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Abstract. For monoids X,Y and a submonoid K ⊂ Y we define a K-
additive set-valued map F : X → 2Y as a map which is additive “modulo
K”. In the paper fundamental properties of K-additive set-valued maps
are studied. Among others, we prove that in the class of K-additive set-
valued maps K-lower (or weakly K-upper) boundedness on a “large” set
implies K-continuity on the domain, as well as K-continuity implies K-
homogeneity. We also study an algebraic structure of the K-homogeneity
set for K-additive set-valued maps.

Mathematics Subject Classification. Primary 39B62; Secondary 54C60,
26B25.

Keywords. K-additive set-valued map, K-Jensen set-valued map,
K-boundedness, K-continuity, null-finite set, K-homogeneity set.

1. Introduction

In the paper [7] the notions of K-subadditive set-valued maps (shortly called
s.v. maps) and K-superadditive s.v. maps have been introduced, which gener-
alize the well known notions of subadditive and superadditive real functions.

Definition 1. Let X,Y be commutative monoids and K ⊂ Y be a submonoid.1

Denote by n(Y ) the family of all nonempty subsets of Y . A set-valued map
F : X → n(Y ) is called K-subadditive, if

F (x) + F (y) ⊂ F (x + y) + K, x, y ∈ X, (1)

and K-superadditve, if

F (x + y) ⊂ F (x) + F (y) + K, x, y ∈ X. (2)

1A monoid M is a semigroup with a neutral element. A submonoid of a monoid M is a
subsemigroup of M with the same neutral element as in M .
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Here, we would like to introduce the notion of K-additivity for s.v. maps
in such a way to generalize the notion of additivity of real functions.

Since additive real functions can be characterized as functions which are
simultaneously subadditive and superadditive, the natural definition of K-
additivity is the following one.

Definition 2. Let X,Y be commutative monoids and K ⊂ Y be a submonoid.
A s.v. map F : X → n(Y ) is called K-additive, if it is simultaneously K-
subadditive and K-superadditive.

In the case K = {0} the notion of K-additivity coincides with the defi-
nition of additivity of s.v. maps introduced by Nikodem in [10].

If K = [0,∞), Y = R, and F is additionally single-valued, K-additivity
of F means classical additivity of the real function F .

The following properties of real additive functions defined on a real
normed space X seem to be well known (see e.g. [9, Theorems 5.2.1, 5.4.1,
5.4.2, 9.3.1, 9.3.2, 13.2.1, Lemma 13.2.3.]):

(i) each additive function satisfies Jensen’s equation, i.e.

f

(
x + y

2

)
=

f(x) + f(y)
2

, x, y ∈ X, (3)

(ii) each function satisfying Jensen’s equation and condition f(0) = 0 is ad-
ditive,

(iii) each additive function bounded above (or below) on a “large” set (i.e.
non-meager with the Baire property or of the positive Lebesgue measure)
has to be continuous,

(iv) each continuous additive function is linear,
(v) if X is additionally finite dimensional, each linear functional is continu-

ous,
(vi) the set Hf := {t ∈ R : f(tx) = tf(x) for all x ∈ X} is a field (called the

homogeneity field of f),
(vii) for every field L ⊂ R there is an additive function f : X → R such that

Hf = L.
The aim of the paper is to show properties of K-additive s.v. maps

which are in some sense analogous to those mentioned above, and even are
far-reaching generalizations of them.

At the beginning of the paper (in the Sect. 2) we show some examples
and basic properties of K-additive s.v. maps. Next, in the Sect. 3, we prove
that every K-additive s.v. map is K-Jensen. Moreover, we check that the
converse implication generally does not hold, however under some additional
assumptions we can get K-additivity of a K-Jensen s.v. map. In the Sect. 4 we
prove that in the class of K-additive s.v. maps weak K-upper boundedness as
well as K-lower boundedness on a “large” set imply K-continuity on the whole
domain and, moreover, K-continuity implies K-homogeneity. Finally, we show
that under some additional assumptions K-homogeneity implies K-continuity
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of a K-additive s.v. map. At the end of the paper, in the Sect. 5, we study an
algebraic structure of the K-homogeneity set of a K-additive s.v. map.

All necessary notions such as: K-Jensen s.v. map, K-upper/K-lower
boundedness, K-continuity and K-homogeneity, we explain in relevant sec-
tions for the convenience of the reader.

2. Basic Properties of K-Additive s.v. Maps

Lets start with some examples and basic properties of K-additive s.v. maps.

Example 1. Let X be a submonoid of
(
[0,∞),+

)
, Y be a real vector space

and A be a nonempty convex subset of Y . Then

FA(x) := xA, x ∈ X,

is {0}-additive, because (e.g. in view of [10, Lemma 1.1])

F (x + y) = (x + y)A = xA + yA = F (x) + F (y), x, y ∈ X.

Example 2. Let X be a commutative monoid, Y be a real vector space and
K ⊂ Y be a convex cone (i.e. K + K ⊂ K and tK ⊂ K for t ≥ 0). Fix t ≥ 0
and define

(tF )(x) := tF (x), x ∈ X.

