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1. Introduction

Topological rings and modules have been widely studied in the literature. We
refer the reader to [2,8,17] for a broad perspective on the topic. In most studies
of topological ordered rings, the order topology is typically considered only on
totally ordered sets. In this manuscript, we will consider the order topology
in partially ordered rings and modules. As an application of our study, we are
capable of extending classical concepts from measure theory, such as Radon
and regular measures to the scope of measures valued on ordered modules.

Classical Measure Theory (see [12]) deals with positive real-valued mea-
sures defined on Boolean algebras of sets. Due to the famous Stone Represen-
tation Theorem for Boolean algebras [15], every Boolean algebra is isomorphic
(in the category of Boolean algebras) to a Boolean algebra of sets. This way,
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Classical Measure Theory retained full generality when defining classical mea-
sures until the birth of effect algebras [9]. However, these classical measures
were always real or complex valued. In the remarkable book [7], real and com-
plex Banach space valued measures defined on a Boolean algebra of sets were
deeply studied. After the irruption of effect algebras, which extend the concept
of boolean algebras of sets, an extensive study of non-real or complex valued
measures has been performed. We refer the reader to [1,3–6,9,13,19] where
valued measures on commutative groups, commutative topological groups,
Hausdorff locally convex topological vector spaces and normed spaces were
considered. Finally, in [10], topological module valued measures were analysed
by using the algebraic structure of modules over rings. Classical concepts such
as Radon and regularity for measures were studied for positive real-valued
measures (see [11,12]) and in [7], the notion of Radon measure was taken to
the scope of Banach space valued measures.

Our paper is organized as follows: in Sect. 2 we first recall the basic
properties of ordered rings. We introduce the notion of faithful ring order and
illustrate this concept by providing some examples in the context of bounded
operators on a Hilbert space. We later obtain similar results for ordered mod-
ules over ordered rings. We concentrate on topological ordered rings, which
are ordered rings where the order topology is a ring topology and we obtain
necessary and sufficient conditions to ensure when an ordered ring is an or-
dered topological ring. In Sect. 3 we extend the classical notions of Radon and
regular measures to the scope of module-valued measures. We provide clas-
sical characterizations of these measures and the hereditariness of regularity
for conditional ring-valued measures in this context. When the order topology
in an ordered module is a module topology, we then relate inner and outer
regular measures and inner regular measures with Radon measures.

2. Ring and Module Orders and Topologies

Throughout this manuscript and unless otherwise stated, all rings will be as-
sociative, unitary and nonzero, all monoid actions considered will be left, and
all modules M over rings will be unital (1m = m, ∀m ∈ M) and nonzero.
Recall that if X is a partially ordered set (in what follows a poset), then ↑x :=
{y ∈ X : y ≥ x}, ↓x := {y ∈ X : y ≤ x}, ↑×x := (↑x) \{x} = {y ∈ X : y > x},
↓×x := (↓x) \{x} = {y ∈ X : y < x} for every x ∈ X. The interval notation
will be used in the manuscript, that is, (−∞, y] := ↓ y, [x,∞) := ↑ x, and
[x, y] =↑x ∩ ↓y (similarly for open intervals). Finally, if X is a topological
space and A is a subset of X, then cl(A) stands for the closure of A.

2.1. Ordered Rings/Modules

Let R be a ring. A partial order ≤ on R is called a ring order provided that for
all r, s ∈ R with r ≤ s, r+t ≤ s+t for all t ∈ R, and for all r, s ∈ R+, rs ∈ R+,
where R+ := ↑0 = {t ∈ R : t ≥ 0}, that is, a partial order compatible with
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the ring operations. Ordered rings are just rings endowed with a ring order.
We refer the reader to [14] for the basics on ring orders such as the following
proposition.

Proposition 2.1. Let R be a nonzero ordered ring. For all r, s, t, u ∈ R:
• If r < s and t ≤ u, then r + t < s + u.
• If r < s and t > 0 is not a left zero-divisor (resp. right zero-divisor), then

tr < ts (resp. rt < st).
• If r < s, then s − r > 0 and −s < −r. In particular, R− := ↓0 = {a ∈

R : a ≤ 0} = −R+. Also, −(↓r) = ↑(−r) and −(↑r) = ↓(−r).
• If 0, 1 are comparable, then 0 < 1 and char(R) = 0.
• If r, 0 are comparable, then r2 ≥ 0.
• R is totally ordered if and only if R+ ∪ R− = R.

Remark 2.2. Notice that there are other examples of ordered rings for which
0, 1 are not comparable. Indeed, the trivial partial order r ≤ s ⇔ r = s is
clearly a ring order for which 0, 1 are not comparable (unless 1 = 0).

