
ϑ (X, d′) is also satisfied let Pn, n ∈ N denote the families of all the chained
components induced by the covers

{
Bd(x, 1

n ) : x ∈ X
}
, and let Qm, m ∈ N,

the family of all the chained components induced by the above covers Wm.
Fix n ∈ N and consider Pn. Looking into the end of the proof of Theorem
5.6, there exists some m ∈ N such that the cover Vm := Vf((n,j)), from the
beginning of this proof, induces the same chained components than the cover
{Bd(x, 1

n ) : x ∈ X}, n ∈ N, that is, precisely the family Pn. Since Wm < Vm

then Qm < Pn. Therefore for every n ∈ N there exists some m ∈ N such that
|Pn| ≤ |Qm| which implies that ϑ (X, d) ≤ ϑ (X, d′). �

Theorem 5.8. Let (X, d) be a Bourbaki-complete metric space. Then, there
exists an embedding

ϕ : (X, d) →
((
∏

n∈N

κn

)

× R
ω0 , ρ + t

)



249 Page 18 of 37 A. S. Meroño Results Math

where each κn is a cardinal, ϕ is uniformly continuous and ϕ (X) is a
closed subspace of the arrival space

(∏
n∈N

κn

) × R
ω0 . Moreover, ϑ(X, d) ≤

sup
{∏n

j=1 κj : n ∈ N

}
.

Proof. By Theorem 5.7 there exists a compatible metric d′ on X such that
(X, d′) is complete, the metric uniformity μd′ has a star-finite base, the identity
map id : (X, d) → (X, d′) is uniformly continuous and ϑ (X, d) = ϑ (X, d′). On
the other hand, consider the embedding

ϕ : (X, d′) →
((
∏

n∈N

κn

)

× R
ω0 , ρ + t

)

form Theorem 3.2. Then the composition ϕ ◦ id = ϕ is the desired embedding.
Finally, as ϑ (X, d) = ϑ (X, d′), by Theorem 3.2 it follows that ϑ (X, d) ≤
sup
{∏n

j=1 κj : n ∈ N

}
. �

6. Metrization Results

The main theorem of this section is Theorem 6.5 which includes many equiv-
alent characterization of the metrizable spaces which are metrizable by a
Bourbaki-complete metric. Many of these were already stated in [17]. How-
ever, the proofs given here are more direct. The central property that link
all the characterizations is strong-metrizability. Basic facts and bibliography
about strongly metrizable spaces can be also found in [17].

Definition 6.1. A space is strongly metrizable if it has a base for the topology
which consists of the union of countably many star-finite open covers.

Definition 6.2. A metrizable space is said to be completely metrizable if it is
metrizable by a complete metric.

From Theorem 5.6 it is immediate that every Bourbaki-complete metric
space is completely metrizable and strongly metrizable. The following result is
the reciprocal.

Theorem 6.3. Let X be a completely metrizable and strongly metrizable space.
Then X is metrizable by a complete metric ζ such that μζ = sfμζ . In parti-
cular, (X, ζ) is Bourbaki-complete.

Proof. Since X is strongly metrizable there exists a countable family
{Vn : n ∈ N} of star-finite open covers of X such that

⋃
n∈N

Vn is a base for the
topology of X. In particular, by paracompactness of X, the family of all the
star-finite open covers of X form a base for the uniformity sfu, where sfu de-
notes the star-finite modification of the fine uniformity u. Hence, it is possible
to apply the axioms of uniformity to the countable family of star-finite open
covers {Vn : n ∈ N} and to find a normal sequence of star-finite open covers
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〈Un〉n∈N
, such that Un < Vn for every n ∈ N (as in the proof of Theorem 5.6).

Since
⋃

n∈N
Vn is a base for the topology of X, then

⋃
n∈N

Un is also a base for
the topology of X.

Indeed, let G an open set of X and x ∈ X. Since
⋃

n∈N
Vn is a base, there

exists some V ∈ Vn for some n ∈ N, such that x ∈ V ⊂ G. Next, let ρ be any
metric on X, and choose k ∈ N such that Bρ

(
x, 1

k

) ⊂ V . Again by the base
condition of

⋃
n∈N

Vn, there exists some m ∈ N, such that for some V ′ ∈ Vm

x ∈ V ′ ⊂ Bρ

(
x, 1

2k

) ⊂ Bρ

(
x, 1

k

) ⊂ V ⊂ G.

Next, consider the cover Um and choose some U ∈ Um, such that x ∈ U . Since
Um < Vm then

x ∈ U ⊂ St2 (V ′,Vm) ⊂ Bρ

(
x, 1

k

) ⊂ V ⊂ G.

Thus,
⋃

n∈N
Un is also a base for the topology of X.

Next, apply Lemma 4.1 to 〈Un〉n∈N and let d be the pseudometric ob-
tained. Then d is compatible with the topology X and, in particular, d is a
metric. Moreover, the uniformity induced by d has a star-finite base, that is,
μd = sfμd.

Consider the completion
(
X̃, d̃

)
of (X, d). Then,

(
X̃, d̃

)
is complete

and has a star-finite base by [26, Lemma p. 370], that is, μd̃ = sfμd̃. Now,
since X is completely metrizable, by [7, Theorem 4.3.24], X is a Gδ-set of
X̃. Thus, by [7, Theorem 4.3.22], X is homeomorphic to a closed subspace of(
X̃ × R

ω0 , d̃ + t
)
. The restriction of d̃+ t over X is a metric ζ on X satisfying

that μζ = sfμζ which is, in particular, Bourbaki-complete.
�

Now, take into the account that it is possible to write, in the above
definition of strongly metrizable space, star-countable instead of star-finite
([17]), where a star-countable cover is naturally defined as a star-finite cover
but changing finite by countable. This follows from the well-known fact that
every star-countable cover of cozero sets has a star-finite refinement of cozero
sets which derives from the already cited Morita’s result (see [21] or [7, Lemma
5.2.4, Lemma 5.3.9]).

Remark 6.4. Contrarily to the case of the star-finite covers, the family of all
the star-countable uniform covers of a uniform space (X,μ), denoted by scμ,
is not necessarily a base for a uniformity but just for a quasi-uniformity [26, p.
368]. However, in some cases, it is a base for a uniformity. For instance, as we
have noticed in the previous paragraph, for any Tychonoff space X, sfu = scu
because every star-countable cover of cozero sets has a star-finite refinement
of cozero sets. Another example are the uniform spaces satisfying that μ = eμ,
where eμ denotes the countable modification of μ (see [15]). For these, it is
clear that scμ is a uniformity since scμ = eμ = μ. Moreover, Theorem 6.5
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shows that the strongly metrizable spaces are exactly the metrizable spaces by
a metric such that its metric uniformity has a star-countable base.