Since tA + tB = t(A + B) for A,B ⊂ Y (see e.g. [10, Lemma 1.1]), if F is
K-additive, then tF is also K-additive.

Lemma 1. Let X,Y be commutative monoids and K ⊂ Y be a submonoid. If
F,G : X → n(Y ) are K-additive, then

(F + G)(x) := F (x) + G(x), x ∈ X,

is also K-additive. In particular, for every A ∈ n(Y ) satisfying 0 ∈ A ⊂ K,

(F + A)(x) := F (x) + A, x ∈ X,

is K-additive, too.

The proof of the above lemma is obvious.

Lemma 2. Let X,Y,Z be commutative monoids and K ⊂ Y , L ⊂ Z be sub-
monoids. If F : X → n(Y ) is K-additive and G : X → n(Z) is L-additive,
then

(F × G)(x) := F (x) × G(x), x ∈ X,

is K × L-additive.
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Proof. For every x, y ∈ X we get(
F (x) × G(x)

)
+

(
F (y) × G(y)

)
=

(
F (x) + F (y)

) × (
G(x) + G(y)

)
⊂ (

F (x + y) + K
) × (

G(x + y) + L
)

=
(
F (x + y) × G(x + y)

)
+ (K × L),

F (x + y) × G(x + y) ⊂ (
F (x) + F (y) + K

) × (
G(x) + G(y) + L

)
=

(
F (x) × G(x)

)
+

(
F (y) × G(y)

)
+ (K × L),

which ends the proof. �

Lemma 3. Let X be a commutative monoid, Y be a real topological vector space
and K be a submonoid of (Y,+). If F : X → n(Y ) is K-additive and sets F (x)
are relatively compact for x ∈ X, then

(cl F )(x) := clF (x), x ∈ X,

is cl K-additive.

Proof. Assume that F is K-additive. Since cl (A+B) = cl A+cl B for A,B ⊂ Y
such that the set cl A+cl B is closed (see [10, Lemma 1.9]), for every x, y ∈ X
we get

clF (x) + clF (y) = cl
(
F (x) + F (y)

) ⊂ cl
(
F (x + y) + K

)
= clF (x + y) + clK,

and

cl F (x + y) ⊂ cl
(
F (x) + F (y) + K

)
= cl

(
F (x) + F (y)

)
+ cl K

= cl F (x) + cl F (y) + cl K,

which proves clK-additivity of clF . �

Lemma 4. Let X be a commutative monoid, Y be a real topological vector space
and K be a convex cone in Y . If F : X → n(Y ) is K-additive and F (x) are
convex sets with non-empty interiors for x ∈ X, then

(int F )(x) := intF (x), x ∈ X,

is also K-additive.

Proof. Assume that F is K-additive. Since int (A+B) = int A+B and int (A+
C) = int A + intC for convex sets A,B,C ⊂ Y such that int A �= ∅ and
int C �= ∅ (see [10, Lemma 1.11]), for every x, y ∈ X we get

intF (x) + intF (y) = int
(
F (x) + F (y)

) ⊂ int
(
F (x+ y) +K

)
= intF (x+ y) +K,

intF (x+ y) ⊂ int
(
F (x) + F (y) +K

)
= int

(
F (x) + F (y)

)
+K

= intF (x) + intF (y) +K,

which proves K-additivity of intF . �
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Lemma 5. Let X be a commutative monoid, Y be a real vector space and K ⊂
Y be a convex cone satisfying K ∩ (−K) = {0}. Assume that z0 ∈ K \ {0} and
F : X → n(Y ) is the s.v. map given by

F (x) = [m(x),M(x)]z0, x ∈ X,

with m,M : X → R satisfying m(x) ≤ M(x) for x ∈ X. Then F is K-additive
if and only if m is additive.

Proof. First assume that m is additive. Then

F (x + y) = [m(x + y),M(x + y)]z0 ⊂ [m(x) + m(y),∞)z0

= [m(x),M(x)]z0 + [m(y),M(y)]z0 + [0,∞)z0 ⊂ F (x) + F (y) + K

and
F (x) + F (y) = [m(x) + m(y),M(x) + M(y)]z0 ⊂ [m(x + y),∞)z0

⊂ [m(x + y),M(x + y)]z0 + [0,∞)z0 ⊂ F (x + y) + K

for every x, y ∈ X, which means that F is K-additive.
Now, assume that F is K-additive. Then, for every x, y ∈ X,

m(x + y)z0 ∈ F (x + y) ⊂ F (x) + F (y) + K = [m(x) + m(y),M(x) + M(y)]z0 + K

and
(
m(x) +m(y)

)
z0 ∈ F (x) + F (y) ⊂ F (x+ y) +K = [m(x+ y),M(x+ y)]z0 +K.

