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Abstract. We describe transposed Poisson structures on generalized Witt
algebras W (A, V, 〈·, ·〉) and Block Lie algebras L(A, g, f) over a field F
of characteristic zero, where 〈·, ·〉 and f are non-degenerate. More specif-
ically, if dim(V ) > 1, then all the transposed Poisson algebra structures
on W (A, V, 〈·, ·〉) are trivial; and if dim(V ) = 1, then such structures
are, up to isomorphism, mutations of the group algebra structure on FA.
The transposed Poisson algebra structures on L(A, g, f) are in a one-
to-one correspondence with commutative and associative multiplications
defined on a complement of the square of L(A, g, f) with values in the cen-
ter of L(A, g, f). In particular, all of them are usual Poisson structures
on L(A, g, f). This generalizes earlier results about transposed Poisson
structures on Block Lie algebras B(q).
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Introduction

Poisson algebras originated from the Poisson geometry in the 1970s and have
shown their importance in several areas of mathematics and physics, such as
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Poisson manifolds, algebraic geometry, operads, quantization theory, quantum
groups, and classical and quantum mechanics. One of the popular topics in the
theory of Poisson algebras is the study of all possible Poisson algebra struc-
tures with fixed Lie or associative part [1,9,10,17]. Recently, Bai, Bai, Guo,
and Wu [2] have introduced a dual notion of the Poisson algebra, called trans-
posed Poisson algebra, by exchanging the roles of the two binary operations in
the Leibniz rule defining the Poisson algebra. They have shown that a trans-
posed Poisson algebra defined this way not only shares common properties of a
Poisson algebra, including the closedness under tensor products and the Koszul
self-duality as an operad, but also admits a rich class of identities. More signif-
icantly, a transposed Poisson algebra naturally arises from a Novikov-Poisson
algebra by taking the commutator Lie algebra of the Novikov algebra. Thanks
to [3], any unital transposed Poisson algebra is a particular case of a “con-
tact bracket” algebra and a quasi-Poisson algebra. Later, in a recent paper by
Ferreira, Kaygorodov, and Lopatkin a relation between 1/2-derivations of Lie
algebras and transposed Poisson algebras has been established [7]. These ideas
were used to describe all transposed Poisson structures on Witt and Virasoro
algebras in [7]; on twisted Heisenberg-Virasoro, Schrödinger-Virasoro and ex-
tended Schrödinger-Virasoro algebras in [19]; on oscillator algebras in [3]; Witt
type Lie algebras in [12]. It was proved that each complex finite-dimensional
solvable Lie algebra has a non-trivial transposed Poisson structure [13]. The
Hom- and BiHom-versions of transposed Poisson algebras and transposed Pois-
son bialgebras have been considered in [14,15]. The algebraic and geometric
classification of 3-dimensional transposed Poisson algebras is given in [4]. For
the list of actual open questions on transposed Poisson algebras see [3].

The first non-trivial example of a transposed Poisson algebra was con-
structed on the Witt algebra with the multiplication law [ei, ej ] = (i − j)ei+j

for i, j ∈ Z (see, [7]). This attracted certain interest to the description of trans-
posed Poisson structures on Lie algebras related to the Witt algebra. Thus,
all transposed Poisson structures on the Virasoro algebra [7], Block type Lie
algebras and Block type Lie superalgebras [11], Witt type Lie algebras [12]
have been described. In the last years, the concept of Witt type and Block
type Lie algebra has been enlarged and generalized by various authors, such
as Kawamoto, Osborn, -Doković, Zhao, Xu, Passman, Jordan, etc. (see, for
example, [11,12] and references therein). In the present paper, we study trans-
posed Poisson structures on the class of generalized Witt algebras defined by
-Doković and Zhao in [6] and general Block algebras defined by Block in [5].
We use the standard method of characterization of transposed Poisson algebra
structures on a fixed Lie algebra L based on the description of the space of
1
2 -derivations of L.

Our work consists of two main parts. Section 2 is devoted to a descrip-
tion of 1

2 -derivations and transposed Poisson structures on generalized Witt
algebras W (A, V, 〈·, ·〉), which result in the following theorem.
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Theorem A (Theorem 13). Let W (A, V, 〈·, ·〉) be a generalized Witt algebra
with non-degenerate 〈·, ·〉 and char(F ) = 0.
(i) If dim(V ) > 1, then all the transposed Poisson algebra structures on

W (A, V, 〈·, ·〉) are trivial.
(ii) If dim(V ) = 1, say, V = spanF {v}, then the transposed Poisson algebra

structures on W (A, V, 〈·, ·〉) are exactly mutations of the product (a ⊗ v) ·
(b ⊗ v) = (a + b) ⊗ v.

In Sect. 3 we study the same questions on general Block Lie algebras
L(A, g, f) and obtain the following result.

Theorem B (Theorems 22 and 29). Let L(A, g, f) be a general Block Lie alge-
bra with non-degenerate f and char(F ) = 0.
(i) If g = 0, then there is only one non-trivial transposed Poisson algebra

structure · on L(A, 0, f). It is given by u0 · u0 = u0.
(ii) If g �= 0 and (g(a), h(a)) �= (0,−1) for all a ∈ A, then all the transposed

Poisson algebra structures on L(A, g, f) are trivial.
(iii) If g �= 0 and there is a ∈ A, such that (g(a), h(a)) �= (0,−1), then

the transposed Poisson algebra structures on L(A, g, f) are usual Poisson
algebra structures that are extensions by zero of commutative associative
products ∗ on the complement V = spanF {ua | g(a) = h(a) + 2 = 0} of
[L,L] with values in Z(L) = spanF {ua | g(a) = h(a) + 1 = 0}.