Let R be a ring. If ≤ is a ring order on R, then the positive cone R+

satisfies that 0 ∈ R+, R+ ∩ R− = {0}, R+ + R+ ⊆ R+, and R+R+ ⊆ R+.
Conversely, if S ⊆ R is a subset of R satisfying the four conditions above,
then there exists a unique ring order on R, given by r ≤ s ⇔ s − r ∈ S for
all r, s ∈ R, for which S = R+. A subset S ⊆ R satisfying all four previous
conditions will be called a ring ordered set. It is trivial that the intersection
of any family of ring ordered subsets is again a ring ordered subset, and the
union of any increasing family of ring ordered subsets is again a ring ordered
subset. By means of Zorn’s Lemma, we will demonstrate the existence of ring
orders.

Lemma 2.3. Let R be a ring. There exists a maximal ring ordered subset S ⊆
R. If, in addition, char(R) = 0, then S can be taken in such a way that 1 ∈ S,
resulting in 0, 1 being comparable.

Proof. Let L := {T ⊆ R : T is a ring ordered subset}. Notice that L = ∅

since {0} ∈ L. If C ⊆ L is a chain of L, then
⋃

C ∈ L. Finally, Zorn’s Lemma
guarantees the existence of maximal elements in L. If char(R) = 0, then we can

consider L1 := {T ∈ L : 1 ∈ T}. Notice that L1 = ∅ since {0} ∪ {
n

︷ ︸︸ ︷
1 + · · · + 1 :

n ∈ N} ∈ L1. Also, any chain C ⊆ L1 satisfies that
⋃

C ∈ L1. Zorn’s Lemma
guarantees again the existence of maximal elements in L1. �

Ring orders for which 0, 1 are comparable will be called unital ring orders.
Similarly, if a ring ordered subset contains 1, then it will be called a unital ring
ordered subset. We now introduce the following definition that will be later
needed.

Definition 2.4. A ring order ≤ on a ring R is called faithful provided that
R+ ∪ R− is a subring of R.
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Notice that a ring order is faithful if and only if r − s ∈ R+ ∪ R− for all
r, s ∈ R+. In other words, a ring order is faithful if and only if R+ is totally
ordered. A slight modification in the proof of Lemma 2.3 serves to show the
existence of maximal faithful ring orders in rings of characteristic 0.

In order to illustrate the concept of a faithful ring order, we will now
provide some examples of faithful and non-faithful ring orders in the space of
bounded operators defined on a complex Hilbert space H, denoted as B(H). A
bounded operator T ∈ B(H) is said to be selfadjoint provided that T = T ′, that
is, (T (h)|k) = (h|T (k)) for all h, k ∈ B(H). The subset of selfadjoint bounded
operators has structure of real vector space. In fact, selfadjoint bounded op-
erators can be characterized as those operators for which (T (h)|h) ∈ R for all
h ∈ H. This fact induces the following partial order in the real vector subspace
of selfadjoint bounded operators: T ≤ S ⇔ (T (h)|h) ≤ (S(h)|h) for all h ∈ H.
This order is a real vector space order, that is, T ≤ S ⇒ T + R ≤ S + R
and T ≤ S ⇒ λT ≤ λS for all selfadjoint bounded operators T,R, S and all
λ ≥ 0. However, the previous order does not behave well as a ring order. In
fact, the set of selfadjoint bounded operators is not a subring of B(H) since
(T ◦ S)′ = S′ ◦ T ′ = S ◦ T for T, S selfadjoint and bounded. Even if T, S are
commuting positive selfadjoint bounded operators, it cannot be guaranteed
that T ◦ S is positive (this fact, however, holds if dim(H) < ∞). We refer the
reader to [16] for more background about selfadjoint operators. In the upcom-
ing results, we will unveil a unital ring ordered subset in B(H) consisting of
positive selfadjoint bounded operators.

Remark 2.5. Let H be a complex Hilbert space. Every bounded operator T ∈
B(H) satisfies that |(T (h)|h)| ≤ ‖T‖(h|h) for all h ∈ H, meaning that if T is
selfadjoint, then −‖T‖I ≤ T ≤ ‖T‖I.

The previous remark establishes that any selfadjoint bounded operator
is comparable with a multiple of the identity. However, there are examples
of positive selfadjoint bounded operators not comparable with the identity.
Recall that the numerical radius of a bounded operator T ∈ B(H) is defined
as r(T ) := suph∈SH

|(T (h)|h)|, where SH stands for the unit sphere of H.

Lemma 2.6. Let H be a complex Hilbert space. Let T ∈ B(H) be selfadjoint. If
r(T ) > 1 and ker(T ) = {0}, then T is not comparable with the identity I.

Proof. Since r(T ) > 1, there exists h ∈ SH such that (T (h)|h) > 1 = (h|h).
On the other hand, (T (h)|h) = 0 < (h|h) for each h ∈ ker(T )\{0}. �
Example 2.7. Let H be a complex Hilbert space. Fix a proper closed subspace
P of H. Take T = 2πP , where πP stands for the orthogonal projection onto
P . If p ∈ SP , then (T (p)|p) = (2p|p) = 2 > 1, hence r(T ) > 1. Next, if q ∈ P⊥,
then T (q) = 0, so ker(T ) = {0}. Finally, T is clearly selfadjoint and positive.

