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Abstract. The aim of this note is twofold. In the first part of the paper
we are going to investigate an inverse problem related to additive energy.
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1. Introduction

The additive energy is a central notion in additive combinatorics. This concept
was introduced by Terence Tao and has been the subject of many works (See,
e.g., [10,11].) For a set A ⊆ N, the additive energy of A is defined as the
number of quadruples (a1, a2, a3, a4) for which a1 + a2 = a3 + a4, formally
E(A) := |{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}|. The additive energy is
similarly defined on an arbitrary structure X, where the addition is defined.

Let us remark that if A is a finite subset of the integers then for every
x ∈ Z dA(x) := |{(a1, a2) ∈ A2 : 0 �= x = a2 − a1}| = 2d+A(x) := |{(a1, a2) ∈
A2 : a1 < a2; x = a2 − a1; }| (indeed for every x, dA(x) = dA(−x)). If
from the content is clear, we leave the subscript and we write simply d(x) or
d+(x). Furthermore (perhaps this is a folklore) maxA∈N; |A|=n E(A) = n2 +
(n−1)n(2n−1)

3 = (1 + o(1))23n3. Indeed for every x where d(x) > 0 let i be the
maximal index for which x = ai+1 − aj ; j ≤ i. Then d(x) ≤ i. The equality
holds if A is an arithmetic progression with length n. A simply calculation
shows the bound above.
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Clearly |A|2 � E(A) � |A|3 holds, since the quadruple (a1, a2, a1, a2)
is always a solution and given a1, a2, a3 the term a4 is uniquely determined
by them. (We will use the notation |X| � |Y | to denote the estimate |X| ≤
C|Y | for some absolute constant C > 0). For every M ≥ 2 we write [M ] :=
{1, 2, . . . ,M}.

The aim of this note is twofold. In the first part of the paper we are going
to investigate an inverse problem related to additive energy. In the second
part, we consider how dense a subset of a finite structure can be for a given
additive energy

2. An Inverse Problem

There are various type of inverse problems. Maybe the best known is the
celebrated Freiman–Ruzsa result which describes the structure of sets with
small doubling A + A; A ⊆ N (see e.g. [11]).

An other problem which is due to S. Burr asked which property of an
infinite sequence B ensures that N \ B can be written as a subset sum of an
admissible sequence A, i.e. N\B = P (A) = {∑a∈A′ a : A′ ⊆ A; |A| < ∞}.
This issue has a relatively large literature too (see. e.g. [2,3]). We mention
two other inverse problems which relate to the question of the present section.
The first is originated from the folklore; it is known that for every finite set
of integers A, 2|A| − 1 ≤ |A + A| ≤ (|A|+1

2

)
. Is it true that for every n, k ∈ N,

k ∈ [2n − 1,
(
n+1
2

)
] there is a set A ∈ N, |A| = n and |A + A| = k? For this

(undergraduate) question the answer is yes.
The second question is due to Erdős and Szemerédi (see in [5]): It is

easy to see that if A ⊆ N then for the cardinality of the subset sums we have(|A|+1
2

) ≤ |P (A)| ≤ 2|A|. They asked: is it true that for every t,
(
n+1
2

) ≤ t ≤ 2n

there is a set of integers A with |A| = n and |P (A)| = t? In [H96] I gave an
affirmative answer.

A similar question on additive energy would be the following. Write
SetG(n) := {E(A) : A ⊆ G; |A| = n}, where G is any additive structure.

While in the previous examples the possible values of A + A and P (A)
were intervals one can guess that the set SetG(n) is not one. For example let
G = {0, 1}n and A = {0, 1}k ⊆ {0, 1}n. Then it is easy to see, that the value
of E(A) is 6k.

Note that in [8] the authors have shown that if A ⊆ {0, 1}n then E(A) ≤
|A|�, where � = log2 6, and the exponent cannot be replaced by any smaller
quantity.

2.1. Integer Case

First we are going to investigate the case when G = Z.
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Theorem 2.1. Let 	n
3 
 = k, n ≡ r (mod 4). Let

I :=
[

2n2 − n + 66, k2 +
(k − 1)k(2k − 1)

3
− 66

]

.