Theorem 6.5. Let X be a space. The following statements are equivalent:

(1) X is metrizable by a Bourbaki-complete metric;
(2) X is metrizable by a complete metric d, such that μd = sfμd;
(3) X is homeomorphic to a closed subspace of κω0 × R

ω0 where κ is the
cellularity of X;

(4) X is homeomorphic to a closed subspace of a countable product of locally
compact metric spaces;

(5) X is Čech-complete (completely metrizable) and strongly metrizable;
(6) X is metrizable by a complete metric d such that μd = scμd

Proof. 1) ⇒ 2) This is Theorem 5.7.
2) ⇒ 3) Let κ be the cellularity of X. Then, it is clear that κ ≥

sup {κn : n ∈ N} where the κn’s are the cardinals from Theorem 3.2 such that
X can be embedded as a closed subspace of

∏
n∈N

κn × R
ω0 . Then for every

n ∈ N, κn can be identified with a subspace of κ and thus
∏

n∈N
κn is a closed

subspace of the Baire space κω0 . Then, the result follows from Theorem 3.2.
3) ⇒ 4) This is trivial since κ, when it is endowed with the discrete

topology, and R are locally compact spaces.
4) ⇒ 1) Like in the proof of implication 4) ⇒ 1) of Theorem 4.8 every

locally compact metrizable space is metrizable by a uniformly locally compact
metric. Since every uniformly locally compact space is Bourbaki-complete, a
countable product of Bourbaki-complete metric spaces is a Bourbaki-complete
metric space, endowed with the usual product metric, and Bourbaki-complete-
ness is inherited by closed subspaces ([12]), the result follows.

1) ⇒ 5) It follows at once from Theorem 5.6.
5) ⇒ 1) This is Theorem 6.3.
2) ⇒ 6) This is immediate.
6 ⇒ 5) It is enough to prove strong metrizability. If μd = scμd then, for

every n ∈ N it is possible to take a uniform star-countable cover Vn such that
Vn refines the uniform cover

{
Bd(x, 1

n ) : x ∈ X
}
. Then

⋃
n∈N

Vn is a base of for
the topology of X. It follows that X is strongly-metrizable since, in metrizable
spaces, every star-countable open cover has an open star-finite refinement.

�

The following result states several characterizations of the property of
strong metrizability that can be deduced from the above result on Bourbaki-
complete metrization (these can also be found in [12,17]). The link between
strongly metrizable spaces and Bourbaki-complete metrizable spaces lies in the
spaces having a Bourbaki-complete completion. To understand these spaces we
need the following notion of uniform boundedness.
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Definition 6.6. A subset B of a uniform space (X,μ) is Bourbaki-bounded in
X if

∀U ∈ μ ∃m ∈ N, ∃U1, ..., Uk ∈ U s.t. B ⊂
k⋃

i=1

Stm (Ui,U) .

If X is Bourbaki-bounded in itself then X is a Bourbaki-bounded space. If for
every U ∈ μ we can take always m = 1 then B is a totally bounded subset of
X.

Theorem 6.7 ([12, Theorem 9]). A metric space (X, d) is Bourbaki-complete if
and only if the closure of every Bourbaki-bounded subset in X is compact.

Theorem 6.8. Let X be a space. The following statements are equivalent:
(1) X is metrizable by a metric d such that every Bourbaki-bounded subsets

in (X, d) is totally bounded;
(2) X is metrizable by a metric d such that the completion of (X, d) is

Bourbaki-complete;
(3) X is metrizable by a metric d such that μd = sfμd;
(4) X is homeomorphic to a subspace of κω0 × R

ω0 where κ is the cellularity
of X;

(5) X is homeomorphic to a subspace of a countable product of locally compact
metric spaces;

(6) X is strongly metrizable;
(7) X is metrizable by a metric d such that μd = scμd.

Proof. (1) ⇔ (2) This equivalence is evident.
2) ⇒ 3) If the completion X̃ of (X, d) is Bourbaki-complete then by

Theorem 5.7, X̃ is metrizable by a complete metric ρ such that
(
X̃, ρ

)
satisfies

that μρ = sfμρ. Since this last property is clearly hereditary, the restriction
of ρ over X is the desired metric.

3) ⇒ 4) If (X, d) satisfies that μd = sfμd then its completion
(
X̃, d̃

)
too

by [26, Lemma p. 370]. Therefore, X̃ is homeomorphic to a closed subspace
of κω0 × R

ω0 by Theorem 3.2, and X is also homeomorphic to a subspace of
κω0 × R

ω0 .
4) ⇒ 5) This is trivial.
5) ⇒ 2) Consider the closure of X in the countable product of locally

compact spaces and apply Theorem 6.5.
2) ⇒ 6) This implication follows from Theorem 5.6 and from the fact

that strong metrizability is an hereditary property.
6) ⇒ 2) Let X be a strongly metrizable space. Then for any compatible

metric d on X, if
(
X̃, d̃

)
denotes its completion, then X̃ is strongly metrizable.

In fact the open covers of X are extended to
(
X̃, d̃

)
. Thus

(
X̃, d̃

)
is strongly

metrizable and complete. The result is then immediate from Theorem 6.3.
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3) ⇒ 7) This is immediate.
7) ⇒ 6) This is like the proof of the implication 6) ⇒ 5) in Theorem 6.5.

�

7. Bourbaki-Complete Metric Spaces do not Having a
Star-Finite Base for their Uniformity

The Theorem 2.4 is not very surprising (but not immediate to prove). In fact,
the key is in the next result which relates the star-finite covers with sets of the
form Stm(U,U).

Theorem 7.1. A uniform space (X,μ) has a star-finite base for its uniformity,
that is, μ = sfμ, if and only if it satisfies the following property:

(�) ∀U ∈ μ ∃V ∈ μ s.t. ∀V ∈ V, ∀n ∈ N ∃U1, ..., Uk ∈ U s.t. Stn (V, V) ⊂
k⋃

i=1

Ui.

In particular, it is possible to choose U and V belonging to a base of μ.