Theorem 2.8. Let H be a complex Hilbert space. Let T ∈ B(H) selfadjoint
and positive. Then S := R

+[T ] is a unital ring ordered subset of B(H). If, in
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addition, T is not comparable with I, then the ring order induced by S in B(H)
is not faithful. However, if T := I, then the ring order induced by S in B(H)
is faithful.

Proof. First off, it is clear that S + S ⊆ S, 0, I ∈ S, and SS ⊆ S. Let us
prove that S ∩ −S = {0}. Indeed, let p, q ∈ R

+[x] such that p(T ) = −q(T ).
Note that p(T ) is selfadjoint and positive, so −q(T ) is selfadjoint and positive,
meaning that q(T ) is selfadjoint and negative, so q(T ) = 0. Next, let us assume
that T is not comparable with I. We will show that the ring order induced
by S in B(H) is not faithful. Indeed, take 2I + T, I + 2T ∈ R

+[T ]. Then
(2I + T ) − (I + 2T ) = I − T . If I − T ∈ R

+[T ], then I − T ≥ 0, so I and
T are comparable. If T − I ∈ R

+[T ], then T − I ≥ 0, so again I and T are
comparable. Finally, suppose that T := I. Notice that S := R

+[I] = R
+I,

which is clearly totally ordered, hence the ring order induced by S in B(H) is
faithful. �

Let M be a module over an ordered ring R. A partial order ≤ on M is
called a module order provided that for all m,n ∈ M with m ≤ n, m+p ≤ n+p
for all p ∈ M , and for all m,n ∈ M with m ≤ n, rm ≤ rn for all r ∈ R+. As
usual, we will let M+ := ↑0 = {m ∈ M : m ≥ 0}. Ordered modules are just
modules, over ordered rings, endowed with a partial order compatible with
the module operations. Notice that ordered rings are ordered modules over
themselves.

The following are basic properties satisfied by module orders which can
be found in [14].

Proposition 2.9. Let R be an ordered ring and M an ordered R-module. For
all m,n, p, q ∈ M and all r, s ∈ R:

• If m < n and p ≤ q, then m + p < n + q.
• If r ≤ s and m ≥ 0, then rm ≤ sm.
• If m < n, then m − n > 0 and −n < −m. In particular, M− := ↓0 =

{m ∈ M : m ≤ 0} = −M+. Also, −(↓m) = ↑(−m), −(↑m) = ↓(−m),
↓m = m + M−, and ↑m = m + M+.

• M is totally ordered if and only if M+ ∪ M− = M .

Let M be an R-module. If ≤ is a module order on M , then the positive
cone M+ satisfies that 0 ∈ M+, M+ ∩ M− = {0}, M+ + M+ ⊆ M+, and
R+M+ ⊆ M+. Conversely, if S ⊆ M is a subset of M satisfying the previous
four conditions, then there exists a unique module order on M , given by m ≤
n ⇔ m − n ∈ S for all m,n ∈ M , for which S = M+. Such a set S will be
called a module ordered set. The intersection of any family of module ordered
subsets is again a module ordered subset, and the union of any increasing
family of module ordered subsets is again a module ordered subset. Thus, the
collection of all module ordered subsets of a module over an ordered ring is
inductive when endowed with the inclusion, so by Zorn’s Lemma, following
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a similar proof as in Lemma 2.3, every module over an ordered ring has a
maximal module ordered subset.

We now introduce the concept of faithful module order.

Definition 2.10. A module order in a module M , over a faithful ordered ring
R, is called faithful provided that M+ ∪M− is a (R+ ∪R−)-submodule of M .

Note that a module order in a module M , over a faithful ordered ring R,
is faithful if and only if m−n ∈ M+ ∪M− for all m,n ∈ M+, or equivalently,
if and only if M+ is totally ordered. The existence of maximal faithful module
orders is guaranteed by the Zorn’s Lemma.

2.2. Topological Ordered Rings/Modules

We start this section by introducing the notion of topological ordered ring.

Definition 2.11. An ordered ring R is called a topological ordered ring when-
ever the order topology on R is a ring topology.

Note that in ordered rings, the ring order does not necessarily have to
be compatible with the ring topology in any sense. In fact, the existence of
nonclosed ring ordered subsets is guranteed by the following example.

Example 2.12. Let R be a non-Hausdorff topological ring. Consider the trivial
ring order in R, that is, the one whose ordered subset is S := {0}, which
trivially induces the trivial order r ≤ s ⇐⇒ r = s. Notice that S is not
closed because R is not Hausdorff.

Remark that Example 2.12 can actually be exploited to obtain many more
examples of nonclosed ring ordered subsets. Indeed, if R is a ring and we endow
it with the trivial topology, which is a ring topology, then no ring ordered
subset is closed since every ring ordered subset is proper (unless R = 0).

Remark 2.13. Let R be a topological ordered ring. For every r ∈ R, ↓ r =
r+R− and ↑r = r+R+. As a consequence, R+, R−, ↓r, ↑r are all homeomorphic
and then the following conditions are equivalent:
(1) R+ is closed.
(2) R− is closed.
(3) For every r ∈ R, ↓r is closed.
(4) There exists r ∈ R such that ↓r is closed.
(5) For every r ∈ R, ↑r is closed.
(6) There exists r ∈ R such that ↑r is closed.