1. Definitions and Preliminaries

All the algebras below will be over a field F of characteristic zero and all the
linear maps will be F -linear, unless otherwise stated.

Definition 1. Let L be a vector space equipped with two nonzero bilinear op-
erations · and [·, ·]. The triple (L, ·, [·, ·]) is called a transposed Poisson algebra
if (L, ·) is a commutative associative algebra and (L, [·, ·]) is a Lie algebra that
satisfies the following compatibility condition

2z · [x, y] = [z · x, y] + [x, z · y]. (1)

Transposed Poisson algebras were first introduced in a paper by Bai, Bai,
Guo, and Wu [2].

Definition 2. Let (L, [·, ·]) be a Lie algebra. A transposed Poisson algebra struc-
ture on (L, [·, ·]) is a commutative associative multiplication · on L which makes
(L, ·, [·, ·]) a transposed Poisson algebra.

Definition 3. Let (L, [·, ·]) be an algebra and ϕ : L → L a linear map. Then ϕ
is a 1

2 -derivation if it satisfies

ϕ
(
[x, y]

)
=

1
2
(
[ϕ(x), y] + [x, ϕ(y)]

)
. (2)
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Observe that 1
2 -derivations are a particular case of δ-derivations intro-

duced by Filippov in [8] (see also [20] and references therein). The space of all
1
2 -derivations of an algebra L will be denoted by Δ(L).

Definitions 1 and 3 immediately imply the following key Lemma.

Lemma 4. Let (L, [·, ·]) be a Lie algebra and · a new binary (bilinear) opera-
tion on L. Then (L, ·, [·, ·]) is a transposed Poisson algebra if and only if · is
commutative and associative and for every z ∈ L the multiplication by z in
(L, ·) is a 1

2 -derivation of (L, [·, ·]).
The basic example of a 1

2 -derivation is the multiplication by a field ele-
ment. Such 1

2 -derivations will be called trivial.

Theorem 5. Let L be a Lie algebra without non-trivial 1
2 -derivations. Then all

transposed Poisson algebra structures on L are trivial.

Given a Lie algebra (L, [·, ·]) denote by Z(L) its center, i.e. Z(L) = {a ∈
L | [a, b] = 0, ∀b ∈ L}, and by [L,L] its square, i.e. [L,L] = spanF {[a, b] | a, b ∈
L}. Fix a complement V of [L,L] in L. Then any commutative associative
product ∗ : V ×V → Z(L) defines a transposed Poisson algebra structure · on
L by means of

(a1 + a2) · (b1 + b2) = a1 ∗ b1, (3)

where a1, b1 ∈ V and a2, b2 ∈ [L,L]. Indeed, the right-hand side of (1) is zero,
because z · x, z · y ∈ Z(L), and the left-hand side of (1) is zero by (3), because
[x, y] ∈ [L,L]. We say that · is the extension by zero of ∗. Observe that · is at
the same time a usual Poisson structure on (L, [·, ·]).

2. Transposed Poisson Structures on Generalized Witt Algebras

2.1. Generalized Witt Algebras

-Doković and Zhao [6] introduced the following generalization of the classical
Witt algebra.

Definition 6. Let F be a field, (A,+) a non-trivial abelian group, V �= {0}
a vector space and 〈·, ·〉 : V × A → F a map linear in the first variable and
additive in the second one. Denote W := FA⊗F V and define the product [·, ·]
on W by means of

[a ⊗ v, b ⊗ w] = (a + b) ⊗ (〈v, b〉w − 〈w, a〉v). (4)

Then (W, [·, ·]) is a Lie algebra called a generalized Witt algebra.

When it is necessary to specify A, V and 〈·, ·〉, one writes W = W (A, V,
〈·, ·〉). We assume that 〈·, ·〉 is non-degenerate, i.e.

〈V, a〉 = {0} ⇔ a = 0. (5)

We also assume that char(F ) = 0. Then it follows from 5 that A is torsion-free.
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The algebra W (A, V, 〈·, ·〉) is a generalization of the so-called Witt type
Lie algebra V (f) (corresponding to an additive map f) introduced1 by Yu
in [18]. We recall its definition using the notation from the present paper.
Given an abelian group A, a field F and a function f : A → F , define V (f) to
be a vector space with basis {ea}a∈A and multiplication

[ea, eb] = (f(b) − f(a))ea+b. (6)

Without loss of generality, one assumes that f(0) = 0. Then V (f) is a Lie
algebra if and only if

(
f(a + b) − f(a) − f(b)

)(
f(a) − f(b)

)
= 0

for all a, b ∈ A. Observe that in general one does not require that f be additive.
However, it turns out to be so if |f(A)| ≥ 4 by [18, Lemma 4.6].

Lemma 7. Let dim(V ) = 1 and 〈·, ·〉 be non-degenerate. Then W (A, V, 〈·, ·〉)
is isomorphic to the Witt type Lie algebra V (f) for some additive injective
f : A → F with |f(A)| = ∞.

Proof. Choose v ∈ V \ {0}. Then {a ⊗ v | a ∈ A} is a basis of W . Define
an additive map f : A → F by f(a) = 〈v, a〉 and a bijective linear map
ϕ : W → V (f) by ϕ(a ⊗ v) = ea. Then by (6) and (4)

[ϕ(a ⊗ v), ϕ(b ⊗ v)] = [ea, eb] = (f(b) − f(a))ea+b = (〈v, b〉 − 〈v, a〉)ea+b

= (〈v, b〉 − 〈v, a〉)ϕ((a + b) ⊗ v) = ϕ([a ⊗ v, b ⊗ v]).