Then I ∩SetZ(n) is an arithmetic progression in the form {4k + r}. Moreover
J := SetZ(n) ∩ (k2 + (k−1)k(2k−1)

3 , n(n+1)2n+1)
3 ] contains Ω(n2) elements.

Proof. Let us start by some easy observations. Let us note that the additive
energy is invariant to the affine transformation, i.e. for every finite set B and
integers a �= 0, b E(B) = E(aB + b).

It is not too hard to show that the parity of A ⊆ N and E(A) is the
same. In fact we prove that for any set A ⊆ N, |A| ≥ 3, |A| ≡ E(A) (mod 4).
Indeed, E(A) =

∑
x d2A(x) = d2A(0) + 2

∑
x�=0 d+2

A (x) = |A|2 + 2
∑

x�=0 d+2
A (x).

It is easy to check that for every |A| = 3, we have E(A) ≡ 3 (mod 4). Now
let n ≥ 3, and consider |A′| = n + 1 with biggest element an+1. Denote by
A = A′\an+1 = {a1 < a2 < · · · < an} and write xj = an+1 − aj ; j =
1, 2, . . . , n. Write E(A′) =

∑
x d2A′(x) = d2A′(0) + 2

∑
x d+2

A′ (x). dA′(0) = n + 1
so d2A′(0) − d2A(0) = 2n + 1. Let d+A(xj) = tj ≥ 0. Then |d+2

A′ (xj) − d+2
A (xj)| =

2tj + 1. So E(A′) − E(A) = 2n + 1 + 2
∑n

j=1(2tj + 1) = 4n + 4
∑n

j=1 tj + 1.
Hence if |A| ≡ E(A) ≡ r (mod 4), then |A′| ≡ E(A′) ≡ r + 1 (mod 4) as we
wanted.

In the first stage, we move downwards from the maximum energy value.
So let A0 = {ai = i; i = 1, 2, . . . n}. As we mentioned E(A0) = (1 + o(1))23n3.
The maximal difference is n−1, the minimal is 0, hence we can write E(A0) =
|A0|2 + 2

∑n−1
x=1 d+2

A0
(x).

For 1 ≤ k ≤ n − 2 we are going to define the set A
(k)
0 as follows: for

i = 1, 2, . . . n − 1 let ai = i and let an = n + k. Write shortly dk(x) = d+An,k
(x)

and d0(x) = d+A0
(x). For 1 ≤ x ≤ k, dk(x) = d0(x)−1 since an −ai ≥ k +1 for

i = 1, 2, . . . , n−1. For k < x ≤ n−1 dk(x) = d0(x) and when n ≤ x ≤ n+k−1
then dk(x) = 1 since difference bigger than n − 1 does not occur in A0 − A0.

So we have

E(A0) − E(An,k) = 2
n−1∑

x=1

d20(x) − 2
n+k−1∑

x=1

d2k(x)

= 2
n−1∑

x=1

d20(x) − 2

[
k∑

x=1

(d0(x) − 1)2 +
n−1∑

x=k+1

d20(x) +
n+k−1∑

x=n

1

]

= 2
k∑

x=1

(2d0(x) − 1) − 2k = 4
k∑

x=1

(n − x) − 4k

= 4nk − 2k2 − 6k.

Finally let A1 := {1, 2, . . . , n − 1, 10n}. Since every i, 1 ≤ i ≤ n − 1, d(an − ai)
remains 1 we have that for every 1 ≤ k ≤ n−2 the gap between two consecutive
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values of energies is

E(A(k+1)
0 ) − E(A(k)

0 ) = (E(A0) − E(A(k)
0 )) − (E(A0) − E(A(k+1)

0 ))
= 4n − 4k − 8.

Continue the previous process to obtain the strictly decreasing sequence of
energy values {E(A(k)

1 ); k = 1, 2 . . . , n − 3} and generally for j = 1, 2, . . . , m

the sequence {E(A(k)
j ); k = 1, 2 . . . , n−j−2}, where m will be determine later.