Proof. ⇒) Let U ∈ μ and V ∈ μ star-finite such that V < U . By the star-finite
property, for every V ∈ V and every n ∈ N there exist at most finitely many
V ′ ∈ V such that V ′ ∩Stn (V,V) �= ∅. Since V is a refinement of U the property
(�) follows.

⇐) Conversely, let U ∈ μ and select V ∈ μ such that V∗ < U . By
hypothesis there is some W ∈ μ such that for every n ∈ N and every W ∈
W there exists finitely many Vi ∈ V, i = 1, ..., k such that Stn (W,W) ⊂
⋃k

i=1 Vi. Without loss of generality it is possible to take W refining V. Let
A (W) =

{
Ai

n : n ∈ N, i ∈ I
}

the cover from Lemma 3.1 induced by W. Clearly
A (W) belongs to sfμ. By hypothesis, for every i ∈ I and every n ∈ N it is
possible to fix a finite family Vi,n ⊂ V such that

Ai
n ⊂ Stn+1 (xi,W) ⊂ Stn+1 (Wi,W) ⊂

⋃
{V : V ∈ Vi,n}

where Wi ∈ W is some set such that Wi ⊂ St (xi,W). Define

G =
{
Ai

n ∩ St(V,V) : V ∈ Vi,n, i ∈ I, n ∈ N
}

.

Then A (W)∧V = {A ∩ V : A ∈ A (W) , V ∈ V} < G < V∗ < U , and it is easy
to check that G is also star-finite. �

By the above result and the examples in the second section, one could
think that every Bourbaki-complete uniform space (X,μ) satisfies that μ =
sfμ. But this is not true as both examples of this section show. The first
example given not only fails that sfμ = μ but, more precisely, its uniformity
do not has a point-finite base.

Definition 7.2. A cover C of a set X is point-finite if every x ∈ X belongs to
at most finitely many C ∈ C.
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If U is a compatible uniformity of a Tychonoff space then the family of all
the point-finite uniform covers from μ is a base for a compatible uniformity on
X ([20]), as it happens with the star-finite covers. This uniformity is called the
point-finite modification of μ and it is denoted by pfμ. Since every star-finite
cover is point-finite then every uniformity having a star-finite base also has a
point-finite base.

The next example is constructed from the following result that can be
found in [1,25]. Consider the Banach space (�∞ (ω1) , || · ||∞) of all the bounded
real-valued functions f : ω1 → R over a set having ω1 as a cardinal, endowed
with the norm of the supremum || · ||∞. Let d∞ the metric induced by || · ||∞.
Then (�∞ (ω1) , d∞) is a complete metric space which does not have a point-
finite base for its uniformity.

Example 7.3. There exists a Bourbaki-complete metric space which does not
have a point-finite base for its uniformity. Therefore, the uniformity does not
have a star-finite base either.

Proof. Construction. For every n ∈ N, let Xn = �∞ (ω1), be the set of all
bounded real-valued functions over a set of cardinality ω1, but now endowed
with the metric

sn (x, y) =

{
0 if x = y
1
2n + min {1, ||x − y||∞} if x �= y.

Then the metric space (Xn, sn) is Bourbaki-complete and every uniform cover
of it has a point-finite uniform refinement since it is a uniformly discrete metric
space.

Now, let X =
⊎

n∈N
Xn be the set given by the disjoint union of the above

spaces, and endowed X with the metric

s(x, y) =
{

sn (x, y) if for some n ∈ N, x, y ∈ Xn

2 otherwise.

Then (X, s) is a Bourbaki-complete metric space because it is a disjoint union
of uniformly separated Bourbaki-complete metric spaces. However its metric
uniformity does not has a base of star-finite covers as we show next.

Let d∞ (x, y) = ||x − y||∞ the usual metric on �∞ (ω1). Since this space
does not has a base of point-finite covers for its metric uniformity then it is
possible to choose some N ≥ 2 such that every uniform refinement V, for the
metric uniformity induced by d∞, of the cover

{
Bd∞

(
x, 1/2N

)
: x ∈ �∞(ω1)

}

is not point-finite. In particular, the same is true for the space (�∞ (ω1) , η),
where η (x, y) = min {1, d∞ (x, y)}, by uniform equivalence of the metrics η
and d∞.

Now, observe that for every n ∈ N and every x ∈ �∞ (ω1),

(♣) Bsn

(
x, 1

2n−1

)
= Bη

(
x, 1

2n

)
.
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Moreover, for every n, k ∈ N, n > k, and every x ∈ �∞ (ω1)

(♥) Bsn

(
x, 1

2k

) ⊂ Bη

(
x, 1

2k

)
.

Take the uniform cover B =
{
Bs

(
x, 1

2N

)
: x ∈ X

}
of X. Then,

B =
⊎

n∈N

{
Bsn

(
x, 1

2N

)
: x ∈ Xn

}

as N ≥ 2. We are going to prove that every uniform refinement V of B fails to
be point-finite.

Indeed, since V is uniform we can choose some m ∈ N, m > N such that
the cover

{

Bs

(
x, 1

2m

)
: x ∈ X

}

=
⊎

n∈N

{

Bsn

(
x, 1

2m

)
: x ∈ Xn

}

refines V. Thus, we can write also thatV =
⊎

n∈N
Vn.where each Vn is a

uniform cover of (Xn, sn) that refines

{

Bsn

(
x, 1

2N

)
: x ∈ Xn

}

.

Now, by (♣), whenever n > N , Vn is a uniform cover of �∞ (ω1) and,
by (♥), it also refines

{
Bρ

(
x, 1

2N

)
: x ∈ �∞ (ω1)

}
. Then Vn fails to be point-

finite for every n > N which means that V is not point-finite. Finally, we can
conclude that (X, s) does not have a point-finite base, nor a star-finite base.

�

OpenProblem 7.4. It would be convenient to find a family of filters, similarly
to the Bourbaki-Cauchy filters, that characterizes those uniform space spaces
(X,μ) satisfying that (X, pfμ) is complete. Of course, the Cauchy filters of
(X, pfμ) will work, but notice that not every Bourbaki-Cauchy filter of (X,μ)
is a Cauchy filter of (X, sfμ) (see [14, Lemma 14]). Therefore the searched
family of filters might be wider than the family of Cauchy filters for (X, pfμ).