Observe that f is injective by (5), because 〈v, a〉 = 0 ⇔ 〈V, a〉 = {0}. Since A
is torsion-free, then |A| = ∞, whence |f(A)| = ∞ as well. �

Since transposed Poisson structures on V (f) were described in [12], we
only need to deal with the case dim(V ) > 1.

Lemma 8. Let dim(V ) > 1. If a �= 0, then there exist two linearly independent
v′, v′′ ∈ V such that 〈v′, a〉 �= 0 �= 〈v′′, a〉.
Proof. Denote V0 = {v ∈ V | 〈v, a〉 = 0}. If V0 = {0}, there is nothing to prove.
Otherwise, choose 0 �= v0 ∈ V0. Since a �= 0, by (5) there is v′ ∈ V such that
〈v′, a〉 �= 0. Observe that v′ and v0 are linearly independent, since otherwise
v′ = kv0 and 〈v′, a〉 = k〈v0, a〉 = 0. Then v′ and v′ + v0 are also linearly
independent and 〈v′ + v0, a〉 = 〈v′, a〉 �= 0. So, we may choose v′′ = v′ + v0.

2.2. 1
2
-Derivations of Generalized Witt Algebras

Observe that W is an A-graded algebra, namely

W =
⊕

a∈A

Wa, where Wa = a ⊗ V = {a ⊗ v | v ∈ V }.

1Notice that ‘V ’ in V (f) is not the same space V from Definition 6.
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For all a ∈ A and v ∈ V denote, for simplicity,

va := a ⊗ v. (7)

Any linear map ϕ : W → W decomposes as

ϕ =
∑

a∈A

ϕa,

where ϕa : W → W is a linear map such that ϕa(Wb) ⊆ Wa+b for all b ∈ A.
In particular, ϕ ∈ Δ(W ) if and only if ϕa ∈ Δ(W ) for all a ∈ A. We write

ϕa(vb) = da(vb)a+b, (8)

where da : W → V .

Lemma 9. Let ϕa : W → W be a linear map satisfying 8. Then ϕa ∈ Δ(W ) if
and only if for all x, y ∈ A and v, w ∈ V

2da(〈v, y〉wx+y − 〈w, x〉vx+y) =〈da(vx), y〉w − 〈w, a + x〉da(vx)

+ 〈v, a + y〉da(wy) − 〈da(wy), x〉v. (9)

Proof. By (4), (8) and (7) we have

2ϕa([vx, wy]) = 2ϕa(〈v, y〉wx+y − 〈w, x〉vx+y)

= 2da(〈v, y〉wx+y − 〈w, x〉vx+y)a+x+y

and

[ϕa(vx), wy] + [vx, ϕa(wy)] = [da(vx)a+x, wy] + [vx, da(wy)a+y]

= 〈da(vx), y〉wa+x+y − 〈w, a + x〉da(vx)a+x+y

+ 〈v, a + y〉da(wy)a+x+y

− 〈da(wy), x〉va+x+y.

�
Lemma 10. Let dim(V ) > 1, a �= 0 and ϕa ∈ Δ(W ) satisfying (8). Then
ϕa = 0.

Proof. Substitute y = 0 into (9):

−2〈w, x〉da(vx) = −〈w, a + x〉da(vx) + 〈v, a〉da(w0) − 〈da(w0), x〉v,

that is

〈w, a − x〉da(vx) = 〈v, a〉da(w0) − 〈da(w0), x〉v. (10)

Then setting x = a in (10) we obtain

〈v, a〉da(w0) = 〈da(w0), a〉v. (11)

By 8 there are two linearly independent v′, v′′ ∈ V such that 〈v′, a〉, 〈v′′, a〉 �= 0.
Choosing consecutively v = v′ and v = v′′ in (11) we have

da(w0) =
〈da(w0), a〉

〈v′, a〉 v′ =
〈da(w0), a〉

〈v′′, a〉 v′′.
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By the linear independence of v′ and v′′,

da(w0) = 0 (12)

for all w ∈ V . It follows from (10) that

〈w, a − x〉da(vx) = 0.

If x �= a, then 〈w, a − x〉 �= 0 for some w ∈ V by (5). Thus,

da(vx) = 0, if x �= a. (13)

Now substitute x = a and y = −a into (9) and use (12):

0 = 〈da(va), a〉w + 2〈w, a〉da(va) + 〈da(w−a), a〉v.

Since A is torsion-free, then a �= −a, so da(w−a) = 0 by (13). Taking consec-
utively w = v′ and w = v′′ we have

da(va) = −〈da(va), a〉
2〈v′, a〉 v′ = −〈da(va), a〉

2〈v′′, a〉 v′′,

whence

da(va) = 0 (14)

by the linear independence of v′ and v′′. Combining (13) and (14), we conclude
that ϕa = 0. �

Lemma 11. Let ϕ0 ∈ Δ(W ) satisfying (8) with a = 0. Then ϕ0 ∈ spanF {id}.
Proof. For a = 0, equality (9) takes the form

2d0(〈v, y〉wx+y − 〈w, x〉vx+y) =〈d0(vx), y〉w − 〈w, x〉d0(vx)

+ 〈v, y〉d0(wy) − 〈d0(wy), x〉v. (15)

Then y = 0 in (15) gives

〈w, x〉d0(vx) = 〈d0(w0), x〉v.