We can easily obtain the following result that shows equivalent conditions
for R+ being closed.

Proposition 2.14. Let R be a topological ordered ring. The following conditions
are equivalent:
(1) R+ is closed.
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(2) For every r ∈ R and every prefilter B of R such that
⋃

C∈B C ⊆ ↓r, it
follows that lim B ⊆ ↓r.

(3) For every r ∈ R, every net (si)i∈I ⊆ R such that si ≤ r for all i ∈ I, and
every s ∈ limi∈I si, it follows that s ≤ r.

(4) For every r ∈ R and every prefilter B of R such that
⋃

C∈B C ⊆ ↑r, it
follows that lim B ⊆ ↑r.

(5) For every r ∈ R and every net (si)i∈I ⊆ R such that si ≥ r for all i ∈ I,
and every s ∈ limi∈I si, it follows that s ≥ r.

Proof. Recall that in any topological space X, a subset A ⊆ X is closed if and
only if lim B ⊆ A for every prefilter B of X such that

⋃
C∈B C ⊆ A, which is

also equivalent to limi∈I xi ⊆ B for every net (xi)i∈I ⊆ A. As a consequence,
conditions (2) and (3) are equivalent to ↓r being closed, and conditions (4)
and (5) are equivalent to ↑r being closed, so it only suffices to rely on Remark
2.13. �

We will now concentrate on providing necessary and sufficient conditions
for a ring R to be a topological ordered ring. In this first result, we present a
necessary condition for this fact.

Theorem 2.15. Let X be a poset. Then {↑×x, ↓×x : x ∈ X} is a subbase for a
topology on X if and only if for every x ∈ X either ↑×x = ∅ or ↓×x = ∅.

Proof. First, recall that if X is a set and S is a nonemtpy subset of P(X),
then the set of finite intersections of S, B(S) :=

{⋂
T∈T T : T ⊆ S finite

}
,

is trivially closed under finite intersections, thus B(S) is a base for a topol-
ogy on X if and only if

⋃
S∈S S = X. According to this observation, we

have that {↑×x, ↓×x : x ∈ X} is a subbase for a topology on X if and only
if

(⋃
x∈X ↑×x

)
∪

(⋃
x∈X ↓×x

)
= X, that is, if for every x ∈ X there exists

y ∈ X such that either x ∈ ↑×y or x ∈ ↓×y, or equivalently, if and only if for
every x ∈ X there exists y ∈ X such that either y ∈ ↓×x or y ∈ ↑×x. �

Theorem 2.15 has important implications towards topological ordered
rings. By definition, the order topology on a poset X is the topology generated
by the subbase {↑×x, ↓×x : x ∈ X}. According to Theorem 2.15, the order
topology is only possible in those posets X satisfying that for every x ∈ X
either ↑×x = ∅ or ↓×x = ∅.

Corollary 2.16. Let R be an ordered ring. Then {↑×r, ↓×r : r ∈ R} is a subbase
for a topology on R if and only if R+ = {0}.

Proof. Simply observe that, by bearing in mind Remark 2.13, for every r ∈ R,
↓r = r + R− and ↑r = r + R+. Finally, it only suffices to apply Theorem 2.15.

�

Our next goal is to find sufficient conditions for the order topology in an
ordered ring to become a ring topology. We will first find a sufficient condition
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for the order topology to be an additive group topology on the ordered ring.
Before proving this result, we recall the following characterization of a ring
topology which can be found in both [17, Theorem 11.4] and [18, Theorem 3.5]
that will needed in the proof.

Theorem 2.17. Let R be a ring. If τ is a ring topology on R and B is a basis
of neighborhoods of 0, then the following is verified:
(1) For every V ∈ B, there exists U ∈ B with U + U ⊆ V.
(2) For every V ∈ B, there exists U ∈ B with −U ⊆ V.
(3) For every V ∈ B, there exists U ∈ B with UU ⊆ V.
(4) For every V ∈ B and every r ∈ R, there exists U ∈ B with rU ∪ Ur ⊆ V.

Conversely, if B is a filter base of P(R) verifying all four properties above,
then there exists a unique ring topology on R such that B is a basis of 0-
neighborhoods. This topology is given by

τ := {A ⊆ R : ∀a ∈ A ,∃U ∈ B such that a + U ⊆ A} ∪ {∅}.

We can now state the following theorem that provides sufficient condi-
tions for the order topology in an ordered ring to become an additive group
topology. However, we will first rely on the following technical lemma.

Lemma 2.18. Let R be an ordered ring. If R+ = {0} and R+\{0} is downward
directed, then {(−r, r) : r > 0} is a base of neighborhoods of 0 for the order
topology.

