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Abstract. After having investigated the geodesic and translation triangles

and their angle sums in Sol and ˜SL2R geometries we consider the analo-
gous problem in Nil space that is one of the eight 3-dimensional Thurston
geometries. We analyze the interior angle sums of translation triangles in
Nil geometry and we provide a new approach to prove that it can be
larger than or equal to π. Moreover, for the first time in non-constant
curvature Thurston geometries we have developed a procedure for deter-
mining the equations of Nil isoptic surfaces of translation-like segments
and as a special case of this we examine the Nil translation-like Thales
sphere, which we call Thaloid. In our work we will use the projective
model of Nil described by Molnár (Beitr Algebra Geom 38(2):261–288,
1997).
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1. Introduction

In this paper we are interested in translation triangles and isoptic surfaces in
Nil space that is one of the eight Thurston geometries (see [26,41]) derived by
the Heisenberg matrix group [16,19].

In the Thurston spaces translation curves can be introduced in a natural
way (see [17,35]) by translations mapping each point to any point. Consider a
unit vector at the origin. Translations, postulated at the beginning carry this
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vector to any point by its tangent mapping. If a curve t → (x(t), y(t), z(t))
has just the translated vector as tangent vector in each point, then the curve
is called a translation curve. This assumption leads to a system of first order
differential equations, thus translation curves are simpler than geodesics and
differ from them in Nil, ˜SL2R and Sol geometries. Moreover, they play an
important role and often seem to be more natural in these geometries, than
their geodesic lines.

In the remaining five Thurson geometries E3, S3, H3, S2×R and H2×R,
the translation and geodesic curves coincide with each other.

Internal angle sum for triangles in S2×R and H2×R had been studied
in [36].

In [6] we investigated the angle sum of translation and geodesic triangles
in ˜SL2R geometry and proved that the possible sum of the interior angles in a
translation triangle must be greater than or equal to π. However, in geodesic
triangles this sum can be less than, greater than or equal to π.

In [34] interior angle sum of translation triangles had been studied in Sol
geometry to obtain that it must be greater than or equal to π. To calculate
this sum for geodesic curves needs further research.

In [1] Brodaczewska showed, that the sum of the interior angles of trans-
lation triangles of Nil space is larger than or equal to π, which is also the
aim of this study. However, our approach below seems generally effective to
all three geometries, where geodesic and translation curves differ. In [33], we
investigated the interior angle sum of geodesic triangles in Nil space.

Remark 1.1. Of the Thurston geometries, those with constant curvature (Eu-
clidean E3, hyperbolic H3, spherical S3) have been extensively studied, but
the other five geometries, H2×R, S2×R, Nil, ˜SL2R, Sol have been thoroughly
studied only from a differential geometry and topological point of view. How-
ever, classical concepts highlighting the beauty and underlying structure of
these geometries—such as geodesic curves and spheres, translation curves an
spheres, the lattices, ball packing, the geodesic and translation triangles and
their surfaces, their interior sum of angles, equidistant surfaces, locus of points
in the plane or in the space from a segment subtends a given angle (isoptic
curves or surfaces) and similar statements to those known in constant cur-
vature geometries—can be formulated. These have not been in the focus of
attention yet, but there are some results, e.g. [20,23,30–32,37–40].

In this paper we consider some of these topics.

In Sect. 2 we describe the projective model of Nil and we shall use its
standard Riemannian metric obtained by pull back transform to the infinites-
imal arc-length-square at the origin. We also recall the isometry group of Nil
and give an overview about translation curves.
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In Sect. 3 we study the Nil translation triangles and prove that the in-
terior angle sum of a translation triangle in Nil geometry can be larger than,
or equal to π. We also determine when this internal angle sum is exactly π.

In Sect. 4 we introduce isoptic curves with the usual Euclidean planar
definition, then we define the basic idea of spatial visibility, i.e. the concept
of isoptic surfaces. With the help of these, we can introduce the isoptic and
orthoptic surfaces for any segment, which can then be defined for translation-
like segments similarly in the Nil geometry.