If x �= 0, then choosing w ∈ V with 〈w, x〉 �= 0, we obtain

d0(vx) =
〈d0(w0), x〉

〈w, x〉 v =: kxv, if x �= 0. (16)

In particular, d0(vx) = d0(v−x) for all x �= 0. On the other hand, taking
y = −x �= 0 in (15), we have

2d0(〈v, x〉w0 + 〈w, x〉v0) =〈d0(vx), x〉w + 〈w, x〉d0(vx)

+ 〈v, x〉d0(wx) + 〈d0(wx), x〉v, (17)

which for w = v gives

2〈v, x〉d0(v0) = 〈d0(vx), x〉v + 〈v, x〉d0(vx).

Choosing v ∈ V with 〈v, x〉 �= 0 and applying (16), we conclude that

d0(v0) = kxv = d0(vx), if 〈v, x〉 �= 0. (18)
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If x �= 0 and 〈v, x〉 = 0, then, thanks to (16), equality (17) becomes

2〈w, x〉d0(v0) = 〈w, x〉d0(vx) + 〈d0(wx), x〉v = 〈w, x〉kxv + 〈kxw, x〉v
= 2kx〈w, x〉v.

Choosing an arbitrary w ∈ V with 〈w, x〉 �= 0, we arrive at

d0(v0) = kxv = d0(vx), if x �= 0 and 〈v, x〉 = 0. (19)

Combining (18), (19) and (8), we finally prove the desired fact. �
Proposition 12. If dim(V ) > 1, then Δ(W ) = spanF {id}.
Proof. The inclusion Δ(W ) ⊆ spanF {id} is Lemmas 10 and 11. The converse
inclusion is trivial. �
Theorem 13. Let char(F ) = 0 and 〈·, ·〉 be non-degenerate.

(i) If dim(V ) > 1, then all the transposed Poisson algebra structures on
W (A, V, 〈·, ·〉) are trivial.

(ii) If dim(V ) = 1, say, V = spanF {v}, then the transposed Poisson algebra
structures on W (A, V, 〈·, ·〉) are exactly mutations of the product (a ⊗ v) ·
(b ⊗ v) = (a + b) ⊗ v.

Proof. ((i)) is an immediate consequence of Proposition 12 and [7, Theorem
8], while ((ii)) follows from Lemma 7 and [12, Proposition 26].

�

3. Transposed Poisson Structures on General Block Lie
Algebras

3.1. General Block Lie Algebras

Another generalization of the Witt algebra is the class of Lie algebras studied
by Block in [5].

Definition 14. Let F be a field, (A,+) a non-trivial abelian group, g : A → F
an additive map and f : A × A → F an anti-symmetric biadditive map. The
Block algebra L(A, g, f) is the F -vector space with basis {ua}a∈A and product

[ua, ub] = (f(a, b) + g(a − b))ua+b. (20)

It is known [5] (and, in fact, easy to see) that L(A, g, f) is a Lie algebra
if and only if either g = 0 or there exists an additive map h : A → F such that
for all a, b ∈ A:

f(a, b) = g(a)h(b) − g(b)h(a). (21)

We will write L = L(A, g, f) for the simplicity of notation. We will also assume
that char(F ) = 0 and f is non-degenerate in the sense that

f(a,A) = {0} ⇔ a = 0. (22)
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Then, as in Sect. 2.1, this implies that A is torsion-free.
Observe that L(A, g, f) is a generalization of the Block Lie algebra B(q)

studied in [11] (it had been introduced in [16] under slightly different assump-
tions on q and on the basis). Recall that B(q), where q ∈ C, is the complex Lie
algebra with a basis {Lm,i | m, i ∈ Z}, where

[Lm,i, Ln,j ] = (n(i + q) − m(j + q))Lm+n,i+j

for all i, j,m, n ∈ Z. It is immediately seen that B(q) = L(A, g, f), where
F = C, A = Z × Z,

g(m, i) = −qm and f((m, i), (n, j)) = ni − mj (23)

for (m, i), (n, j) ∈ Z × Z. If q �= 0, then the corresponding map h from (21)
can be chosen to be

h(m, i) = i/q. (24)

Observe that f is non-degenerate, because f((m, i), (0,−1)) = m and
f((m, i), (1, 0)) = i.

We will need descriptions of Z(L) and [L,L] in the general case.

Lemma 15. Let f be non-degenerate.

(i) If g = 0, then Z(L) = spanF {u0}. Otherwise, Z(L) = spanF {ua | g(a) =
h(a) + 1 = 0}.

(ii) If g = 0, then [L,L] = spanF {ua | a �= 0}. Otherwise, [L,L] = spanF {ua |
g(a) �= 0 or h(a) + 2 �= 0}.

Proof. (i). Let g = 0. The inclusion spanF {u0} ⊆ Z(L) is trivial. Conversely,
if x =

∑
xaua ∈ Z(L) and xa �= 0 for some a �= 0, then choose b ∈ A such

that f(a, b) �= 0 (it exists due to non-degeneracy of f) and calculate

[x, ub] =
∑

c �=a

xcf(c, b)uc+b + xaf(a, b)ua+b �= 0.

Let g �= 0. If g(a) = h(a) + 1 = 0, then for all b ∈ A

f(a, b) + g(a − b) = g(a)h(b) − g(b)h(a) + g(a) − g(b) = g(b) − g(b) = 0,

so [ua, ub] = 0. This proves the inclusion spanF {ua | g(a) = h(a) + 1 = 0} ⊆
Z(L). Conversely, assume that x =

∑
xaua ∈ Z(L). Then [x, u0] = 0 implies

g(a) = 0 for all a with xa �= 0. Consequently, [x, ub] = −g(b)
∑

xa(h(a) +
1)ua+b. Choosing b ∈ A with g(b) �= 0, we conclude that h(a)+1 = 0 whenever
xa �= 0. Thus, Z(L) ⊆ spanF {ua | g(a) = h(a) + 1 = 0}.