The real line R endowed with the usual Euclidean metric du has a star-
finite base for its metric uniformity. This is a very strong uniform condition.
Moreover, the metric du also has very strong metric condition. For instance
(R, du) satisfies the Heine-Borel property, that is, every closed and bounded
subset of it is compact. In [17] it is proved that R, is metrizable by a complete
(Bourbaki-complete) metric d satisfying that for every ε > 0 each open ball
Bd (x, ε) meets at most 27 open balls of radius ε, which is even a stronger
condition than the Heine-Borel property.

Now, instead of looking for metrics on R satisfying strong metric pro-
perties, the aim is to find metrics over R, compatible with the usual topology,
that preserve Bourbaki-completeness but that have weaker uniform pro- perties
than the Euclidean metric du. More precisely, in the next example, which is
in the same line than Example 7.3, we obtain a Bourbaki-complete metric on
R which does not have a star-finite base for its metric uniformity. Notice that
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since R is Lindelöf and by [31, Theorem 1], any compatible uniformity μ on R

satisfy that μ = eμ = scμ = pfμ.

Example 7.5. There is a compatible Bourbaki-complete metric on R, endowed
with Euclidean topology, such that the metric uniformity does not have a star-
finite base.

Proof. Construction. Start from (R, du). First, let {Nj : j ∈ N} be an infinite
partition of N satisfying the following conditions:
(1) 1 ∈ N1;
(2) each subset Nj is infinite;
(3) if n ∈ Nj then n + 1 /∈ Nj for every j, n ∈ N.

Next, for every i ∈ N consider the countable open cover Ui containing all the
following sets:
(1) if q ∈ Q ∩ (−∞, 1) take Bdu

(
q, 1

2i+1

)
;

(2) for every n ∈ N, take the open balls Bdu

(
q, 1

2i+n

)
for every q ∈ Q ∩

(n, n + 1);
(3) if j < i and n ∈ Nj also take Bdu

(
n, 1

2i+n

)
;

(4) for every j ≥ i take Aj
i =

⋃
n∈Nj

Bdu

(
n, 1

2i+n

)
.

We first prove that the family of covers 〈 U4i 〉i∈N
is a normal sequence,

that is, for every i ∈ N, U4(i+1)
∗ < U4i. Fix i ∈ N. There are several cases.

• If x = n ∈ Nj and j ≥ 4(i + 1) > 4i then x ∈ Aj
4(i+1) ∈ U4(i+1) and

St
(
Aj

4(i+1),U4(i+1)

)
⊂ Aj

4i ∈ U4i.

• If x = n ∈ Nj and j < 4i < 4(i+1) then x ∈ Bdu

(
x, 1

24(i+1)+n

) ∈ U4(i+1)

and

St
(
Bdu

(
x, 1

24(i+1)+n

)
, U4(i+1)

)

=
⋃

q∈(n−1,n)

{

Bdu

(
q, 1

24(i+1)+n−1

)
: Bdu

(
q, 1

24(i+1)+n−1

)
∩ Bdu

(
x, 1

24(i+1)+n

)
�= ∅
}

∪
⋃

q∈[n,n+1)

{

Bdu

(
q, 1

24(i+1)+n

)
: Bdu

(
q, 1

24(i+1)+n

)
∩ Bdu

(
x, 1

24(i+1)+n

)
�= ∅
}

⊂ Bdu

(
n, 1

24i+1

) ∈ U4i

because, if

y ∈
⋃

q∈(n−1,n)

{

Bdu

(
q, 1

24(i+1)+n−1

)
: Bdu

(
q, 1

24(i+1)+n−1

)
∩ Bdu

(
x, 1

24(i+1)+n

)
�= ∅
}

then du (y, n) ≤ 2 · 1
24(i+1)+n−1 < 1

24i+n , and if

y ∈
⋃

q∈[n,n+1)

{

Bdu

(
q, 1

24(i+1)+n

)
: Bdu

(
q, 1

24(i+1)+n

) ∩ Bdu

(
x, 1

24(i+1)+n

) �= ∅
}
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then du (y, n) ≤ 3 · 1
24(i+1)+n < 1

24i+n .
• If x = n ∈ N4i then x ∈ Bdu

(
x, 1

24(i+1)+n

) ∈ U4(i+1) and, similarly to
the previous case,

St
(
Bdu

(
x, 1

24(i+1)+n

)
,U4(i+1)

) ⊂ Bdu

(
n, 1

24i+1

) ⊂ A4i
4i ∈ U4i.

• If x /∈ N then x ∈ Bdu

(
x, 1

24(i+1)+n

) ∈ U4(i+1), and if Bdu

(
x, 1

24(i+1)+n

)∩
Aj

4(i+1) = ∅ for every j ≥ 4(i + 1), then

St
(
Bdu

(
x, 1

24(i+1)+n

)
, U4(i+1)

) ⊂ Bdu

(
x, 1

24i+n

) ∈ U4i.

• If x /∈ N then x ∈ Bdu

(
x, 1

24(i+1)+n

) ∈ U4(i+1), and if Bdu

(
x, 1

24(i+1)+n

)∩
Aj

4(i+1) �= ∅ for some j ≥ 4(i + 1), then

St
(
Bdu

(
x, 1

24(i+1)+n

)
, U4(i+1)

) ⊂ St
(
Aj

4(i+1),U4(i+1)

)
⊂ Aj

4i ∈ U4i

as in the first case.
Now, we prove that

⋃
i∈N

U4i is a base for the topology of R. Indeed let
r ∈ R and x ∈ Bdu

(r, ε). If x < 1, by density of the rationals, there exists
some q ∈ Q ∩ (−∞, 1) for which is possible to take i ∈ N bigger enough such
that

x ∈ Bdu

(
q, 1

24i+1

) ⊂ Bdu
(r, ε) and Bdu

(
q, 1

24i+1

) ∈ U4i.

If x ≥ 1 then, by density of the rationals, it is possible to choose some q ∈
(Q\N) ∩ (1,∞) such that for some i ∈ N bigger enough, if [q] denotes the
integer part of q,

x ∈ Bdu

(
q, 1

24i+[q]

) ⊂ Bdu
(r, ε) and Bdu

(
q, 1

24i+[q]

) ∈ U4i.

By all the foregoing, applying Lemma 4.1, since the topology is Hausdorff,
there exists a compatible metric ς on R such tat

B1/2i+1 < U4i < B1/2i−1 for every i ∈ N.

With this metric, (R, ς) is Bourbaki-complete but fails to have a base of star-
finite covers for the metric uniformity.