Hence, for x, y ∈ X,(
m(x + y) − α

)
z0 ∈ K,

(
m(x) + m(y) − β

)
z0 ∈ K,

with some α ∈ [m(x) + m(y),M(x) + M(y)] and β ∈ [m(x + y),M(x + y)].
Since z0 ∈ K\{0} and K ∩ (−K) = {0},

m(x + y) ≥ α ≥ m(x) + m(y), m(x) + m(y) ≥ β ≥ m(x + y)

for x, y ∈ X, which proves additivity of m. �

From the above lemma we can easy derive the following useful corollary.

Corollary 6. Let X be a commutative monoid, K = [0,∞) and

F (x) = [m(x),M(x)], x ∈ X,

where m,M : X → R satisfy m(x) ≤ M(x) for x ∈ X. Then K-additivity of
F is equivalent to additivity of m.

Let us recall that a subset C of a uniquely 2-divisible commutative monoid
Y 2 is called mid-convex, if 1

2C + 1
2C ⊂ C. It is well known (see e.g. [9, Lemma

2 The monoid is called uniquely 2-divisible, if for every y ∈ Y there is a unique z ∈ Y such
that z + z = y.



221 Page 6 of 18 E. Jablońska and W. Jab�loński Results Math

5.1.1]) that mid-convexity is equivalent to D-convexity, i.e. dC +(1−d)C ⊂ C
for any d ∈ D ∩ [0, 1], where D is the set of dyadic numbers,

D =
{

k

2n
: k ∈ Z, n ∈ N ∪ {0}

}
.

Denote by D(A) D-convex hull of a subset A of a uniquely 2-divisible
commutative monoid Y (i.e. D(A) is the smallest D-convex set containing A).
Since D(A + B) = D(A) + D(B) for any A,B ⊂ Y , hence we can obtain the
following lemma.

Lemma 7. Let X be a commutative monoid, Y be a uniquely 2-divisible com-
mutative monoid and K ⊂ Y be a uniquely 2-divisible submonoid. If F : X →
n(Y ) is a K-additive s.v. map, then

DF (x) := D(F (x)), x ∈ X,

is K-additive.

Proof. By K-additivity, for x, y ∈ X we obtain

D(F (x + y)) ⊂ D(F (x) + F (y) + K) = D(F (x)) + D(F (y)) + D(K)

and

D(F (x)) + D(F (y)) = D(F (x) + F (y)) ⊂ D(F (x + y) + K) = D(F (x + y)) + D(K).

But K is a uniquely 2-divisible submonoid, so it is mid-convex and hence
D-convex. Consequently, D(K) = K, which ends the proof. �

Since conv (A + B) = conv A + conv B for any subsets A,B of a real
vector space Y , in the same way as Lemma 7 we can prove the next lemma.

Lemma 8. Let X be a commutative monoid, Y be a real vector space and K ⊂
Y be a convex cone. If F : X → n(Y ) is a K-additive s.v. map, then

conv F (x) := conv (F (x)), x ∈ X,

is K-additive.

At the end of the section, let us introduce a relation =K in the family
n(Y ) of all nonempty subsets of a monoid Y with a given submonoid K ⊂ Y :

A =K B ⇐⇒ (A ⊂ B + K ∧ B ⊂ A + K)

for every A,B ∈ n(Y ).
First let us observe that

A =K B ⇐⇒ A + K = B + K

for A,B ∈ n(Y ). Indeed, if A =K B, then A + K ⊂ B + K + K ⊂ B + K and,
analogously, B +K ⊂ A+K +K ⊂ A+K, which means that A+K = B +K.
On the other hand, if A + K = B + K, then A ⊂ A + K = B + K and
B ⊂ B + K = A + K, so A =K B.
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Lemma 9. If Y is a commutative monoid and K ⊂ Y is a submonoid, then
=K is an equivalence relation in n(Y ) and for every A,B,C,D ∈ n(Y ) the
following properties hold:

(i) if A =K B and C =K D, then A + C =K B + D,
(ii) if 0 ∈ C ⊂ K and A =K B + C, then A =K B,
(iii) if A =K B, then 1

2A =K
1
2B, provided Y,K are uniquely 2-divisible,

(iv) if A =K B, then tA =K tB for every t > 0, provided Y is a real vector
space and K is a convex cone in Y .

Proof. Let A,B,C,D ∈ n(Y ). Reflexivity and symmetry of the relation =K is
obvious. We show that this relation is transitive.