(ii). Let g = 0. If [ua, ub] �= 0, then b �= −a, since otherwise f(a, b) =
f(a,−a) = 0. Hence, [ua, ub] = f(a, b)ua+b ∈ spanF {ua | a �= 0}. This proves
[L,L] ⊆ spanF {ua | a �= 0}. Conversely, for any a �= 0 there exists b ∈ A
such that f(a, b) �= 0. Then [ua−b, ub] = f(a − b, b)ua = f(a, b)ua �= 0, whence
ua ∈ [L,L].
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Let g �= 0. If [ua, ub] �= 0, then either g(a + b) �= 0 or h(a + b) + 2 �= 0,
since otherwise

f(a, b) + g(a − b) = g(a)h(b) − g(b)h(a) + g(a) − g(b)

= g(a)(−h(a) − 2) + g(a)h(a) + g(a) + g(a) = 0.

Hence, [L,L] ⊆ spanF {ua | g(a) �= 0 or h(a) + 2 �= 0}. Conversely, take a ∈ A
with g(a) �= 0 or h(a) + 2 �= 0. If g(a) �= 0, then [ua, u0] = g(a)ua �= 0, so
ua ∈ [L,L]. Otherwise, h(a) + 2 �= 0 and

f(a − b, b) + g(a − b − b) = f(a, b) + g(a − 2b)

= g(a)h(b) − g(b)h(a) + g(a) − 2g(b)

= −g(b)h(a) − 2g(b) = −g(b)(h(a) + 2),

so choosing b ∈ A with g(b) �= 0 we have [ua−b, ub] = −g(b)(h(a) + 2)ua �= 0,
whence ua ∈ [L,L]. �

We will also need the following technical lemma.

Lemma 16. Let α, β : A → F two non-zero additive functions. Then there
exists a ∈ A such that α(a) �= 0 �= β(a).

Proof. Assume that for any a ∈ A either α(a) = 0 or β(a) = 0. Then A =
ker α∪ker β. Since kerα and kerβ are subgroups of A, then either ker α ⊆ ker β,
in which case A = ker β, or kerβ ⊆ ker α, in which case A = ker α. Hence,
either α = 0 or β = 0, a contradiction. �

3.2. 1
2
-Derivations of General Block Lie Algebras

It follows from (20) that L =
⊕

a∈A Fua is an A-grading, so any linear map
ϕ : L → L decomposes into the direct sum of linear maps

ϕ =
∑

a∈A

ϕa,

where ϕa(ub) ∈ Fua+b for all b ∈ A. Moreover, ϕ ∈ Δ(L) if and only if
ϕa ∈ Δ(L) for all a ∈ A. As usual, we write

ϕa(ub) = da(ub)ua+b, (25)

where da : L → F .

Lemma 17. Let ϕa : L → L be a linear map satisfying (25). Then ϕa ∈ Δ(L)
if and only if for all x, y ∈ A

2(f(x, y) + g(x − y))da(x + y) =(f(a + x, y) + g(a + x − y))da(x)

+ (f(x, a + y) + g(x − a − y))da(y). (26)

Proof. By (20) and (25) we have

2ϕa([ux, uy]) = 2ϕa((f(x, y) + g(x − y))ux+y)

= 2(f(x, y) + g(x − y))da(x + y)ua+x+y
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and

[ϕa(ux), uy] + [ux, ϕa(uy)] = [da(x)ua+x, uy] + [ux, da(y)ua+y]

= (f(a + x, y) + g(a + x − y))da(x)ua+x+y

+ (f(x, a + y) + g(x − a − y))da(y)ua+x+y.

�

3.2.1. The case g = 0. Assume first that g = 0.

Lemma 18. Let a �= 0 and ϕa ∈ Δ(L) satisfying (25). Then ϕa = 0.

Proof. Taking y = −x in (26) and using anti-symmetry of f , we have

0 = f(a + x,−x)da(x) + f(x, a − x)da(−x) = −f(a, x)(da(x) + da(−x)).

Hence,

da(−x) = −da(x), if f(a, x) �= 0. (27)

Now, substitute y = −a into (26):

2f(x,−a)da(x − a) = f(a + x,−a)da(x) = f(x,−a)da(x),

whence

da(x) = 2da(x − a), if f(a, x) �= 0.

Since f(a, a + x) = f(a, x), the latter is equivalent to

da(a + x) = 2da(x), if f(a, x) �= 0. (28)

On the other hand, y = a in (26) gives

2f(x, a)da(x + a) = f(a + x, a)da(x) + f(x, 2a)da(a)

= f(x, a)da(x) + 2f(x, a)da(a).

If f(a, x) �= 0, then using (28), we come to 4da(x) = da(x) + 2da(a). Conse-
quently,

3da(x) = 2da(a), if f(a, x) �= 0. (29)

However, f(a, x) �= 0 ⇔ f(a,−x) �= 0, so replacing x by −x in (29) and taking
into account char(F ) = 0, we have

da(−x) = da(x), if f(a, x) �= 0. (30)

Combining (27) and (30), we conclude that

da(x) = 0, if f(a, x) �= 0. (31)

Now assume that f(a, x) = 0. Since a �= 0, by (22) there exists y ∈ A
such that f(a, y) �= 0. Observe that f(a, x + y) = f(a, y) �= 0. Then da(y) =
da(x + y) = 0 thanks to (31), so (26) takes the form

0 = f(a + x, y)da(x).
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By Lemma 16 applied to f(a + x,−) and f(a,−), whenever x �= −a, the
element y can be chosen in a way that f(a + x, y) �= 0 �= f(a, y). Thus, we
have proved

da(x) = 0, if f(a, x) = 0 and x �= −a. (32)

Finally, taking y = −a − x in (26) we see that the right-hand side is
zero, while the left-hand side equals 2f(a, x)da(−a). Choosing x ∈ A such
that f(a, x) �= 0, we show that da(−a) = 0. Combining this with (31) and
(32), we get the desired fact. �
Lemma 19. Let ϕ0 ∈ Δ(L) satisfying (25) with a = 0. Then ϕ0(x) = ϕ0(y)
for all x, y �= 0.