So the end of the mth step we have the set Am+1 = {1, 2, . . . , n −
m, 10m, 10m+1, . . . , 10n} and similarly, as we have seen in the previous pro-
cess for k = 1, 2, . . . , n − m − 2 we obtain

E
(
A

(k+1)
m−1

)
− E

(
A

(k)
m−1

)
< 4(n − m − k) − 7.

(note that the elements 10m, . . . , 10n do not play a role in the change of en-
ergy).

The argument of this stage shows that J contains Ω(n2) elements.
In the second stage, we move upwards from this given energy value from

appropriate m.

Lemma 2.2. Let X0 = {xi}m
i=1 be an m element 10 lacunary sequence of

integers, i.e. for i = 1, 2, . . . m − 1, xi+1
xi

≥ 10. For k = 1, 2, . . . , 	m/3

let Xk = (X0\{x3i}k

i=1) ∪ {x′
3i}k

i=1, where x′
3i = 2x3i−1 − x3i−2. We have

E(Xk) − E(Xk−1) = 4.

Proof. Write briefly d+Xk
= d+. Since X is a 10 lacunary sequence thus d+(x3k−

x3k−1) = 1. Let us replace xk by x′
3k = 2x3k−1 − x3k−2. Then the difference

x3k−1 − x3k occurs twice instead of one, the differences x3k − x3k−1 and x3k −
x3k−2 do not occur. The new difference will be x′

3k − x3k−2 with d(x′
3k −

x3k−2) = 1. (The values of the other representation functions do not change,
just the length of the differences).

So we have E(Xk) − E(Xk−1) = 2(d(x′
3k − x3k−2)2 + d+2(x′

3k − x3k−1) −
d+2(x3k−1 − x3k−2) − d+2(x3k − x3k−1)) = 2(12 + 22 − 12 − 12 − 12) = 4. �

Now if m > 3n
4 than we have 4n−4m−7 < 4m

3 −1 < 4	m
3 
. By Lemma 2.2

we can fill the gaps in E(A(k+1)
m−1 )−E(A(k)

m−1) by sequences with difference 4 in
the interval [2n2 − n, k(k+1)2k+1)

3 ]. �

3. Case A1 × A2 × · · · × An ∈ G = [M ]n

In this section, we address a similar issue to the 2.1 theorem, as well as a
density vs. energy result related to one of Kane and Tao’s results (see [KT]).

Before our results, we will formulate an argument that we will use in the
rest of the paper.
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3.1. On Density and Additive Energy of A1 ×A2 × · · · ×An ; Ai ⊆ G; i =
1, 2, . . . , n

Let G be any finite semigroup with [G| = M . Throughout the rest of the paper
we will use the following argument:

If a ∈ Gr and b ∈ Gt are two elements, then ab means that a and b are
literally contiguous (i.e. the two strings are concatenated), and ab ∈ Gr+t.

Now let us assume that the sets U ⊆ Gt := G1 and V ⊆ Gr := G2 have
been defined with |U | = M c1t and |V | = M c2r. Let W := {uv : u ∈ U, v ∈
V } ⊆ Gr+t. Clearly |W | = |U ||V | = M c1t+c2r.

Now we are going to show that if E(U) = |U |td1 and E(V ) = |V |rd2 then
E(W ) = M td1+rd2 . Let us assume that (an, bn, cn, dn) ∈ U4 and (a′

n, b′
n, c′

n, d′
n) ∈

V 4 two four-tuples for which an + bn = cn + dn and a′
n + b′

n = c′
n + d′

n

hold. Then clearly (ana′
n) + (bnb′

n) = (cnc′
n) + (dnd′

n) also holds. Conversely
assume that (ana′′

n) + (bnb′′
n) = (cnc′′

n) + (dnd′′
n) holds, for some four-tuple

(ana′′
n), (bnb′′

n), (cnc′′
n), (dnd′′

n) ∈ W 4. By the definition it implies that an+bn =
cn + dn and a′′

n + b′′
n = c′′

n + d′′
n. Hence E(W ) = E(U)E(V ) = M td1+rd2 .