In the last Sect. 5, we examine the translation-like isoptic surfaces of a
given translation-like segment. We give the definition of these surfaces and a
procedure by which we can determine the translation-like isoptic surface of any
translation-like segment. This procedure can perhaps be further developed, to
determine translation-like isoptic surfaces to any given Nil curve. We deter-
mine the implicit equation of these surfaces and visualize them. Thaloids are
also analyzed as a special case. Similar investigations in this topic have only
been carried out in spaces with constant curvature (see [4,7,8,24,25]).

2. Nil Geometry and Its Translation Curves

Nil geometry can be derived from the famous real matrix group L(R) discov-
ered by Werner Heisenberg. The left (row-column) multiplication of Heisenberg
matrices ⎛

⎝
1 x z
0 1 y
0 0 1

⎞
⎠

⎛
⎝

1 a c
0 1 b
0 0 1

⎞
⎠ =

⎛
⎝

1 a + x c + xb + z
0 1 b + y
0 0 1

⎞
⎠ (2.1)

defines “translations” L(R) = {(x, y, z) : x, y, z ∈ R} on the points of Nil =
{(a, b, c) : a, b, c ∈ R}. These translations are not commutative in general.
The matrices K(z) � L of the form

K(z) �
⎛
⎝

1 0 z
0 1 0
0 0 1

⎞
⎠ �→ (0, 0, z) (2.2)

constitute the one parametric centre, i.e. each of its elements commutes with all
elements of L. The elements of K are called fibre translations. Nil geometry
of the Heisenberg group can be projectively (affinely) interpreted by “right
translations” on points as the matrix formula

(1; a, b, c) → (1; a, b, c)

⎛
⎜⎜⎝

1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

⎞
⎟⎟⎠ = (1; x + a, y + b, z + bx + c) (2.3)

shows, according to (2.1). Here we consider L as projective collineation group
with right actions in homogeneous coordinates. We will use the Cartesian
homogeneous coordinate simplex E0(e0),E∞

1 (e1), E∞
2 (e2), E∞

3 (e3), ({ei} ⊂
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V4 with the unit point E(e = e0 +e1 +e2 +e3)) which is distinguished by an
origin E0 and by the ideal points of coordinate axes, respectively. Moreover,
y = cx with 0 < c ∈ R (or c ∈ R\{0}) defines a point (x) = (y) of the
projective 3-sphere PS3 (or that of the projective space P3 where opposite
rays (x) and (−x) are identified). The dual system {(ei)}, ({ei} ⊂ V 4), with
eie

j = δj
i (the Kronecker symbol), describes the simplex planes, especially the

plane at infinity (e0) = E∞
1 E∞

2 E∞
3 , and generally, v = u 1

c defines a plane
(u) = (v) of PS3 (or that of P3). Thus 0 = xu = yv defines the incidence of
point (x) = (y) and plane (u) = (v), as (x)I(u) also denotes it. Thus Nil can
be visualized in the affine 3-space A3 (so in E3) as well [21].

In this context Molnár [16] has derived the well-known infinitesimal arc-
length square invariant under translations L at any point of Nil as follows

(dx)2 + (dy)2 + (−xdy + dz)2 = (dx)2 + (1 + x2)(dy)2

− 2x(dy)(dz) + (dz)2 =: (ds)2
(2.4)

The translation group L defined by formula (2.3) can be extended to a larger
group G of collineations, preserving the fibres, that will be equivalent to the
(orientation preserving) isometry group of Nil.

In [18] Molnár has shown that a rotation through angle ω about the z-
axis at the origin, as isometry of Nil, keeping invariant the Riemann metric
everywhere, will be a quadratic mapping in x, y to z-image z as follows:

M = r(O,ω) : (1;x, y, z) → (1;x, y, z);
x = x cos ω − y sinω, y = x sinω + y cos ω,

z = z − 1
2
xy +

1
4
(x2 − y2) sin 2ω +

1
2
xy cos 2ω.

(2.5)

This rotation formula M, however, is conjugate by the quadratic mapping α
to the linear rotation Ω as follows

α−1 : (1; x, y, z)
α−1
−→ (1; x′, y′, z′) =

(
1; x, y, z − 1

2
xy

)
to

Ω : (1; x′, y′, z′) Ω−→ (1; x′′, y′′, z′′) = (1; x′, y′, z′)

⎛
⎜⎜⎝

1 0 0 0
0 cos ω sin ω 0
0 − sin ω cos ω 0
0 0 0 1

⎞
⎟⎟⎠ ,

with α : (1; x′′, y′′, z′′) α−→ (1; x, y, z) =

(
1; x′′, y′′, z′′ +

1

2
x′′y′′

)
.