If A =K B and B =K C, then

A ⊂ B + K, B ⊂ A + K, B ⊂ C + K, C ⊂ B + K,

and hence
A ⊂ B + K ⊂ C + K + K ⊂ C + K,
C ⊂ B + K ⊂ A + K + K ⊂ A + K,

which means that A =K C. Consequently, =K is an equivalence relation.
(i) If A =K B and C =K D, then

A ⊂ B + K, B ⊂ A + K, C ⊂ D + K, D ⊂ C + K,

and hence
A + C ⊂ B + D + K + K ⊂ B + D + K,
B + D ⊂ A + C + K + K ⊂ A + C + K,

which means that A + C =K B + D.
(ii) Let 0 ∈ C ⊂ K and A =K B + C. Then

A ⊂ B + C + K ⊂ B + K + K ⊂ B + K,
B ⊂ B + C ⊂ A + K,

which means that A =K B.
(iii) Now, assume that Y and K are uniquely 2-divisible. If A =K B,

then

A ⊂ B + K, B ⊂ A + K, (4)

and hence
1
2
A ⊂ 1

2
B +

1
2
K ⊂ 1

2
B + K,

1
2
B ⊂ 1

2
A +

1
2
K ⊂ 1

2
A + K,

so 1
2A =K

1
2B.

(iv) Finally, assume that Y is a real vector space and K is a convex cone
in Y . If A =K B and t > 0, then (4) holds, and hence

tA ⊂ tB + tK ⊂ tB + K, tB ⊂ tA + tK ⊂ tA + K,

so tA =K tB. �
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Now, for commutative monoids X,Y and a submonoid K ⊂ Y , we can
easy write that a s.v. map F : X → n(Y ) is K-additive, if

F (x + y) =K F (x) + F (y), x, y ∈ X.

We will use this clear notation during the whole paper.

3. Connection Between K-Additivity and K-Jensen s.v. Maps

The next definition generalizes the notion of a Jensen s.v. map which has been
introduced in [10].

Definition 3. Let X,Y be uniquely 2-divisible commutative monoids and K ⊂
Y be a submonoid. A s.v. map F : X → n(Y ) is called K-Jensen if it is
simultaneously K-midconvex and K-midconcave, i.e.

F

(
x + y

2

)
=K

1
2
(
F (x) + F (y)

)
, x, y,∈ X.

Example 3. If X is a uniquely 2-divisible commutative monoid, K = [0,∞)
and F (x) = [m(x),M(x)], where m,M : X → R satisfy m(x) ≤ M(x) for
x ∈ X, then F is K-Jensen if and only if m satisfies Jensen’s equation (3).

Lemma 10. Let X,Y be uniquely 2-divisible commutative monoids and K ⊂ Y
be a uniquely 2-divisible submonoid. If F : X → n(Y ) is a K-additive mid-
convex-valued map, then it is K-Jensen.

Proof. For every x, y ∈ X, by K-additivity of F , mid-convexity of F
(

x+y
2

)
and transitivity of =K , we get

2F

(
x + y

2

)
= F

(
x + y

2

)
+ F

(
x + y

2

)
=K F (x + y) =K F (x) + F (y).

To end the proof it is enough to apply Lemma 9 (iii). �
It is clear that there are s.v. maps which are K-Jensen but not K-additive;

it is enough to choose K = [0,∞) and F : R → n(R) given by F (x) = [x +
1, x + 2] for x ∈ R.

However, under some additional assumptions, K-Jensen s.v. maps have
to be K-additive.

Theorem 11. Let X,Y be uniquely 2-divisible commutative monoids and K ⊂
Y be a submonoid. If F : X → n(Y ) is a K-Jensen mid-convex-valued map
such that 0 ∈ F (0) ⊂ K, then it is K-additive.
Proof. According to Lemma 9 (i),

F (x) + F (y) = F

(
2x + 0

2

)
+ F

(
2y + 0

2

)

=K
1

2

(
F (2x) + F (0)

)
+

1

2

(
F (2y) + F (0)

)
=

F (2x) + F (2y)

2
+ F (0)

=K F

(
2x + 2y

2

)
+ F (0) = F (x + y) + F (0)
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for any x, y ∈ X. Hence, since 0 ∈ F (0) ⊂ K, by Lemma 9 (ii) we get F (x +
y) =K F (x) + F (y) for every x, y ∈ X. �

The converse theorem to Theorem 11 holds under some additional as-
sumptions on Y,K and F .

Theorem 12. Let X be a uniquely 2-divisible commutative monoid, Y be a real
vector metric space and K be a closed convex cone in Y such that K ∩ (−K) =
{0}. Let F : X → n(Y ) be a s.v. map such that F (x) are compact convex
sets for x ∈ X. Then F is K-additive if and only if F is K-Jensen and
0 ∈ F (0) ⊂ K.

Proof. By Theorem 11 and Lemma 10 it is enough to show that if F is K-
additive, then 0 ∈ F (0) ⊂ K.

In view of K-additivity,

2F (0) = F (0) + F (0) =K F (0),

and hence, according to Lemma 9 (iii),

F (0) =K
1
2
F (0),

F (0) =K
1
2
F (0) =K

1
4
F (0),

and, using induction, we get

F (0) =K
1
2n

F (0) for every n ∈ N.