First, let us check that the metric uniformity does not have such a base
by contradicting property (�) from Theorem 7.1. Indeed, fix any U4i. The next
reasoning proves that for every l ∈ N there exists m ∈ N such that the set
Stm

(
A4l

4l, U4l

)
cannot be covered by finitely many U ∈ U4i. In particular,

A4l
4l ∈ U4l. Hence the contradiction of property (�).

If l < i the set Stm
(
A4l

4l,U4l

)
, with m = 0, cannot be covered by finitely

many U ∈ U4i. Indeed,
⋃

n∈N4l

Bdu

(
n, 1

24i+n

)
� A4l

4l

where Bdu

(
n, 1

24i+n

) ∈ U4i for every n ∈ N4 l because l < i. So, in any case,
we need infinitely many balls Bdu

(
q, 1

24i+[q]

) ∈ U4i, q ∈ Q, in order to cover
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St0
(
A4l

4l,U4l

)
. Besides, observe that there is no set of the form Aj

4i, j ≥ 4i,
which covers the set A4l

4l.
Now if l ≥ i, A4l

4i ∈ U4i but

A4l
4i � St2

4l−4i+1
(
A4l

4l, U4l

)

since it is not difficult check that in R,

Bdu

(
n, 1

24l+n

)
� B24l−4i+1

du

(
n, 1

24i+n

)

for every n ∈ N4l. So we need again infinitely many balls Bdu

(
q, 1

24i+[q]

) ∈ U4i,
q ∈ Q, in order to cover the set Stm

(
A4l

4l, U4l

)
where m = 24l−4i + 1. Observe

that there is no set of the form Aj
4i, j ≥ 4i, which covers St2

4l−4i+1
(
A4l

4l, U4l

)
.

In order to show that (R, ς) is Bourbaki-complete, we prove that B ⊂ R

is Bourbaki-bounded in (R, ς) if and only if B is a bounded subset for the
metric du. Therefore the closure of B will be compact, satisfying in this way
Theorem 6.7. Notice that B ∩ (∞, 0] is bounded by the metric du if and only if
it is bounded by the metric ς. Therefore we just need to check that B ∩ (0,∞)
is a bounded subset for du.

First, observe that (R, ς) is well-chained because R is connected. There-
fore, if B is Bourbaki-bounded then for every U4i and for any U ∈ U4i there
exists m ∈ N such that

(♠) B ⊂ Stm (U,U4i) .

In addition, observe that the following is always satisfied in R:
for every i, n ∈ N,

[n, n + 1] ⊂ St2
4i+n+1

(
Bdu

(
n, 1

24i+n

)
, U4i

)

and [n − 1, n] ⊂ St2
4i+n−1+1

(
Bdu

(
n, 1

24i+n

)
, U4i

)
,

[n, n + 1] �⊂ St2
4i+n (

Bdu

(
n, 1

24i+n

)
, U4i

)

and [n − 1, n] �⊂ St2
4i+n−1 (

Bdu

(
n, 1

24i+n

)
, U4i

)
.

In particular, since sup {n ∈ Nj} = ∞, (♦) there is no m ∈ N ∪ {0} such that
for every n ∈ Nj ,

[n, n + 1] ⊂ Stm
(
Aj

4i,U4i

)
, j ≥ 4i,

and (♦♦) there is no m ∈ N ∪ {0} such that for every n ∈ Nj ,

[n − 1, n] ⊂ Stm
(
Aj

4i,U4i

)
, j ≥ 4i.

Now, without lose of generality suppose that B ⊂ (0,∞) is Bourbaki-
bounded and assume, on the contrary, that B is not bounded by du, that
is, we have that B ∩ [n, n + 1) �= ∅ for infinitely many n ∈ N. Let N =
{n ∈ N : [n, n + 1) ∩ B �= ∅}. For every n ∈ N take just one xn ∈ [n, n + 1) ∩
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B and put S = {xn : n ∈ N}. If B is Bourbaki-bounded in (R, ς) then S
is also Bourbaki-bounded in (R, ς) because a subset of a Bourbaki-bounded
subset is also a Bourbaki-bounded subset. However, we show next that S is
not Bourbaki-bounded.

Put M = {n + 1 : n ∈ N}. There are three cases.
• Suppose that N ∩Nj �= ∅ for infinitely many j ∈ N and that M ∩Nj �= ∅

for infinitely many j ∈ N too. Choose any i, j ∈ N such that j ≥ 4i. If S is
Bourbaki-bounded then, by (♠) there exists some m ∈ N such that

S ⊂ Stm
(
Aj

4i,U4i

)
.

But there are infinitely many n ∈ N such that n /∈ Nj and n + 1 /∈ Nj , so the
only possibility to join every xn ∈ S with the set Aj

4i through a chain in U4i

of lenght at most m is that this chain crosses through infinitely many n ∈ N
or infinitely many n + 1 ∈ M . But this no possible by (♦) and (♦♦).

• Without loss of generality, suppose that N ∩ Nj �= ∅ for only finitely
many j ∈ N but that M ∩ Nj �= ∅ for infinitely many j ∈ N. Let k, i ∈ N such
that k ≥ 4i and k > j for every j ∈ N satisfying that N ∩ Nj �= ∅. Again, if S
is Bourbaki-bounded, by (♠) there exists some m ∈ N such that

S ⊂ Stm
(
Ak

4i,U4i

)
.

But there are infinitely many n ∈ N such that n /∈ Nk and n + 1 /∈ Nk, so we
can conclude as in the previous case.

• Finally, suppose that N ∩Nj �= ∅ and M ∩Nj �= ∅ for only finitely many
j ∈ N. Let k, i ∈ N such that k ≥ 4i and k > j for every j ∈ N satisfying that
N ∩ Nj �= ∅ and M ∩ Nj �= ∅. If S is Bourbaki-bounded, by (♠) there exists
some m ∈ N such that

S ⊂ Stm
(
Ak

4i,U4i

)
.

But there are infinitely many n ∈ N such that n /∈ Nk and n + 1 /∈ Nk, so we
can conclude as in the previous cases. �
Remark 7.6. Let (X,μ) be a uniform space. In the previous example we use
several times the fact that a subset of a Bourbaki-bounded subset in X is also
a Bourbaki-bounded subset in X. However, a Bourbaki-bounded subset Y in
X is not necessarily a Bourbaki-bounded space. For example, consider any
infinite uniformly discrete subset of a Bourbaki-bounded space as the metric
hedgehog.