(2.6)

This quadratic conjugacy modifies the Nil translations in (2.3), as well. Now
a translation with (X,Y,Z) in (2.3) instead of (x, y, z) will be changed by the
above conjugacy to the translation
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(1;x, y, z) −→ (1;x, y, z) = (1;x, y, z)

⎛
⎜⎜⎜⎜⎝

1 X Y Z − 1
2XY

0 1 0 − 1
2Y

0 0 1 1
2X

0 0 0 1

⎞
⎟⎟⎟⎟⎠

, (2.7)

that is again an affine collineation.

2.1. Translation Curve and Sphere

We consider a Nil curve (1, x(t), y(t), z(t)) with a given starting tangent vector
at the origin O = E0 = (1, 0, 0, 0)

u = ẋ(0), v = ẏ(0), w = ż(0). (2.8)

For a translation curve let its tangent vector at the point (1, x(t), y(t), z(t)) be
defined by the matrix (2.3) with the following equation:

(0, u, v, w)

⎛
⎜⎜⎝

1 x(t) y(t) z(t)
0 1 0 0
0 0 1 x(t)
0 0 0 1

⎞
⎟⎟⎠ = (0, ẋ(t), ẏ(t), ż(t)). (2.9)

Thus, the translation curves in Nil geometry (see [17,21,22]) are defined by
the above first order differential equation system ẋ(t) = u, ẏ(t) = v, ż(t) =
v · x(t) + w, whose solution is the following:

x(t) = ut, y(t) = vt, z(t) =
1
2
uvt2 + wt. (2.10)

We assume that the starting point of a translation curve is the origin, because
we can transform a curve into an arbitrary starting point by translation (2.3),
moreover, unit initial velocity translation can be assumed by “geographic”
parameters φ and θ:

x(0) = y(0) = z(0) = 0;

u = ẋ(0) = cos θ cos φ, v = ẏ(0) = cos θ sinφ, w = ż(0) = sin θ;

−π ≤ φ ≤ π, −π

2
≤ θ ≤ π

2
.

(2.11)

Definition 2.1. The translation distance dt(P1, P2) between the points P1 and
P2 is defined by the arc length of the above translation curve from P1 to P2.

Definition 2.2. The sphere of radius r > 0 with centre at the origin, (denoted
by St

O(r)), with the usual longitude and altitude parameters φ and θ, respec-
tively by (2.11), is specified by the following equations:

St
O(r) :

⎧⎨
⎩

x(φ, θ) = r cos θ cos φ,
y(φ, θ) = r cos θ sinφ,

z(φ, θ) = r2

2 cos2 θ cos φ sin φ + r sin θ.

(2.12)
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Definition 2.3. The body of the translation sphere of centre O and of radius r
in the Nil space is called translation ball, denoted by Bt

O(r), i.e. Q ∈ Bt
O(r)

iff 0 ≤ dt(O,Q) ≤ r.

The parametrization in (2.12) allows us, to create the implicit equation
of Bt

O(r):

x2 + y2 +
(
z − xy

2

)2

= r2 (2.13)

3. Translation Triangles

We consider 3 points A1, A2, A3 in the projective model of Nil space. The
translation segments ak connecting the points Ai and Aj (i < j, i, j, k ∈
{1, 2, 3}, k �= i, j) are called sides of the translation triangle with vertices A1,
A2, A3.

In Riemannian geometries the metric tensor (or infinitesimal arc-lenght
square (see 2.4) is used to define the angle θ between two curves. If their tangent
vectors in their common point are u and v and gij are the components of the
metric tensor then

cos(θ) =
uigijv

j

√
uigijuj vigijvj

(3.1)

It is clear by the above definition of the angles and by the infinitesimal arc-
lenght square (2.4), that the angles are the same as the Euclidean ones at the
origin of the projective model of Nil geometry.

Considering a translation triangle A1A2A3 we can assume by the homo-
geneity of the Nil geometry that one of its vertex coincide with the origin
A1 = E0 = (1, 0, 0, 0) and the other two vertices are A2(1, x2, y2, z2) and
A3(1, x3, y3, z3).