One can see by induction that for every z, if Ui ⊆ Gri , i = 1, 2, . . . z
and W = {u1u2 · · · uz : ui ∈ Ui i = 1, 2, . . . , z} then |W | =

∏z
i=1 |Ui| and

E(W ) =
∏z

i=1 E(Ui).

3.2. Inverse Question in [M ]n

In this section we will investigate sets in the form X = A1 × A2 × · · · ,×An ⊆
[M ]n, |A1| = |A2| = · · · = |An| = w ≤ M , 1 ≤ |X| = wn. Throughout this
section write Set[M ]n(w) = {E(Xj) : |Xj | = wn;Xj ⊆ [M ]n}, in increasing
order. Write shortly Ej := E(Xj). One can guess that the sequence {Ej+1−Ej}
is not bounded. The following example supports this view: Let G := {0, 1, 2}n

and let X ⊆ G with |X| = 3m · 2k; 2 ≤ k + m ≤ n. It implies that there
are subscripts i1, i2, . . . , ik and j1, j2, . . . , jm, for which |Aj1 | = · · · = |Ajm | =
3; |Ai1 | = · · · = |Aik | = 2 and the cardinality of the rest (if they exist) is 1. A
simple calculation shows that if Y ⊆ Z, |Y | = 3 then E(Y ) = 15 or E(Y ) = 19.
If |T | = 2 then E(T ) = 6. So by the argument of the previous section we have
that for every |X| = 3m · 2k; 2 ≤ k + m ≤ n, E(X) = 15r19s6k; r + s = m.
Hence for every j Ej+1 − Ej is at least 6k.

So instead of Ej+1 − Ej it is reasonable to investigate Ej+1/Ej .

Theorem 3.1. There are N := c1M
3 many Xi in the form Xi = Ai,1 × Ai,2 ×

· · · ,×Ai,n ⊆ [M ]n for which every 1 ≤ i ≤ N ; 1 ≤ j ≤ n we have |Ai,j | = w,
|X1| = |X2| = · · · = |XN | < Mn, and such that for every 1 ≤ i ≤ N , we have

E(Xi)/E(Xi+1) ≤
(
1 +

c2
w3

)
.

Roughly speaking there is a long sequence {Ej} ⊆ Set[M ]n(wn) for which
the ratio of the consecutive elements is close to 1. The constants c1 = 1/27
and c2 = 360 are admissible.

On the other hand
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Theorem 3.2. Let Set[M ]n(wn) = {Ej : j = 1, 2, . . .} be the increasing sequence
of energies. Then there is an effectively computable constant C depending only
on M and n, such that

min
j

Ej+1/Ej ≥
(

1 +
1

(en)C

)

.

Proof of Theorem 3.1. As we have seen at the proof of Theorem 2.1 for any
w ∈ N SetZ(w) contains an arithmetic progression AP with difference 4 con-
taining in an interval [β1w

3, β2w
3], where β1 = 1/90, β2 = 2/90 and w is

big enough. Let L = 	w3/30
, and let A1, A2, . . . , AL be the sets for which
{E(A1), E(A2), . . . , E(AL)} = AP. Now we are in the position to define the
sets X1,X2, . . . , XL. Let X1 = A1 × A1 × · · · × A1; X2 = A1 × A1 × · · · ×
A2; . . . ;XL = A1 × A1 × · · · × AL. By the argument discussed in Sect. 3.1 we
get |X1| = |X2| = · · · = |XL| = wn; and E(Xi) = E(A1)L−1E(Ai). Hence
E(Xi)/E(Xi+1) = E(Ai+1)/E(Ai) = (E(Ai)+4)/E(Ai) ≤ (1+360/w3). �

Proof of Theorem 3.2. The proof is a simple consequence of the following lemma:

Lemma 3.3. Let 1 < b1 < b2 < · · · < bt be a sequence of integers and let
z1, z2, . . . , zt ∈ Z. We have |bz1

1 bz2
2 · · · bzt

t − 1| > 1
(eB)C

where
B = max{|z1|, |z2|, . . . , |zr|} and where C is an effectively computable constant
depending only on t and on b1, b2, . . . , bt.