Proof. According to Corollary 2.16, S := {↑×r, ↓×r : r ∈ R} is a subbase for a
topology on R, which is the order topology. Let W ⊆ R be a 0-neighborhood
for the order topology. There can be found r1, . . . , rn, s1, . . . , sm ∈ R satisfying
that 0 ∈ ↑×r1 ∩ · · · ∩ ↑×rn ∩ ↓×s1 ∩ · · · ∩ ↓×sm ⊆ W . Observe that ri < 0 and
sj > 0 for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , m}. Since R+\{0} is downward
directed, there exists r0 ∈ R+\{0} such that r0 ≤ −ri for all i ∈ {1, . . . , n}
and r0 ≤ sj for all j ∈ {1, . . . , m}. Notice that (−r0, r0) ⊆ ↑× r1 ∩ · · · ∩ ↑×
rn ∩ ↓×s1 ∩ · · · ∩ ↓×sm ⊆ W . �
Theorem 2.19. Let R be an ordered ring. Let S := {↑×r, ↓×r : r ∈ R}. If R+ =
{0}, R+\{0} is downward directed, and 0 ∈ cl (R+\{0}), then the topology
generated by the subbase S is an additive group topology.

Proof. First off, by Corollary 2.16, S is a subbase for a topology on R. We
will show that this topology satisfies the first two conditions of Theorem 2.17.
Indeed, let B0(S) denote the family of all finite intersections of S containing
0. Then:

• Let W ∈ B0(S). In accordance with Lemma 2.18, there exists r0 ∈
R+\{0} such that (−r0, r0) ⊆ W . Since 0 ∈ cl (R+\{0}), there exists
t0 ∈ R such that 0 < t0 < r0. By using again that 0 ∈ cl (R+\{0}), we
can find s0 ∈ R such that 0 < s0 < r0 − t0. Finally, we will prove that
(−s0, s0) + (−t0, t0) ⊆ W . Indeed, let us observe first that (−s0, s0) +
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(−t0, t0) ⊆ (−s0−t0, s0+t0). Next, take a ∈ R with −s0−t0 < a < s0+t0.
Note that a < s0 + t0 < r0. Also, −s0 − t0 < a so −a < s0 + t0 < r0.
We have just shown that (−s0, s0) + (−t0, t0) ⊆ (−s0 − t0, s0 + t0) ⊆
(−r0, r0) ⊆ W . We have proven condition (1) in Theorem 2.17.

• Let W ∈ B0(S). By using again Lemma 2.18, we can find r0 ∈ R+\{0}
such that (−r0, r0) ⊆ W . Now, it only suffices to notice that (−r0, r0)
is an additively symmetric element of B0(S) and then condition (2) in
Theorem 2.17 holds.

�

Now, let us a find a stronger sufficient condition to assure that the order
topology is a ring topology on an ordered ring. For that purpose, a new concept
in Associative Ring Theory is introduced.

Definition 2.20. Let R be a ring. A ring order on R is called left-strong pro-
vided that R+ = {0} and for every r ∈ R+\{0} and every s ∈ R there exists
t ∈ R+\{0} such that s(−t, t) ⊆ ↓×r. In a similar way, right-strong ring order
can be defined. A ring order is said to be strong if it is left- and right-strong.

Theorem 2.21. Let R be an ordered ring. Let S := {↑×r, ↓×r : r ∈ R}. If 0, 1
are comparable, the ring order is strong, R+\{0} is downward directed and
0 ∈ cl (R+\{0}), then the topology generated by the subbase S is a ring topology.

Proof. First of all, by definition of strong ring order, R+ = {0}. Also, 1 ∈
R+\{0}. Therefore, Corollary 2.16 assures that S is a subbase for a topology
on R, which is the order topology. In view of Theorem 2.19, the generated base
B0(S) satisfies the first two conditions of Theorem 2.17. Let us finally check
that B0(S) also satisfies the third and fourth condition of Theorem 2.17.

• Let W ∈ B0(S). By bearing in mind Lemma 2.18, there exits r0 ∈ R+\{0}
such that (−r0, r0) ⊆ W . Since 0 ∈ cl (R+\{0}), there exists t0 ∈ R such
that 0 < t0 < r0. By using again that 0 ∈ cl (R+\{0}), we can find
p0 ∈ R such that 0 < p0 < r0 − t0. Again, by relying on the fact that
0 ∈ cl (R+\{0}), there exists q0 ∈ R satisfying that 0 < q0 < r0 − t0 − p0.
Next, since R+\{0} is downward directed, h0 ∈ R+\{0} can be found
in such a way that h0 ≤ q0, h0 ≤ p0, and h0 ≤ t0. Finally, we will
prove that (−h0, h0)(−1, 1) ⊆ (−3h0, 3h0) ⊆ (−r0, r0) ⊆ W . Indeed,
take arbitrary elements a, b ∈ R with −h0 < a < h0 and −1 < b < 1.
Note that h0 − a > 0 and 1 − b > 0, meaning that h0 − h0b − a + ab =
(h0 − a)(1 − b) ≥ 0. Then ab ≥ −h0 + h0b + a. Since b > −1 and
h0 > 0, we have that h0b ≥ −h0. Also, −h0 < a. As a consequence,
ab ≥ −h0 + h0b + a > −h0 − h0 − h0. By repeating the same reasoning
for a and −b, we conclude that −ab = a(−b) > −h0 − h0 − h0, that
is, ab < 3h0. We have just shown that (−h0, h0)(−1, 1) ⊆ (−3h0, 3h0).
Let us finally prove that (−3h0, 3h0) ⊆ (−r0, r0) ⊆ W . Indeed, if c ∈ R
and −3h0 < c < 3h0, then c < h0 + h0 + h0 ≤ q0 + p0 + t0 < r0, and
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−c < h0+h0+h0 ≤ q0+p0+t0 < r0, so −r0 < c. Consequently, condition
(3) of Theorem 2.17 holds.