We will consider the interior angles of translation triangles that are de-
noted at the vertex Ai by ωi (i ∈ {1, 2, 3}). We note here that the angle of
two intersecting translation curves depends on the orientation of their tangent
vectors.

In order to determine the interior angles of a translation triangle A1A2A3

and its interior angle sum
∑3

i=1(ωi), we define translations TAi
, (i ∈ {2, 3})

as elements of the isometry group of Nil, that maps the origin E0 onto Ai (see
Fig. 2).

E.g. the isometry TA2 and its inverse (up to a positive determinant factor)
can be given by:

TA2 =

⎛
⎜⎜⎝

1 x2 y2 z2

0 1 0 0

0 0 1 x2

0 0 0 1

⎞
⎟⎟⎠ , T−1

A2
=

⎛
⎜⎜⎝

1 −x2 −y2 x2y2 − z2

0 1 0 0

0 0 1 −x2

0 0 0 1

⎞
⎟⎟⎠ ,
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=A1E0

A3

A2
A

A3

2

=A1E0

Figure 1. Translation triangles with vertices A1 =
(1, 0, 0, 0), A2 = (1,−1, 1, 1), A3 = (1, 1/2, 5, 1/2) (left) and
with vertices A1 = (1, 0, 0, 0), A2 = (1,−1, 1, 1), A3 =
(1, 1/2,−1, 1/2) (right)

TA3 =

⎛
⎜⎜⎝

1 x3 y3 z3

0 1 0 0
0 0 1 x3

0 0 0 1

⎞
⎟⎟⎠ , T−1

A3
=

⎛
⎜⎜⎝

1 −x3 −y3 x3y3 − z3

0 1 0 0
0 0 1 −x3

0 0 0 1,

⎞
⎟⎟⎠ , (3.2)

and the images T−1
A2

(Ai) of the vertices Ai (i ∈ {1, 2, 3}) are the following
(see also Fig. 2):

T −1
A2

(A1) = A2
1 = (1, −x2, −y2, x2y2 − z2); T −1

A2
(A2) = A2

2 = E0 = (1, 0, 0, 0);

T −1
A2

(A3) = A2
3 = (1, −x2 + x3, −y2 + y3, x2y2 − x2y3 − z2 + z3);

T −1
A3

(A1) = A3
1 = (1, −x3, −y3, x3y3 − z3); T −1

A3
(A3) = A3

3 = E0 = (1, 0, 0, 0);

T −1
A3

(A2) = A3
2 = (1, x2 − x3, y2 − y3, −x3y2 + x3y3 + z2 − z3).

(3.3)

Our aim is to determine angle sum
∑3

i=1(ωi) of the interior angles of
translation triangles A1A2A3 (see Figs. 1 and 2). We have seen that ω1 and
the angle of translation curves with common point at the origin E0 is the same
as the Euclidean one therefore can be determined by usual Euclidean sense.

The translations TAi
(i = 2, 3) are isometries in Nil geometry thus ωi is

equal to the angle (t(Ai
i, A

i
1)t(A

i
i, A

i
j))∠ (i, j = 2, 3, i �= j) (see Fig. 2) where

t(Ai
i, A

i
1), t(Ai

i, A
i
j) are oriented translation curves (E0 = A2

2 = A3
3) and ω1

is equal to the angle (t(E0, A2)t(E0, A3))∠ where t(E0, A2), t(E0, A3) are also
oriented translation curves.

We denote the oriented unit tangent vectors of the oriented geodesic
curves t(E0, A

j
i ) with tj

i where (i, j) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}
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E0

=A1E0

A3

A2

A

2

A2

A1A1

A3

A

3

3

3

2

2

Figure 2. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 1, 1), A3 = (1, 1/2, 3/2, 1/2) and its translated
copies A2

1A
2
3E0 and A3

1A
3
2E0

and A0
3 = A3, A0

2 = A2. The Euclidean coordinates of tj
i are:

tji = (cos θj
i cos φj

i , cos θj
i sinφj

i , sin θj
i ). (3.4)

In order to obtain the angle of two translation curves tE0Aj
i

and tE0Al
k

((i, j) �=
(k, l); (i, j), (k, l) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}) intersected at the
origin E0 we need to determine their tangent vectors tr

s ((s, r) ∈ {(1, 3), (1, 2),
(2, 3), (3, 2), (3, 0), (2, 0)}) (see 3.4) at their starting point E0. From (3.4) fol-
lows that a tangent vector at the origin is given by the parameters φ and θ
of the corresponding translation curve (see 2.11) that can be determined from
the homogeneous coordinates of the endpoint of the translation curve.