This lemma is a very special case of a theorem of Baker (see [1,6]).
All energies in Set[M ]n(wn) = {Ej : j = 1, 2, . . .} can be written in

the form Ej =
∏t

i=1 Eui(Ai), for some |Ai| = w,
∑

i ui ≤ n. So we have
minj Ej+1/Ej =

∏n
i=1 Ezi(Ai) with |zi| ≤ n, for some |Ai| = w, i = 1, 2, . . . n.

Now the theorem follows from Lemma 3.3. �

3.3. Density versus Additive Energy

In [8] (see also a generalization in [4]) the authors investigated the following
interesting question. Let A ⊆ {0, 1}n be any set, then what can we say on
the maximum of E(A) if the cardinality of A is given? They showed that
E(A) ≤ |A|�, where � = log2 6, and the exponent cannot be replaced by any
smaller quantity.

In this section we ask an opposite direction: For a given finite additive
structure G and a parameter 0 < η < 1 what is

RG(δ) := max
A⊆G

{
α : |A| = |G|α; EG(A) = |A|2+δ

}
?

In the next theorem we show that this maximum exists and give its asymptotic
value.

Let G be a finite abelian group and ket S ⊆ G. S is said to be Sidon set
if for every s1 + s2 = s3 + s4; si ∈ S {s1, s2} = {s3, s4} holds. We say that G

is S-good, if there is a Sidon set with |S| = (1 + o(1))
√|G| (see e.g. [9]). Note

that for x ∈ S + S, rS+S(x) = 2, and so E(S) = 4|S|2.
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Theorem 3.4. Let G1, G2, . . . Gn be S-good finite abelian groups, |G1| = |G2| =
· · · = |Gn| := M and let G = G1 × G2 × · · · × Gn. Fore every 0 < δ < 1 we
have RG(δ) = 1

2−δ (1 + o(1)).

Proof. We assume that n is an arbitrary but fixed number and M is large
enough. First we prove that RG(δ) ≤ 1

2−δ . Let |A| = |G|α and E(A) = |A|2+δ.
Let us denote the representation function of A + A by r(x) := |{(a, a′) ∈ A2 :
x = a + a′}|. Clearly

∑
x r(x) = |A|2 since we count all pairs of elements

of A. Furthermore recall that
∑

x r2A+A(x) = E(A) since the sum counts all
quadruples.

Now by the Cauchy inequality

|G|4α = |A|4 =

(
∑

x

rA+A(x)

)2

≤ |A + A|
∑

x

r2A+A(x)

= |A + A|E(A) ≤ |G||A|2+δ = |G|1+α(2+δ).

Hence 4α ≤ 1 + α(2 + δ) which gives α ≤ 1
2−δ . Now we will complete our

theorem showing the bound (1 + o(1))/(2 − δ).
Let 1 ≤ k ≤ n. We are going to define sets Ak ⊆ G for which E(Ak) =

|Ak|2+δ and |Ak| = |G|(1+o(1))/(2−δ).
Let Ak :=

∏k
i=1 Si × ∏n

j=k+1 Gj , where for every i and j, |Si| = (1 +
o(1))

√
M and clearly E(Gj) = M3, since every a, b, c ∈ Gj a + b − c ∈ Gj .

We have |Ak| = (1 + o(1))Mk/2Mn−k = (1 + o(1))Mn−k/2 and E(Ak) =
(1 + o(1))(4M)kM3(n−k) = (1 + o(1))M3n−2k+2k log 4/ log M .

Thus E(Ak) = (1+o(1))|Ak| 6n−4k
2n−k +2k log 4/ log M = |Ak|2+ 2n−2k

2n−k (1+o(1)). So
we have α = 2n−k

2n , and δ = 2n−2k
2n−k (1 + o(1)). Now

1
2 − δ

=
1

2 − 2n−2k
2n−k (1 + o(1))

=
2n − k

2n
(1 + o(1)) = α(1 + o(1)).

�

Acknowledgements

The author wish to thank the anonymous reviewer for his/her careful reading
of the manuscript.

Funding Open access funding provided by Eötvös Loránd University. The re-
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[6] Evertse, J.H.: Linear forms in logarithms. https://www.math.leidenuniv.nl/
∼evertse/dio2011-linforms.pdf
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