But even if the subset Y satisfies strong connectedness properties as a
subspace of X, for instance, path connectedness, Bourbaki-boundedness is not
hereditary either. Indeed, it is well-known that the real-line (R, du) endowed
with the usual Euclidean metric is uniformly homeomorphic to a (closed) sub-
space of a product of metric hedgehogs ([28, pag. 138-139]). Clearly with the
new metric inherited from the product of hedgehogs, R is not a Bourbaki-
bounded space even if the product of metric hedgehogs is a Bourbaki-bounded
space.
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8. Metric Spaces that are Bourbaki-Complete and Cofinally
Complete at the Same Time

Besides the Bourbaki-completeness, there exist other completeness notions in
the frame of uniform and metric spaces (see for instance [3,4,12] for these no-
tions and bibliography). This section focus on cofinal completeness and cofinal
Bourbaki-completeness which are defined next.

Definition 8.1. A filter F in a uniform space is cofinally Bourbaki-Cauchy if

∀U ∈ μ ∃m ∈ N, ∃U ∈ U s.t. F ∩ Stm (U,U) �= ∅ ∀F ∈ F .

The filter F is cofinally Cauchy if

∀U ∈ μ ∃U ∈ U s.t. F ∩ U �= ∅ ∀F ∈ F .

Note that every Bourbaki-Cauchy (respect. Cauchy) filter is cofinally
Bourbaki-Cauchy (respect. cofinally Cauchy).

Definition 8.2. A uniform space (X,μ) is cofinally Bourbaki-complete if every
cofinally Bourbaki-Cauchy filter clusters. It is said to be cofinally complete if
every cofinally Cauchy filter clusters.

Clearly, every cofinally Bourbaki-complete uniform space is cofinally com-
plete and Bourbaki-complete. Moreover, the next theorem, which is parallel
to Theorem 2.4 but clearly stronger, shows the relation between cofinal com-
pleteness and cofinal Bourbaki-completeness.

Theorem 8.3. A uniform space (X,μ) is cofinally Bourbaki-complete if and
only if it is cofinally complete and μ = sfμ.

Proof. If (X,μ) is cofinally Bourbaki-complete then it is cofinally complete.
Suppose on the contrary that it does not satisfies the property (�) from The-
orem 7.1. Then there exists some U0 ∈ μ, that we can take open, such that
for every V ∈ μ there exists V0 ∈ V and m0 ∈ N for which there is no finite
subfamily in U0 covering Stm0 (V0,V). Let Uf

0 be the cover obtained by taking
finite unions of elements of U0. Then Uf

0 is a directed open cover of X and
{
X\A : A ∈ Uf

}
is a filter base of a filter F in X (note that X /∈ Uf

0 ). In
particular, F is cofinally Bourbaki-Cauchy since for every V ∈ μ there exists
V0 ∈ V such that F ∩ Stm0 (V0,V) �= ∅ for every F ∈ F . Therefore, F clusters
contradicting that Uf

0 is a cover.
Conversely, suppose that (X,μ) is cofinally complete and that μ = sfμ.

Let F be a cofinally Bourbaki-Cauchy filter of (X,μ). We prove next that F
is also cofinal Cauchy. Therefore, the filter F clusters and (X,μ) is cofinally
Bourbaki-complete.

Let U ∈ μ and V a star-finite uniform refinement of it. This is possible
because μ = sfμ. Since F is cofinally Bourbaki-Cauchy, for some m ∈ N and
V ∈ V, Stm (V,V) ∩ F �= ∅ for every F ∈ F . But V is star-finite, therefore it
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is possible to choose finitely many Vi ∈ V, i = 1, ..., k such that Stm (V,V) ⊂
⋃k

i=1 Vi. In particular, for some i ∈ {1, ..., k}, Vi ∩ F �= ∅ for every F ∈ F .
Otherwise, for every i = 1, ..., k there is some Fi ∈ F such that Vi∩Fi = ∅. But
then F ′ =

⋂k
i=1 Fi is an element of the filter F such that F ′ ∩ Stm (V,V) = ∅,

which is a contradiction. Hence F is a cofinally Cauchy filter of (X,μ). �

Nevertheless, cofinal completeness and Bourbaki-completeness are not
related properties.

Example 8.4 ([12, Example 16]) The metric hedgehog (J (κ) , γ), κ ≥ ω0, is
cofinally complete but not Bourbaki-complete.

Example 8.5. There is a Bourbaki-complete metric space which is not cofi-
nally complete. For instance, Example 7.5. The space (R, ς) in Example 7.5 is
Bourbaki-complete, locally compact but not uniformly locally compact. Since
every locally compact uniform space which is in addition cofinally complete
must be uniformly locally compact (see [27, Theorem 4.4] and [18, Theorem
4.6]), (R, ς) cannot be cofinally complete.

As odd as it may look, not every uniform space being cofinally complete
and Bourbaki-complete at the same time is cofinally Bourbaki-complete. The
main purpose of this section is to give such example, a metric one (Example
8.16), as it was asked in [12]. This example is possible because we already know
which metric spaces are metrizable by a Bourbaki-complete metric (Theorem
6.5), which by a cofinally complete metric (see the next Theorem 8.6) and
which by a cofinally Bourbaki-complete metric (see the next Theorem 8.8).

Theorem 8.6 ([29] and [3, Theorem 4.1]) A metrizable space is metrizable by
a cofinally complete metric if and only if the subset nlc (X) of points of X
without a locally compact neighborhood, is compact.

Definition 8.7. A space is strongly paracompact if every open cover has an open
star-finite refinement.

Theorem 8.8 ([12, Theorem 33]) Let X be a metrizable space. The following
statements are equivalent:

(1) X is metrizable by a cofinally Bourbaki-complete metric;
(2) X is strongly paracompact and nlc (X) is compact.

Observe that every metrizable strongly paracompact space is strongly
metrizable [24], so completely metrizable spaces which are strongly paracom-
pact are metrizable by a Bourbaki-complete metric. On the other hand, not
every Bourbaki-complete metric space is strongly paracompact, as not every
strongly metrizable space is strongly paracompact.
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Example 8.9. Not every Bourbaki-complete metric spaces is strongly paracom-
pact. Consider the Bourbaki-complete metric space (ωω0

1 × R, ρ + du) (Bourba-
ki completeness is a productive property). This space is not strongly paracom-
pact because it is homeomorphic to ωω0

1 ×(0, 1) which is not strongly paracom-
pact as Nagata proved in [23, Remark p. 169]. In particular, (ωω0

1 × R, ρ + du)
is not metrizable by a cofinally complete (or cofinally Bourbaki-complete) met-
ric because by Romaguera’s result the factor ωω0

1 is not metrizable but such
metric either.