Proof. Write (26) with a = 0:

2f(x, y)d0(x + y) = f(x, y)d0(x) + f(x, y)d0(y).

Consequently,

2d0(x + y) = d0(x) + d0(y), if f(x, y) �= 0. (33)

Observe that f(x, y) = f(x + y,−y), so applying (33) with (x, y) replaced by
(x + y,−y), we have

2d0(x) = d0(x + y) + d0(−y), if f(x, y) �= 0. (34)

Combining (33) and (34), we come to

3d0(x) = d0(y) + 2d0(−y), if f(x, y) �= 0. (35)

However, f(x,−y) = −f(x, y), so replacing y by −y in (35), we obtain

3d0(x) = d0(−y) + 2d0(y), if f(x, y) �= 0. (36)

It follows from (35) and (36) that d0(y) = d0(−y), so

d0(x) = d0(y), if f(x, y) �= 0, (37)

because char(F ) = 0.
Now let x, y �= 0. By Lemma 16 applied to f(x,−) and f(y,−) there

exists z ∈ A such that f(x, z) �= 0 �= f(y, z). Then (37) gives

d0(x) = d0(z) = d0(y), if x, y �= 0,

as needed. �
Lemma 20. The linear map α : L → L given by

α(ua) =

{
u0, a = 0,

0, a �= 0,

is a 1
2 -derivation of L.

Proof. Observe by Lemma 15(i) that α(L) ⊆ Z(L), so the right-hand side of
(2) is always zero for ϕ = α. Now, α([L,L]) = {0} by Lemma 15(ii). Thus, the
left-hand side of (2) is always zero as well. �



Vol. 78 (2023) Transposed Poisson structures on generalized Page 13 of 20 186

Proposition 21. We have Δ(L) = spanF {id, α}.
Proof. The inclusion Δ(L) ⊆ spanF {id, α} is Lemmas 18 and 19. The converse
inclusion is Lemma 20.

Theorem 22. Let char(F ) = 0 and f be non-degenerate. Then there is only
one non-trivial transposed Poisson algebra structure · on L(A, 0, f). It is given
by

u0 · u0 = u0. (38)

Proof. Let · be a non-trivial transposed Poisson algebra structure on L(A, 0, f).
By Proposition 21 and Lemma 4 for any a ∈ A there are ka, la ∈ F such that

ua · ub = kaub + laα(ub) =

{
(ka + la)u0, b = 0,

kaub, b �= 0.
(39)

Since |A| > 2 (A is torsion-free), for any a �= 0 there exists b �∈ {0, a}. Then
by (39) and commutativity of · we have kaub = ua · ub = ub · ua = kbua.
Consequently, ka = 0 for a �= 0. Similarly, (ka + la)u0 = ua ·u0 = u0 ·ua = k0ua

gives k0 = la = 0 for a �= 0. Thus, the only non-zero product ua · ub is
u0 · u0 = l0u0. So, up to isomorphism, · is of the form (38).

Conversely, in view of Lemma 15 the product (38) is of the form (3), so
(L, ·, [·, ·]) is a transposed Poisson (and usual Poisson) algebra. �

Remark 23. Consider B(0) as the complex Block algebra L(Z×Z, 0, f), where
f is given by (23). Then we obtain the description of transposed Poisson al-
gebra structures on B(0) given in [11, Theorem 2.14] as a particular case of
Lemma 22.

3.2.2. The case g �= 0. In this case, as it was commented above, there exists
an additive map h : A → F such that (21) holds.

Lemma 24. Let a �= 0 and ϕa ∈ Δ(L) satisfying (25). If g(x)f(a, x) �= 0, then
ϕa(x) = 0.

Proof. Consider first y = 0 in 26

2g(x)da(x) = g(a + x)da(x) + (f(x, a) + g(x − a))da(0).

Then

g(a − x)da(x) = (f(a, x) + g(a − x))da(0). (40)

Replacing x by −x, we obtain

g(a + x)da(−x) = (−f(a, x) + g(a + x))da(0). (41)

On the other hand, y = −x in (26) gives

4g(x)da(0) = (−f(a, x) + g(a + 2x))da(x) + (−f(a, x) + g(2x − a))da(−x).
(42)
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Multiplying both sides of (42) by g(a − x)g(a + x) = g(a)2 − g(x)2 and using
(41) and (40), we get

4g(x)(g(a)2 − g(x)2)da(0) = (−f(a, x) + g(a + 2x))g(a + x)(f(a, x)

+ g(a − x))da(0)

+ (−f(a, x) + g(2x − a))g(a − x)(−f(a, x)

+ g(a + x))da(0). (43)

We have

(−f(a, x) + g(a + 2x))(f(a, x) + g(a − x))

= (g(a) + g(x)/2)2 − (f(a, x) − 3g(x)/2)2,

(−f(a, x) + g(2x − a))(−f(a, x) + g(a + x))

= (f(a, x) − 3g(x)/2)2 − (g(a) − g(x)/2)2.