• Let W ∈ B0(S) and fix an arbitrary element r ∈ R. If we keep in mind
Lemma 2.18 again, we can find r0 ∈ R+\{0} such that (−r0, r0) ⊆ W .
Since the ring order is strong, we can find t, s ∈ R+\{0} such that
r(−t, t)∪ (−s, s)r ⊆ ↓×r0. Since r(−t, t) and (−s, s)r are both additively
symmetric, we then have that r(−t, t) ∪ (−s, s)r ⊆ (−r0, r0) ⊆ W , which
proves condition (4) in Theorem 2.17 and then the conclusion holds.

�

The following result shows that the converse of Theorem 2.21 does not
hold.

Theorem 2.22. Let R be a ring of characteristic 0. Consider the ring ordered

set S := {0} ∪ {
n

︷ ︸︸ ︷
1 + · · · + 1 : n ∈ N}. The ring order induced by S is strong

and the order topology generated by the subbase S := {↑×r, ↓×r : r ∈ R} is the
discrete topology, hence a ring topology.

Proof. Notice that ↑× (−1) = −1 + (S\{0}) and ↓× 1 = 1 − (S\{0}). If r ∈
↑× (−1) ∩ ↓× 1, then there are s1, s2 ∈ S\{0} such that r = −1 + s1 and

r = 1−s2. Then s1+s2 = 1+1. There are n1, n2 ∈ N such that s1 =

n1
︷ ︸︸ ︷
1 + · · · + 1

and s2 =

n2
︷ ︸︸ ︷
1 + · · · + 1. Thus,

n1+n2
︷ ︸︸ ︷
1 + · · · + 1 = 1 + 1. Since char(R) = {0}, we

necessarily have that n1 = n2 = 1, hence s1 = s2 = 1, meaning that r =
0. As a consequence, {0} = ↑× (−1) ∩ ↓× 1. Therefore, the ring ordering
induced by S is trivially strong since for every r ∈ R+\{0} and every s ∈ R,
s(−1, 1) = (−1, 1)s = {0} ⊆ ↓× r because (−1, 1) = ↑× (−1) ∩ ↓× 1 = {0}.
Next, by Corollary 2.16, S is a subbase for a topology on R. We will prove
that this topology is the discrete topology. Let fix any r ∈ R. We will prove
that {r} = ↑× (r − 1) ∩ ↓× (r + 1). Indeed, 0 < 1 and −1 < 0, so r < r + 1
and r − 1 < r, meaning that r ∈ ↑×(r − 1) ∩ ↓×(r + 1). Conversely, take any
s ∈ ↑×(r−1) ∩ ↓×(r+1). Notice that r−1 < s < r+1, hence −1 < s−r < 1,
so s − r ∈ (−1, 1) = {0}, meaning that s = r. �

We conclude this section by pointing out that Remark 2.13, Proposition
2.14, Theorems 2.19 and 2.21 can be easily adapted to the scope of modules.

3. Radon Measures

In this section, by using the concepts of topological ordered rings and modules,
we will extend the notions of Radon and regular measures to the scope of
module-valued measures. Module measures are those measures with values on
a topological module. Let B(X) be the algebra of Borel subsets of a topological
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space X, M a topological module over a topological ring R and μ : B(X) →
M a map. We recall that μ is a measure if it is an additive map; that is,
μ(A∪B) = μ(A)+μ(B) for every A,B ∈ B(X) such that A∩B = ∅. It is trivial
to check that μ (∅) = 0, μ (B\A) = μ (B)−μ (A ∩ B) for all A,B ∈ B(X), and
μ (A ∪ B) = μ (A) + μ (B) − μ (A ∩ B) for all A,B ∈ B(X).

The following remark is well known in the literature of Classical Measure
Theory for positive measures [12]. However, we make use of it for measures
valued on ordered modules. The proof follows similarly as for classical positive
measures.

Remark 3.1. Let M be an ordered module over an ordered ring R. Let μ :
B(X) → M+ be a measure. If A,B ∈ B(X) and A ⊆ B, then μ(A) ≤ μ(B). If
A,B,C ∈ B(X) with B ⊆ C, then μ(A ∩ C) − μ(A ∩ B) ≤ μ(C) − μ(B).

Definition 3.2. Let X be a topological space. Let M be a topological module
over a topological ring R. Consider a measure μ : B(X) → M and a Borel
subset A ∈ B(X). Then:
(1) A is called a μ-Radon subset if for every 0-neighborhood W ⊆ M there

exists a compact subset F ⊆ A, such that for every Borel subset B ⊆
A\F , μ(B) ∈ W .