By the above results, it is expected that a metrizable space is metrizable
by a metric which is cofinally complete and Bourbaki-complete at the same
time if and only if the space satisfies Theorem 8.6 and it is strongly metriz-
able. Before we prove this fact in Theorem 8.13 we introduce the following
paracompactness type property.

Definition 8.10. An open cover U of a space X is σ-star-finite if there exists
a countable family Un, n ∈ N, of star-finite open covers of X such that U ⊂⋃

n∈N
Un.

Definition 8.11. A Tychonoff space X is completely paracompact if every open
cover G has an open refinement V which is σ-star-finite.

Complete paracompactness is a property that lies between strong para-
compactness and paracompactness (see [24, Ch. 2.2]). Moreover, Zarelua proved
in [34, Lemma 5] that a metrizable space is strongly metrizable if and only if
it is completely paracompact.

Next, we extend complete paracompactness to a uniform property in the
same line than the properties of uniform paracompactness and uniform strong
paracompactness. Recall, that cofinal completeness and cofinal Bourbaki-
completeness are respectively equivalent to these notions, due to Rice [27]
and o Hohti [16, Section 6] (see also [13]).

Definition 8.12. A uniform space (X,μ) is uniformly completely paracompact
if it is cofinally complete and the uniformity μ has a base of σ-star-finite open
covers.

Let σ-sfμ denote the family of all the uniform covers from a uniform space
(X,μ) having a σ-star-finite uniform open refinement. It is not known if this
family of uniform covers is in general a base for some compatible uniformity
on X. However, in some cases, σ-sfμ is in fact a uniformity as we will see in
the next result and examples.

Now, we are ready to characterize those metrizable spaces which are
metrizable by a metric which is Bourbaki-complete metric and cofinal complete
at the same time.

Theorem 8.13. Let X be a metrizable space. The following statements are
equivalent:



249 Page 32 of 37 A. S. Meroño Results Math

(1) X is metrizable by a uniformly completely paracompact metric;
(2) X is strongly metrizable and nlc(X) is compact;
(3) X is metrizable by a metric which is Bourbaki-complete and cofinally

complete at the same time.

Proof. (1) ⇒ (2) Let (X, d) being uniformly completely paracompact and for
every n ∈ N let

{U j
n : j ∈ N

}
, a countable family of star-finite open covers of

X containing a uniform refinement of the cover of open balls B1/n. Then, it
is clear that

⋃
n,j∈N

U j
n is a base of the topology of X. Thus, the space X is

strongly metrizable. Moreover, by Theorem 8.6, nlc(X) is compact.
(2) ⇒ (1) Suppose first that nlc (X) = ∅. Then X is locally compact and,

as in the proof (4) ⇒ (1) of Theorem 6.5, X is metrizable by a uniformly locally
compact metric d. Therefore by Theorem [12, Theorem 14], (X, d) is cofinally
Bourbaki-complete. In particular, it is uniformly completely paracompact by
Theorem 8.3.

Otherwise, assume that nlc (X) �= ∅ and let ρ a metric on X. Since nlc(X)
is compact, there exists a countable family of open sets {W1, ...,Wk, ...} in X
such that for every open subset A of X containing nlc (X) there
exists k ∈ N satisfying that nlc (X) ⊂ Wk ⊂ A. For instance, consider
Wk = St

(
nlc (X) ,B1/k

)
, k ∈ N, for the family of open balls B1/k of radius 1/k

in (X, ρ). Now for every x /∈ nlc (X) take V x an open neighborhood of x ∈ X
with compact closure. For every k ∈ N, let Gk = {V x : x /∈ Wk} ∪ {Wk}.

Let us start by k = 1. By strong metrizability (equivalently, complete
paracompactness), the open cover B1 ∧ G1 has a σ-star-finite open refinement
U1. Next, consider the open cover U1 ∧ B1/2 ∧ G2, and take an open cover A2

such that

A∗
2 < U1 ∧ B1/2 ∧ G2.

Again, by complete paracompactness we can take an open refinement U2 of
A2 being σ-star-finite. Next, for every k ≥ 2 take the open covers Ak+1 and
Uk+1 such that

A∗
k+1 < Uk ∧ B1/(k+1) ∧ Gk+1,

Uk+1 < Ak+1 and Uk+1 is σ-star-finite.
Proceeding in this way, we obtain a normal sequence 〈Uk〉 of σ-star-finite

open covers such that Uk < Gk for every k ∈ N. Let us prove that the sequence
is compatible, that is,

⋃
k∈N

Uk is a base for the topology of X. Indeed let
x ∈ A, A being any open set in X then

x ∈ B2
ρ

(
x, 1

2k

) ∈ Bρ

(
x, 1

k

) ⊂ A

for some k ∈ N. Take U ∈ U2k+1 such that x ∈ U . Then U ⊂ B2
ρ

(
x, 1

2k

)
since

U2k+1 < B1/2k.
Now, applying Lemma 4.1, there exists a compatible pseudometric d on

X such that

B1/2k+1 < Uk < B1/2k−1 for every k ∈ N
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where B1/2k , k ∈ N, denotes now the cover of open balls of radious 1/2k in
(X, d). Since the space X is Hausdorff, d is in fact a metric. Therefore, the
metric uniformity μd has a base of σ-star-finite open covers.

Next, in order to prove that (X, d) is cofinally complete, let F be a
cofinally Cauchy filter in (X, d). If for some κ ∈ N, there is some V x ∈ Gk,
where V x is one of the above sets with compact closure, such that F ∩V x �= ∅
for every F ∈ F , then F clusters in clXV x by compactness. Otherwise, it
follows that for every k ∈ N, F ⊂ Wk for some F ∈ F . Indeed, by cofinal
Cauchyness, as B1/2k+1 < Uk < Gk, then for every k ∈ N there must be some
Gk ∈ Gk such that F ∩ Gk �= ∅ for every F ∈ F .