Since

(g(a) + g(x)/2)2 − (g(a) − g(x)/2)2 = 2g(a)g(x),

(g(a) + g(x)/2)2 + (g(a) − g(x)/2)2 = 2g(a)2 + g(x)2/2,

the coefficient of da(0) on the right-hand side of (43) equals

g(a) · 2g(a)g(x) + g(x)(2g(a)2 + g(x)2/2) − 2g(x)(f(a, x) − 3g(x)/2)2

= g(x)(4g(a)2 + g(x)2/2 − 2(f(a, x) − 3g(x)/2)2).

Subtracting the coefficient of da(0) on the left-hand side of (43), we obtain

g(x)(9g(x)2/2 − 2(f(a, x) − 3g(x)/2)2) = 2g(x)f(a, x)(3g(x) − f(a, x)).

Thus, under the assumption g(x)f(a, x) �= 0, (43) is equivalent to

(3g(x) − f(a, x))da(0) = 0. (44)

Case 1. f(a, x) �= 3g(x). Then (44) gives

da(0) = 0. (45)

Case 1.1. g(a) �= g(x). It follows from (45) and (40) that da(x) = 0.
Case 1.2. g(a) = g(x). Then g(a + x) = 2 g(x) �= 0, so dg(−x) = 0 by

(41). Moreover, −f(a, x) + g(a + 2x) = −f(a, x) + 3g(x) �= 0, so (45) and (42)
yield da(x) = 0.

Case 2. f(a, x) = 3g(x) �= 0. Then (40) becomes

g(a − x)da(x) = (3g(x) + g(a − x))da(0) = (2g(x) + g(a))da(0). (46)

Since f(a, x) = 3g(x) is invariant under the replacement of x by kx, then (46)
implies

g(a − kx)da(kx) = (2kg(x) + g(a))da(0). (47)
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On the other hand, y = 2x in (26) gives

−2g(x)da(3x) = (5g(x) + g(a))da(x) − (4g(x) + g(a))da(2x). (48)

Multiplying both sides of this equality by g(a−x)g(a−2x)g(a−3x) and using
(47) we get

− 2g(x)g(a − x)g(a − 2x)(6g(x) + g(a))da(0)

= (5g(x) + g(a))g(a − 2x)g(a − 3x)(2g(x) + g(a))da(0)

− (4g(x) + g(a))g(a − x)g(a − 3x)(4g(x) + g(a))da(0). (49)

Comparing the coefficients of g(a)ig(x)jda(0), 0 ≤ i + j ≤ 4, in (49), we see
that (49) is equivalent to 36g(x)4da(0) = 0. Hence, we again have (45).

Case 2.1. g(a) �= g(x). Then (45) and (40) yield da(x) = 0.
Case 2.2. g(a) = g(x). Then g(a − kx) = (1 − k)g(x) �= 0 for k �= 1, so

da(2x) = da(3x) = 0 by (47). Moreover, 5g(x) + g(a) = 6g(x) �= 0, so (45) and
(48) imply da(x) = 0. �

Lemma 25. Let a �= 0 and ϕa ∈ Δ(L) satisfying 25. If g(x)f(a, x) = 0, then
da(x) = 0, unless g(a) = g(x) = 0, h(a) = 1 and h(x) = −2.

Proof. Case 1. g(a+x) �= 0. Since a �= 0, by Lemma 16 applied to f(a,−) and
g there exists y ∈ A such that f(a, y) �= 0 �= g(y). Observe that for any k �= 0
we have

f(a, ky) �= 0 �= g(ky), (50)

because char(F ) = 0. We affirm that k can be chosen in a way that

f(a, x + ky) �= 0 �= f(a + x, ky) + g(a + x − ky). (51)

Indeed, f(a, y) �= 0, so there exists at most one k such that f(a, x)+kf(a, y) =
0. If f(a+x, y)−g(y) = 0, then f(a+x, ky)+g(a+x−ky) = g(a+x) �= 0 for
all k. Otherwise, there exists at most one k such that k(f(a + x, y) − g(y)) +
g(a+x) = 0. Thus, (51) and (50) hold for infinitely many integer k �= 0 (recall
that char(F ) = 0). Then da(ky) = da(x+ky) = 0 for any such k by Lemma 24.
Consequently, applying (26) with y replaced by ky and using (51) we prove
da(x) = 0.

Case 2. g(a + x) = 0. Then

f(a + x, y) + g(a + x − y) = −g(y)(h(a + x) + 1).

Case 2.1. h(a + x) + 1 �= 0. Then the same argument as in Case 1 gives
da(x) = 0.

Case 2.2. h(a + x) + 1 = 0. Then 0 = g(x)f(a, x) = g(a)2 = g(x)2, so
(26) simplifies to

2g(y)h(a)da(x + y) = g(y)h(a)da(y).
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Observe that h(a) �= 0, since otherwise f(a, y) = 0 for all y ∈ A contradicting
(22). Hence,

2da(x + y) = da(y), if g(y) �= 0. (52)

On the other hand, since g(a) = 0, then substituting x = 0 in (26) we get

da(y) = (h(a) + 1)da(0), if g(y) �= 0. (53)

Observe that g(x + y) = g(y) whenever g(x) = 0, so (53) and (52) yield

2(h(a) + 1)da(0) = (h(a) + 1)da(0).

It follows that da(0) = 0, unless h(a) + 1 = 0. In any case, (53) implies

da(y) = 0, if g(y) �= 0. (54)

Write (26) replacing x by x − y, where g(y) �= 0. Since da(y) = da(x − y) = 0
by (54), we come to

(h(x) + 2)da(x) = 0.