(2) μ is called a Radon measure if every Borel subset is μ-Radon.

The notion of regular measure can also be transported to this scope by
considering ordered modules.

Definition 3.3. Let X be a topological space. Let M be an ordered module
over an ordered ring R. Consider a measure μ : B(X) → M+ and a Borel
subset A ∈ B(X). Then:
(1) A is called an inner μ-regular subset if μ(A) = sup{μ(F ) : F ⊆ A compact}.
(2) μ is called inner regular if every Borel subset is inner μ-regular.
(3) A is called an outer μ-regular subset if μ(A) = inf{μ(U) : U ⊇ A open}.
(4) μ is called outer regular if every Borel subset is outer μ-regular.
(5) A is called a μ-regular subset if it is inner and outer μ-regular.
(6) μ is called regular if it is inner and outer regular.

Remark 3.4. Let X be a topological space. Let M be an ordered module over
an ordered ring R. Let μ : B(X) → M+ be a measure. Let B ∈ B(X).
According to Lemma 3.1, if μ(B) = 0, then B is trivially inner μ-regular.
If μ(B) = μ(X), then B is trivially outer μ-regular.

Our first result of this section establishes a relationship between Radon
and regular measures. Notice that by faithful topological ordered module/ring
we mean an ordered module/ring such that the order is faithful and the order
topology is a module/ring topology.

Theorem 3.5. Let X be a topological space. Let M be a faithful topological
ordered module over a faithful topological ordered ring R. Consider a measure
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μ : B(X) → M+. A Borel subset A ∈ B(X) is μ-Radon if and only if A is
inner μ-regular.

Proof. Suppose first that A is μ-Radon. Notice that μ(A) ≥ μ(F ) for all F ⊆ A
compact in view of Remark 3.1. Take an upper bound m ∈ M for {μ(F ) : F ⊆
A compact}. Notice that m ≥ μ(∅) = 0. Since the module order is faithful,
either m−μ(A) ≥ 0 or μ(A)−m ≥ 0. Suppose on the contrary that m < μ(A).
Let W := (−∞, μ(A) − m), which is a 0-neighborhood in M . By hypothesis,
there exists a compact subset F ⊆ A such that, for every Borel subset B ⊆
A\F , μ(B) ∈ W . In particular, by Remark 3.1, μ(A) − μ(F ) = μ(A\F ) ∈ W ,
meaning the contradiction that m < μ(F ). Conversely, suppose that A is
inner μ-regular. If μ(A) = 0, then A is clearly μ-Radon, so let us assume
that μ(A) > 0. Take W ⊆ M a 0-neighborhood. Since M+\{0} is downward
directed, there exists m ∈ M , m > 0, such that (−m,m) ⊆ W . By using again
that M+\{0} is downward directed, we can find p > 0 such that p ≤ μ(A) and
p ≤ m. Note that 0 ≤ μ(A) − p < μ(A), so μ(A) − p is not an upper bound
for {μ(F ) : F ⊆ A compact}. Since the module order is faithful, μ(A) − p
is comparable with μ(F ) for each F ⊆ A compact. As a consequence, there
exists a compact subset F ⊆ A such that μ(F ) > μ(A) − p. Finally, for every
Borel subset B ⊆ A\F , 0 ≤ μ(B) ≤ μ(A\F ) = μ(A) − μ(F ) < p ≤ m, thus
μ(B) ∈ W . �

As a consequence of Theorem 3.5, a positive measure is Radon if and
only if it is inner regular.

Theorem 3.6. Let X be a topological space. Let M be a faithfully ordered mod-
ule over a faithfully ordered ring R. Consider a measure μ : B(X) → M+. Let
A ∈ B(X) be a Borel subset. Then:

(1) If X is Hausdorff and A is inner μ-regular, then X\A is outer μ-regular.
(2) If X is compact and A is outer μ-regular, then X\A is inner μ-regular.

Proof. (1) Observe that μ(X\A) ≤ μ(U) for all U ⊇ X\A open in view of
Remark 3.1. Let m ∈ M be a lower bound for {μ(U) : U ⊇ X\A open}.
We will prove that μ(X\A) ≥ m. Notice that μ(X) − m ≥ 0 and μ(X) −
μ(X\A) ≥ 0, therefore, since the module order is faithful, we have that
either μ(X\A)−m = (μ(X)−m)−(μ(X)−μ(X\A)) ≥ 0 or μ(X\A)−m =
(μ(X) − m) − (μ(X) − μ(X\A)) ≤ 0. If μ(X\A) − m ≥ 0, then we are
done. So, let us assume that μ(X\A)−m < 0, that is, m > μ(X\A) ≥ 0.
Let e := m − μ(X\A) > 0. Note that μ(A) − e = μ(A) − m + μ(X\A) =
μ(A) − m + μ(X) − μ(A) = μ(X) − m ≥ 0. Then 0 ≤ μ(A) − e < μ(A),
so μ(A) − e is not an upper bound for {μ(F ) : F ⊆ A compact}. Since
the module order is faithful, μ(A) − e is comparable with μ(F ) for each
F ⊆ A compact. As a consequence, there exists a compact subset F ⊆ A
such that μ(A) − e < μ(F ) ≤ μ(A). Note that F is closed in X because
X is Hausdorff. Take U := X\F , which is open and contains X\A. Then
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we reach the contradiction that μ(U) = μ(X\F ) = μ(X) − μ(F ) <
μ(X) − μ(A) + e = μ(X\A) + m − μ(X\A) = m.