In the first step we show that F (0) ⊂ K. So, take any y ∈ F (0). Since

F (0) ⊂ 1
2n

F (0) + K for n ∈ N,

we can find sequences (yn)n∈N ⊂ F (0) and (kn)n∈N ⊂ K such that y = yn

2n +kn.
But F (0) is compact, so there is a convergent subsequence (ysn

)n∈N of (yn)n∈N.
Thus

ksn
= y − ysn

2sn
→ y

and whence y ∈ cl K = K.
Next, we prove that 0 ∈ F (0). Since

1
2n

F (0) ⊂ F (0) + K for n ∈ N,

for fixed y ∈ F (0) the sequence
{

y
2n

}
n∈N

is contained in F (0)+K and converges
to 0. Hence 0 ∈ cl (F (0) + K) ⊂ F (0) + K. It means that there is some
y0 ∈ F (0) ⊂ K such that −y0 ∈ K. Hence y0 ∈ K ∩ (−K) = {0}, which ends
the proof. �
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At the end of the section let us mention another well known property
(see [9, Theorem 13.2.1]) that each real function satisfying Jensen’s equality
is a translation of an additive function by a constant. A similar result holds
also for {0}–Jensen s.v. maps (see [10, Theorem 5.6]). Unfortunately, we are
not able to answer the following question.

Problem 1. Let X,Y,K be as in Theorem 12 and F : X → n(Y ) be a convex-
valued K-Jensen map. Are there a K-additive s.v. map A : X → n(Y ) and
a set B ⊂ Y such that F (x) =K A(x) + B for x ∈ X?

4. K-Continuity of K-Additive s.v. Maps

From now on we will use the following notations for families of subsets of a real
vector space Y :

• B(Y ) – the family of all nonempty bounded subsets of Y ,
• BC(Y ) – the family of all nonempty bounded convex subsets of Y ,
• CC(Y ) – the family of all nonempty compact convex subsets of Y .

First, let us recall definitions of K-boundedness and K-continuity of s.v.
maps from the paper [10].

Definition 4. Let X,Y be real topological vector spaces and K be a convex
cone in Y . A s.v. map F : X → n(Y ) is called:

• K-upper bounded on a set A ⊂ X, if there exists a set B ∈ B(Y ) such
that

F (x) ⊂ B − K for all x ∈ A;

• weakly K-upper bounded on a set A ⊂ X, if there exists a set B ∈ B(Y )
such that

F (x) ∩ (B − K) �= ∅ for all x ∈ A;

• [weakly] K-lower bounded on a set A ⊂ X, if it is [weakly] (−K)-upper
bounded on this set,

• K-continuous at x0 ∈ X, if for every neighborhood W ⊂ Y of 0 there is
a neighborhood U of x0 such that

F (x) ⊂ F (x0) + W + K and F (x0) ⊂ F (x) + W + K

for all x ∈ U.

Remark 1. Clearly, in the case when K = {0}, [weak] K-upper boundedness
and [weak] K-lower boundedness are equivalent assumptions and K-continuity
means continuity with respect to the Hausdorff topology on n(Y ).

Remark 2. For a real topological vector space X and K = [0,∞) define

F (x) = [m(x),M(x)], x ∈ X,

where m,M : X → R satisfy m(x) ≤ M(x) for x ∈ X. It is very easy to show
that:
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(a) F is K-lower (weakly K-upper) bounded on a set if and only if m is
bounded below (above, resp.) on this set,

(b) F is K-continuous at a point if and only if m is continuous at this point.

Let us also recall the notion of “smalness” introduced in [1,2] (see also
the notion of a shift-compact set in [3]).

Definition 5. The set A in a topological group X is called null-finite, if there is
a sequence (xn)n∈N convergent to 0 in X such that the set {n ∈ N : x+xn ∈ A}
is finite for every x ∈ X.

If X is a complete metric group, then every Borel null-finite set B ⊂ X
is “small” in topological and measured senses, which means that it is:

• Haar-null, i.e. there exists a probability σ-additive Borel measure ν on
X such that ν(B + x) = 0 for each x ∈ X (see [4] and [2, Theorem 6.1]);
consequently, B has Haar measure zero provided X is additionally locally
compact,

• Haar-meager, and consequently meager, i.e. there exists a continuous
function f : 2ω → X such that f−1(B + x) is meager for each x ∈ X
(see [5], [2, Theorem 5.1], [1, Proposition 5.1]).
In [6, Theorems 3.1 and 3.2] the authors proved that for real vector

metric spaces X,Y each s.v. map F : X → BC(Y ) which is K-midconvex
and weakly K-upper bounded on a non-null finite set, or K-midconcave and
K-lower bounded on a non-null finite set, has to be K-continuous. Hence,
directly from Lemma 10, we can obtain the following important result, which
generalizes [6, Theorem 3.4] and also [10, Theorem 5.1].

Theorem 13. Let X,Y be real vector metric spaces. Assume that K is a convex
cone in Y . If a s.v. map F : X → BC(Y ) is K-additive and satisfies one of the
following conditions:

• F is weakly K-upper bounded on a non-null finite set,
• F is K-lower bounded on a non-null-finite set,

then F is K-continuous on X.

In the above theorem the assumption that F is K-lower bounded on
a non-null-finite set can not be replaced by a weaker one, i.e. by weak K-lower
boundedness on such a set.