Suppose that F does not cluster. Thus, A = {X\clXF : F ∈ F} is an
open cover of X and in particular it is an open cover of nlc (X). Since nlc (X)
is compact, there exists a finite subfamily A′ ⊂ A such that nlc (X) ⊂ ⋃A′.
Hence, for some k ∈ N we have that nlc (X) ⊂ Wk ⊂ ⋃A′, and, since A′ is
finite, this implies that for some A ∈ A′, A ∩ F �= ∅ for every F ∈ F . But
this is a contradiction. Thus, the filter F clusters and the space is cofinally
complete.

(2) ⇒ (3). Let X be a strongly metrizable such that nlc(X) is compact. In
particular X is completely metrizable. Therefore, by Theorem 8.6 and Theorem
6.5, X is metrizable by a metric ρ and a metric t, which are cofinally complete
and Bourbaki-complete respectively. Define the metric d : X × X → [0,∞) by
d (x, y) = max {ρ (x, y) , t (x, y)} . Then it is easy to check that d is a metric
compatible with the topology of X which is cofinally complete and Bourbaki-
complete, as for every x ∈ X and every ε > 0, Bd (x, ε) = Bρ (x, ε) ∩ Bt (x, ε).

(3) ⇒ (2) This follows from Theorem 6.3 and Theorem 8.6. �
Example 8.14. The metric hedgehog (J (ω0) , γ) is an example of cofinally com-
plete metric space having a base of σ-star-finite covers for his metric uniformity
which is not Bourbaki-complete. Indeed, since J (ω0) is separable, it follows
that μγ = eμγ = σ-sfμγ . In general, if U = {Un : n ∈ N} is a countable uni-

form cover then each cover Vn =
{

Un,
⋃

j �=n Uj

}
is uniform and star-finite and

U ⊂ ⋃n∈N
Vn, that is, U is σ-star-finite.

Example 8.15. There is a Bourbaki-complete metric space which does not have
a base of σ-star-finite open covers for its metric uniformity. Observe that every
σ-star-finite open cover is in particular σ-discrete. Indeed, let An, n ∈ N be
a family of star-finite open covers of X such that A ⊂ ⋃n∈N

An is a cover of
X. Since each star-finite open cover is a σ-discrete open cover (see [28, Prop
13.2.6]), then for every n ∈ N there exist countably many families of open sets
An,j , j ∈ N such that An =

⋃
j∈N

An,j and for every x and every n, j ∈ N

there exists an open set G such that x ∈ G and G only meets finitely many
A ∈ An,j . Let f : N × N → N be any bijection. In particular

A ⊂
⋃

f((n,j))∈N

Af((n,j)),
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that is, A is σ-discrete. Now, since any σ-discrete open cover is point-finite
(see [28, Prop 13.2.4]), the Example 7.3 shows a Bourbaki-complete metric
space which does not have a base of σ-star-finite open covers for its metric
uniformity.

The following example answer the question that motivated this section.

Example 8.16. There exists a cofinally complete and strongly metrizable
metric space (X, d) which is not Bourbaki-complete and not strongly paracom-
pact. In particular, (X, d) is not metrizable by a cofinally Bourbaki-complete
metric, even if, by Theorem 8.13, it is metrizable by a metric which is Bourbaki-
complete and cofinally complete at the same time. Besides, with this last
metric, X does not have a star-finite base for its metric uniformity.

Proof. Construction. ([30]) This is a subspace of the metric hedgehog
(J (ω1) , γ). Let {An : n ∈ N} be a partition of ω1 such that |An| = ω1 for
every n ∈ N. Let L = {0}∪⋃n∈N

En where En =
{
[(x, α)] : 1

n ≤ x ≤ 1, α ∈ An

}
.

Then (L, γ) is a cofinally complete metric space since it is a closed subspace of
J (ω1). However, it is not Bourbaki-complete because the Bourbaki-bounded
subset given by taking just one point of the form [(1, α)] in each En is closed
but not compact.

On the other hand L is strongly metrizable. Indeed, fixed k ∈ N, the open
cover B1/k has the following σ-star-finite refinement. For every n ∈ N and every
α ∈ An, in the spine Sn,α =

{
[(x, α)] : 1

n ≤ x ≤ α
}

it is possible to choose, by
compactness, a finite cover Gn,α of open balls of radius εn = min

{
1
2k , 1

2n

}
and

centre in Sn,α. For every n ∈ N define the open covers

An = {Bγ (0, εn)} ∪
⎛

⎝
⋃

j≤n

⋃

α∈Aj

Gj,α

⎞

⎠ ∪
⎧
⎨

⎩

⋃

j>n

Ej

⎫
⎬

⎭
.

Then, it is clear that each An is open and star-finite. Moreover,
⋃

n∈N
An

contains a refinement A of B1/k,

A =
{
Bγ

(
0, 1

2k

)} ∪
⋃

j∈N

⋃

α∈Aj

Gj,α.

However, X is not strongly paracompact. For instance, take again the
open cover B1/k. Then for every 0 < ε ≤ 1

k , the open ball Bγ (0, ε) meets always
uncountably many pairwise disjoint open balls Bγ (x, δ), of centre x /∈ Bγ (0, ε),
for any 0 < δ ≤ ε. Therefore, it is easy to deduce that B1/k cannot have a
star-finite, or star-countable (see [7, Theorem 5.3.10]), open refinement.

By Theorem 8.13 and Theorem 8.8, L is metrizable by a metric which is
Bourbaki-complete and cofinally complete at the same time but not cofinally
Bourbaki-complete. In addition, by Theorem 8.3 this last metric on L does
not have a star-finite base for its uniformity. �
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OpenProblem 8.17. Recall that Hohti [16, pp. 31–32] proved that every cofi-
nally complete uniform space has a point-finite base for its uniformity.
Similarly, Theorem 8.3 shows that every cofinally Bourbaki-complete uniform
spaces have a star-finite base for its uniformity. Moreover, from the definition,
every uniformly completely paracompact uniform space has a σ-star-finite base
for it uniformity. However, it would be better to give a definition of uniform
complete paracompactness by means of some special family of covers as it
is done for uniform paracompactness or uniform strong paracompactness, or
even, to give a definition trough filters like it is done for cofinal Bourbaki-
completeness.

OpenProblem 8.18. We wonder if every metric space which is cofinally com-
plete and Bourbaki-complete at the same time has always a σ-star-finite base
base for its uniformity. Observe that Example 8.15 is not cofinally complete
by the above cited result of Hohti.
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[8] Garćıa-Máynez, A.: δ-complete and δ-normality. Topol. Proc. 6, 345–349 (1981)
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