(2) According to Remark 3.1, μ(X\A) ≥ μ(F ) for all F ⊆ X\A compact.
Let m ∈ M be an upper bound for {μ(F ) : F ⊆ X\A compact}. We
will prove that μ(X\A) ≤ m. Notice that m ≥ μ(∅) = 0, thus, since
the module order is faithful, we have that either μ(X\A) − m ≥ 0 or
μ(X\A)−m ≤ 0. If μ(X\A)−m ≤ 0, then we are done. So, let us assume
that μ(X\A) − m > 0. Let e := μ(X\A) − m > 0. Note that μ(A) + e >
μ(A), so μ(A)+e is not a lower bound for {μ(U) : U ⊇ A open}. Since the
module order is faithful, μ(A)+e is comparable with μ(U) for each U ⊇ A
open. As a consequence, there exists an open subset U ⊇ A such that
μ(A)+e > μ(U) ≥ μ(A). Take F := X\U ⊆ X\A, which is closed, hence
compact because so is X. Then we reach the contradiction that μ(F ) =
μ(X\U) = μ(X)−μ(U) > μ(X)−μ(A)−e = μ(X\A)−μ(X\A)+m = m.

�

If A ⊂ B(X), R is a ring and μ : B(X) → R is a measure, then every
element A ⊂ B(X) such that μ(A) ∈ U(R), where U(R) denotes the set of
invertibles of R, induces a conditional measure:

μA : B(X) → R
B �→ μA(B) := μ(A)−1μ(A ∩ B). (3.1)

Theorem 3.7. Let X be a topological space. Let R be an ordered ring. Consider
a measure μ : B(X) → R+. Fix A ∈ B(X) with μ(A) ∈ U(R) and B ∈ B(X).
Then:
(1) If A ∩ B is inner μ-regular, then B is inner μA-regular.
(2) If A ∩ B is outer μ-regular and A is closed, then B is outer μA-regular.
(3) If the ring order of R is faithful and B is outer μ-regular, then B is outer

μA-regular.

Proof. (1) Notice that μA(F ) ≤ μA(B) for all F ⊆ B compact in accor-
dance with Lemma 3.1. Let r ∈ R be an upper bound for {μA(F ) : F ⊆
B compact}. We will prove that μA(B) ≤ r. For every F ⊆ A ∩ B com-
pact, we have that μ(F ) = μ(F ∩ A) = μ(A)μA(F ) ≤ μ(A)r, that is,
μ(A)r is an upper bound for {μ(F ) : F ⊆ A ∩ B compact}. Therefore,
μ(A∩B) ≤ μ(A)r, hence μA(B) = μ(A)−1μ(A∩B) ≤ μ(A)−1μ(A)r = r.

(2) By relying again of Lemma 3.1, we have that μA(U) ≥ μA(B) for all
U ⊇ B open. Let r ∈ R be a lower bound for {μA(U) : U ⊇ B open}.
We will prove that μA(B) ≥ r. For every U ⊇ A ∩ B open, we have that
μ(U) ≥ μ(U ∩A) = μ((U ∪ (X\A))∩A) = μ(A)μA(U ∪ (X\A)) ≥ μ(A)r,
that is, μ(A)r is a lower bound for {μ(U) : U ⊇ A ∩ B open}. Therefore,
μ(A∩B) ≥ μ(A)r, hence μA(B) = μ(A)−1μ(A∩B) ≥ μ(A)−1μ(A)r = r.

(3) As a consequence of Lemma 3.1, we have that μA(U) ≥ μA(B) for all U ⊇
B open. Let r ∈ R be a lower bound for {μA(U) : U ⊇ B open}. We will
prove that μA(B) ≥ r. Suppose on the contrary that e := r −μA(B) > 0.
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Observe that μ(B)+μ(A)e > μ(B), so μ(B)+μ(A)e is not a lower bound
for {μ(U) : U ⊇ B open}. Since the ring order is faithful, μ(B)+μ(A)e is
comparable with μ(U) for each U ⊇ B open. As a consequence, there ex-
ists an open subset U ⊇ B such that μ(B)+μ(A)e > μ(U) ≥ μ(B). Next,
by Remark 3.1, μA(U) − μA(B) = μ(A)−1 (μ(A ∩ U) − μ(A ∩ B)) ≤
μ(A)−1 (μ(U) − μ(B)) < μ(A)−1μ(A)e = e = r − μA(B), reaching the
contradiction that μA(U) < r.

�
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