Example 4. Let a : R → R be a discontinuous additive function, K = [0,∞)
and F : R → BC(R) be given by

F (x) = [a(x),max{1, a(x) + 1}], x ∈ R.

In view of Corollary 6 and Remark 2b) such a map is K-additive, but is not
K-continuous at any point of R. Moreover, F (x) ∩ ({0} + K) �= ∅ for x ∈ R,
so F is weakly K-lower bounded on the whole domain.
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It is known that K-continuity at a point of a s.v. map implies weak K-
upper boundedness, as well as K-lower boundedness, on a neighbourhood of
this point (see e.g. [8, Section 3]). Hence, by Theorem 13, we can easy derive
the following corollary.

Corollary 14. Let X,Y be real vector metric spaces and K ⊂ Y be a convex
cone. If a s.v. map F : X → BC(Y ) is K-additive and K-continuous at a point,
then F is K-continuous on X.

Knowing that real continuous additive functions have to be linear, we
would like to show some kind of K-homogeneity of K-continuous K-additive
s.v. maps.

Theorem 15. Let X,Y be real vector metric spaces and K be a closed convex
cone in Y such that K ∩ (−K) = {0}. If F : X → CC(Y ) is a K-continuous
and K-additive s.v. map, then it is K-homogeneous, i.e.

F (tx) =K tF (x), x ∈ X, t ≥ 0. (5)

Moreover, if F is not single-valued,

{t ∈ R : F (tx) =K tF (x) for x ∈ X} = [0,∞).

Proof. According to Theorem 12, 0 ∈ F (0) ⊂ K and F is K-midconvex and
K-midconcave. Thus, in view of [10, Theorems 3.1 and 4.1], F is K-convex
and K-concave, i.e.

tF (x) + (1 − t)F (y) =K F (tx + (1 − t)y), x, y ∈ X, t ∈ [0, 1].

Hence, for y = 0,

tF (x) + (1 − t)F (0) =K F (tx), x ∈ X, t ∈ [0, 1].

Clearly, since 0 ∈ F (0) ⊂ K, we get 0 ∈ (1− t)F (0) ⊂ (1− t)K ⊂ K, and thus,
in view of Lemma 9 (ii),

tF (x) =K F (tx), x ∈ X, t ∈ [0, 1].

Now, we can complete the proof of (5) by induction. Fix n ∈ N and
assume that F (tx) =K tF (x) for every t ∈ [n, n + 1] and x ∈ X. Take any
t ∈ [n + 1, n + 2]. Then t − 1 ∈ [n, n + 1], so, by K-additivity,

F (tx) =K F ((t − 1)x) + F (x) =K (t − 1)F (x) + F (x) = tF (x)

for every x ∈ X.
Finally, assume that F is not single-valued. For the proof by contradiction

suppose that for some t > 0

F (−tx) =K −tF (x), x ∈ X.

Then, by (5), F (tx) =K tF (x) and, in view of Theorem 12 and K-additivity
of F ,

t
(
F (x) − F (x)

)
= tF (x) + (−t)F (x) ⊂ (

F (tx) + K
)

+
(
F (−tx) + K

)
⊂ F (tx − tx) + K = F (0) + K ⊂ K
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for x ∈ X. Hence

−(
F (x) − F (x)

)
= F (x) − F (x) ⊂ 1

t
K ⊂ K,

and, consequently, F (x) − F (x) ⊂ K ∩ (−K) = {0} for x ∈ X, which means
that all sets F (x) are singletons. This contradiction ends the proof. �

Theorem 15 with K = {0} was proved by Nikodem (see [10, Theorem
5.3]).

Now, the question is what about the converse result? More precisely,
is it true that every K-additive and K-homogeneous s.v map has to be K-
continuous?

In the next example we show that generally it is not true.

Example 5. Let K = [0,∞), X be an infinite dimensional real normed space,
m,M : X → R, m(x) ≤ M(x) for x ∈ X. If m is a discontinuous linear func-
tional, then F (x) = [m(x),M(x)], x ∈ X, is a K-additive and K-homogeneous
s.v. map, which is not K-continuous.

However, under some natural additional assumptions, we can obtain the
converse result to Theorem 15.

Theorem 16. Let X be a finite dimensional real normed space, Y be a real
normed space and K be a convex cone in Y . If F : X → CC(Y ) is a K-additive
and K-homogeneous s.v. map, it is K-continuous on X.

Proof. Let K∗ be the set of all continuous linear functionals on Y which are
non-negative on K. For every y∗ ∈ K∗ define

fy∗(x) = inf y∗(F (x)), x ∈ X.

First, observe that for every y∗ ∈ K∗ and A,B ∈ CC(Y ),

if A =K B, then inf y∗(A) = inf y∗(B). (6)

Indeed, let A =K B. Then

y∗(A) ⊂ y∗(B + K) ⊂ y∗(B) + [0,∞),

and hence inf y∗(A) ≥ inf y∗(B). In view of symmetry of =K , we get inf y∗(B) ≥
inf y∗(A). Thus condition (6) holds.