Thus, da(x) = 0, unless h(x) = −2 (in which case h(a) = 1). �

Lemma 26. Let ϕ0 ∈ Δ(L) satisfying (25) with a = 0. Then ϕ0 ∈ spanF {id}.
Proof. Writing (26) with a = 0, we get

2(f(x, y) + g(x − y))d0(x + y) = (f(x, y) + g(x − y))(d0(x) + d0(y)). (55)

Case 1. g(x) �= 0. Then put y = 0 in (55) to get:

d0(x) = d0(0), if g(x) �= 0. (56)

Case 2. g(x) = 0 and h(x) �= −1. Then f(x, y) = −g(y)h(x), and (55) is
equivalent to

2g(y)d0(x + y) = g(y)(d0(x) + d0(y)). (57)

Choose y ∈ A such that g(y) �= 0. Then d0(y) = d0(x + y) = d0(0) by (56).
Hence, (57) yields d0(x) = d0(0).

Case 3. g(x) = 0 and h(x) = −1. Let us use (55) with (x, y) replaced by
(x + y,−y). Observe that f(x + y,−y) = −f(x, y) = −g(y), so we get

6g(y)d0(x) = 3g(y)(d0(x + y) + d0(−y)). (58)

Choosing y ∈ A with g(y) �= 0 we have d0(x + y) = d0(−y) = d0(0) by (56).
Thus, d0(x) = d0(0) due to (58). �

Given λ, μ ∈ F , we introduce the following notation:

A(λ,μ) := {a ∈ A | g(a) = λ and h(a) = μ}.
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Lemma 27. Let a ∈ A(0,−2) and b ∈ A(0,−1). Then the linear map α(a,b) : L →
L given by

α(a,b)(uc) =

{
ub, c = a,

0, otherwise,

is a 1
2 -derivation of L.

Proof. Observe by Lemma 15(i) that α(a,b)(L) ⊆ Z(L), showing that the right-
hand side of (2) is always zero for ϕ = α(a,b). Furthermore, α(a,b)([L,L]) = {0}
by Lemma 15(ii), and the left-hand side of (2) is always zero as well. �

Proposition 28. We have Δ(L) = spanF ({id} ∪ {α(a,b) | a ∈ A(0,−2) and b ∈
A(0,−1)}).

Proof. The fact that any ϕ ∈ Δ(L) is a linear combination of id and α(a,b)

follows from Lemma 24–26. Conversely, the inclusion id ∈ Δ(L) is trivial, and
α(a,b) ∈ Δ(L) is Lemma27. �

Theorem 29. Let char(F ) = 0, g �= 0 and f be non-degenerate. If (g(a), h(a)) �=
(0,−1) for all a ∈ A, then all the transposed Poisson algebra structures on
L(A, g, f) are trivial. Otherwise, the transposed Poisson algebra structures on
L(A, g, f) are exactly extensions by zero of commutative associative products ∗
on the complement V = spanF {ua | g(a) = h(a) + 2 = 0} of [L,L] with values
in Z(L) = spanF {ua | g(a) = h(a) + 1 = 0}.
Proof. Let · be a transposed Poisson algebra structure on L(A, g, f). If (g(a),
h(a)) �= (0,−1) for all a ∈ A, then A(0,−1) = ∅, so by Proposition 28 we have
Δ(L) = {id}. It follows from [7, Theorem 8] that · is trivial.

Assume that (g(a), h(a)) = (0,−1) for some a ∈ A. Then (g(2a), h(2a)) =
(0,−2), so both A(0,−1) and A(0,−2) are non-empty. By Proposition 28 and
Lemma 4 for any a ∈ A there are ka ∈ F and {l

(x,y)
a }x∈A(0,−2),y∈A(0,−1) ⊆ F ,

such that

ua · ub = kaub +
∑

x∈A(0,−2),y∈A(0,−1)

l(x,y)
a α(x,y)(ub)

=

{
kaub +

∑
y∈A(0,−1)

l
(b,y)
a uy, b ∈ A(0,−2),

kaub, b �∈ A(0,−2).
(59)

Since char(F ) = 0 and A is torsion-free, then A\A(0,−1) and A\A(0,−2) are
infinite (indeed, if a ∈ A(λ,μ) with (λ, μ) �= (0, 0), then ka �∈ A(λ,μ) for all
k �= 1). So, for any a �∈ A(0,−2) there exists b �∈ A(0,−2), b �= a. Then by (59)
and commutativity of · we have kaub = ua ·ub = ub ·ua = kbua. Consequently,

ka = 0 for a �∈ A(0,−2). (60)
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Now let a ∈ A(0,−2) and b �∈ A(0,−1)∪A(0,−2). Then kbua+
∑

y∈A(0,−1)
l
(a,y)
b uy =

ub · ua = ua · ub = kaub gives

ka = 0 for a ∈ A(0,−2). (61)

It follows from (60) and (61) and the commutativity of · that

ua · ub =

{∑
y∈A(0,−1)

l
(b,y)
a uy, a, b ∈ A(0,−2),

0, otherwise.

Thus, · is of the form (3) for the commutative associative product ua ∗ ub =
∑

y∈A(0,−1)
l
(b,y)
a uy ∈ Z(L) on V = spanF {ua | a ∈ A(0,−2)}.

Conversely, in view of Lemma 15 the product (38) is of the form (3), so
(L, ·, [·, ·]) is a transposed Poisson (and usual Poisson) algebra.

Remark 30. Consider B(q) with q �= 0 as the complex Block algebra L(Z ×
Z, g, f), where g, f and h are given by (23) and (24). Then (g(m, i), h(m, i)) =
(0,−2) ⇔ (m, i) = (0,−2q) and (g(m, i), h(m, i)) = (0,−1) ⇔ (m, i) =
(0,−q), so we again obtain the description of transposed Poisson algebra struc-
tures on B(q) given in [11, Theorem 2.14] as a particular case of Theorem 29.
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