Now, fix y∗ ∈ K∗. We prove that fy∗ is a linear functional. Since F is
K-additive, F (x1 + x2) =K F (x1) + F (x2) for x1, x2 ∈ X, thus, by (6),
fy∗(x1) + fy∗(x2) = inf y∗(F (x1)) + inf y∗(F (x2)) = inf

(
y∗(F (x1)) + y∗(F (x2))

)
= inf y∗(F (x1) + F (x2)) = inf y∗(F (x1 + x2)) = fy∗(x1 + x2)

for all x1, x2 ∈ X, which proves additivity of fy∗ . Moreover, by K-homogeneity
of F , F (tx) =K tF (x) for t ≥ 0 and x ∈ X. Hence, in view of (6),

fy∗(tx) = inf y∗(F (tx)) = inf y∗(tF (x)) = inf ty∗(F (x)) = tfy∗(x)

for t ≥ 0 and x ∈ X. Since every additive real function is odd, fy∗ is a linear
functional.
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In this way we obtained that every functional fy∗ : X → R is linear, so it
is continuous because X is finite dimensional. But in view of [8, Theorem 4]
K-subadditive s.v. map for which fy∗ is continuous for every y∗ ∈ K∗ has to
be weakly K-upper bounded on an open set. Thus, according to Theorem 13,
F is K-continuous, which ends the proof. �

5. Algebraic Structure of a K-Homogeneity Set

As we mentioned in the introduction, for every additive function f : X → R

defined on a real vector space X the set

Hf := {t ∈ R : f(tx) = tf(x) for all x ∈ X}
is a field, called the homogeneity field of f . Moreover, the following result holds.

Theorem 17 [9, Theorem 5.4.2]. Let X be a real vector space. For every field
L ⊂ R there is an additive function f : X → R such that Hf = L.

Now, for real vector spaces X,Y , a s.v. map F : X → n(Y ) and a closed
convex cone K ⊂ Y such that K ∩ (−K) = {0}, we would like to define in the
same way the K-homogeneity set of F ,

HF,K := {t ∈ R : F (tx) =K tF (x) for all x ∈ X} .

First, let us prove basic properties of HF,K .

Theorem 18. Let X be a real vector space, Y be a real vector metric space
and K ⊂ Y be a closed convex cone such that K ∩ (−K) = {0}. If a s.v.
map F : X → CC(Y ) is K-additive and not single-valued, then the following
conditions hold:

(i) {0, 1} ⊂ HF,K ⊂ [0,∞),
(ii) s + t ∈ HF,K for s, t ∈ HF,K ,
(iii) s

t ∈ HF,K for s, t ∈ HF,K with t �= 0;

i.e. HF,K is a submonoid of
(
[0,∞),+

)
and HF,K\{0} is a subgroup of(

(0,∞), ·).
Proof. (i) Clearly, 1 ∈ HF,K and, in view of Theorem 12, 0 ∈ F (0) ⊂ K, so
0 ∈ HF,K . We have to prove yet that HF,K ⊂ [0,∞).

For the proof by contradiction suppose that there is t > 0 such that
−t ∈ HF,K . Fix arbitrary x ∈ X. Notice that in view of K-additivity of F

F (x) + F (−x) ⊂ F (0) + K ⊂ K,

which easy implies

F (x) ⊂ −F (−x) + K. (7)

Moreover, since −t ∈ HF,K ,

− tF (−x) ⊂ F (−t(−x)) + K = F (tx) + K (8)
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and

F (tx) − tF (x) ⊂ F (tx) + F (−tx) + K ⊂ F (0) + K ⊂ K. (9)

Hence, according to (7)–(9),

tF (x) − tF (x) ⊂ t
(− F (−x) + K

) − tF (x) ⊂ −tF (−x) − tF (x) + K
⊂ (

F (tx) + K
) − tF (x) + K ⊂ F (tx) − tF (x) + K ⊂ K.

Thus

−(
F (x) − F (x)

)
= F (x) − F (x) ⊂ 1

t
K ⊂ K,

which means that F (x)−F (x) ⊂ K ∩ (−K) = {0}. But this implies that F (x)
is a singleton for each x ∈ X, which contradicts the assumption.

(ii) Let s, t ∈ HF,K and x ∈ X. Then

F (tx) =K tF (x), F (sx) =K sF (x),

and hence, by K-additivity of F ,

F ((s + t)x) = F (sx + tx) =K F (sx) + F (tx) =K sF (x) + tF (x) = (s + t)F (x),

which means that s + t ∈ HF,K .
(iii) Now, assume that s, t ∈ HF,K , t �= 0 and x ∈ X. Then

F
(s

t
x
)

=K sF

(
1
t
x

)
.

Hence, according to Lemma 9 (iv),

tF
(s

t
x
)

=K tsF

(
1
t
x

)
=K sF

(
t
1
t
x

)
= sF (x),

and, consequently,

F
(s

t
x
)

=K
s

t
F (x),

which means that s
t ∈ HF,K . �

For a s.v. map F in a special form we can obtain further important
properties of HF,K .

Corollary 19. Let X be a real vector space, Y be a real vector metric space
and K ⊂ Y be a closed convex cone such that K ∩ (−K) = {0}. Assume that
z0 ∈ K \ {0} and

F (x) = [m(x),M(x)]z0, x ∈ X,

where m,M : X → R satisfy m(x) < M(x) for x ∈ X. If F is K-additive, then
m is additive and the following conditions hold:

(i) {0, 1} ⊂ HF,K ⊂ [0,∞),
(ii) s + t ∈ HF,K for s, t ∈ HF,K ,
(iii) s

t ∈ HF,K for s, t ∈ HF,K with t �= 0,
(iv) HF,K = Hm ∩ [0,∞), where Hm is the homogeneity field of m,
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(v) s − t ∈ HF,K for s, t ∈ HF,K such that s − t ≥ 0.

Proof. Since F is K-additive, in view of Lemma 5, m is additive. According
to Theorem 18, it is enough to show (iv) and (v).

(iv) Fix t ∈ HF,K . By Theorem 18 (i), t ≥ 0 and, for every x ∈ X, we
get

[m(tx),M(tx)]z0 = F (tx) =K tF (x) = [tm(x), tM(x)]z0.

Hence (
m(tx) − α

)
z0 ∈ K,

(
tm(x) − β

)
z0 ∈ K

for some α ∈ [tm(x), tM(x)] and β ∈ [m(tx),M(tx)]. Since z0 ∈ K \ {0} and
K ∩ (−K) = {0},

m(tx) ≥ α ≥ tm(x), tm(x) ≥ β ≥ m(tx),

which proves that t ∈ Hm.
On the other hand, if t ∈ Hm ∩ (0,∞), then

F (tx) = [m(tx),M(tx)]z0 ⊂ [m(tx),∞)z0 = t[m(x),∞)z0

= t[m(x),M(x)]z0 + [0,∞)z0 ⊂ tF (x) + K

and
tF (x) = t[m(x),M(x)]z0 = [m(tx), tM(x)]z0 ⊂ [m(tx),∞)z0

= [m(tx),M(tx)]z0 + [0,∞)z0 ⊂ F (tx) + K

for every x ∈ X. It means that t ∈ HF,K . Moreover, if t = 0, in view of (i)
0 ∈ HF,K .

(v) Take s, t ∈ HF,K such that s − t ≥ 0. Then, according to (iv), s, t
belongs to the field Hm and hence s − t ∈ Hm ∩ [0,∞) = HF,K , which ends
the proof. �

Problem 2. Is it true that under assumptions of Theorem 18 condition (v) of
Corollary 19 holds?

We can give the positive answer to the above problem only in the case
when F is additionally K-continuous and not single-valued, because then, in
view of Theorem 15, HF,K = [0,∞).

Finally, let us prove a result which seems to be (in some sense) analogous
to Theorem 17.

Theorem 20. Let S ⊂ R be a set satisfying the following conditions:
(i) {0, 1} ⊂ S ⊂ [0,∞),
(ii) s + t ∈ S for s, t ∈ S,
(iii) s

t ∈ S for s, t ∈ S with t �= 0,
(iv) s − t ∈ S for s, t ∈ S with s − t ≥ 0.
Assume that X is a real vector space, Y is a real vector metric space and
K ⊂ Y is a closed convex cone such that K ∩ (−K) = {0}. Then there exists
a s.v. map F : X → CC(Y ) such that S = HF,K .
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Proof. First we prove that L := S ∪ (−S) is a subfield of R, i.e.

s − t ∈ L, s, t ∈ L, (10)
s

t
∈ L, s, t ∈ L, t �= 0. (11)

Let s, t ∈ L. If s ∈ S and t ∈ −S, then −t ∈ S and s − t ∈ S ⊂ L by (ii).
If s, t ∈ S or s, t ∈ −S, then either s − t ≥ 0 or s − t ≤ 0, hence, according to
(iv), s − t ∈ S ∪ (−S) = L. Thus (10) holds.

Now, let s, t ∈ L with t �= 0. If s ∈ S and t ∈ −S, then −t ∈ S and
s
t = −( s

−t ) ∈ −S ⊂ L. If s, t ∈ S or s, t ∈ −S, then, by (iii), s
t = −s

−t ∈ S ⊂ L.
Hence (11) holds.

Knowing that L is a field, according to Theorem 17 we can find an additive
function f : X → R such that Hf = L.

Fix z0 ∈ K \ {0} and define F : X → CC(Y ) by

F (x) = [f(x), f(x) + 1]z0, x ∈ X.

Since f is additive, in view of Lemma 5, F is K-additive, and hence, according
to Corollary 19,

HF,K = Hf ∩ [0,∞) = L ∩ [0,∞) = S,

which ends the proof �
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