It can be assumed by the homogeneity of Nil that the starting point
of a given translation curve segment is E0 = P1 = (1, 0, 0, 0) and the other
endpoint will be given by its homogeneous coordinates P2 = (1, a, b, c). We
consider the translation curve segment tP1P2 and determine its parameters
(φ, θ, r) expressed by the real coordinates a, b, c of P2. We obtain directly by
equation system (2.11) the following:

Lemma 3.1. 1. Let (1, a, b, c) (a, b ∈ R\{0}, c ∈ R) be the homogeneous
coordinates of the point P ∈ Nil. The parameters of the corresponding
translation curve tE0P are the following

φ = arccot
(a

b

)
, or φ = arccot

(a

b

)
− π,

θ = arctan
( c − ab

2√
a2 + b2

)
, r =

∣∣∣c − ab
2

sin θ

∣∣∣.
(3.5)

2. Let (1, a, 0, c) (a, c ∈ R\{0}) be the homogeneous coordinates of the point
P ∈ Nil. The parameters of the corresponding translation curve tE0P are
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the following

φ = π · n, (n ∈ {0, 1}), θ = arctan
( c

a

)
, r =

∣∣∣ a

cos θ

∣∣∣. (3.6)

3. Let (1, a, 0, 0) (a ∈ R\{0}) be the homogeneous coordinates of the point
P ∈ Nil. The parameters of the corresponding translation curve tE0P are
the following

φ = π · n, (n ∈ {0, 1}), θ = π · n, (n ∈ {0, 1}), r = |a|. (3.7)

4. Let (1, 0, b, 0) (b ∈ R\{0}) be the homogeneous coordinates of the point
P ∈ Nil. The parameters of the corresponding translation curve tE0P are
the following

φ = ±π

2
, θ = π · n, (n ∈ {0, 1}), r = |b|. (3.8)

5. Let (1, 0, 0, c) (c ∈ R\{0}) be the homogeneous coordinates of the point
P ∈ Nil. The parameters of the corresponding translation curve tE0P are
the following

θ = ±π

2
, r = |c|. � (3.9)

Applying the above lemma we obtain the following

Theorem 3.2. The sum of the interior angles of a translation triangle is greater
than or equal to π.

Proof. The translations T−1
A2

and T−1
A3

are isometries in Nil geometry thus ω2

is equal to the angle ((A2
2A

2
1), (A

2
2A

2
3))∠ (see Fig. 2) of the oriented translation

segments tA2
2A2

1
, tA2

2A2
3

and ω3 is equal to the angle ((A3
3A

3
1), (A

3
3A

3
2))∠ of the

oriented translation segments tA3
3A3

1
and tA3

3A3
2

(E0 = A2
2 = A3

3).
Substituting the coordinates of the points Aj

i (see 3.3 and 3.4) ((i, j) ∈
{(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}) to the appropriate equations of Lemma
3.1, it is easy to see that

θ02 = −θ21, φ0
2 − φ2

1 = ±π ⇒ t02 = −t21,

θ03 = −θ31, φ0
3 − φ3

1 = ±π ⇒ t03 = −t31,

θ23 = −θ32, φ2
3 − φ3

2 = ±π ⇒ t23 = −t32.

(3.10)

The endpoints T j
i of the position vectors tj

i =
−−−→
E0T

j
i lie on the unit sphere

centered at the origin. The measure of angle ωi (i ∈ {1, 2, 3}) of the vectors tj
i

and ts
r is equal to the spherical distance of the corresponding points T j

i and
T s

r on the unit sphere (see Fig. 3). Moreover, a direct consequence of equations
(3.9) that each point pair (T2, T 2

1 ), (T3,T 3
1 ), (T 3

2 ,T 2
3 ) contains antipodal points

related to the unit sphere with centre E0.
Due to the antipodality ω1 = T2E0T3∠ = T 2

1 E0T
3
1 ∠, therefore their

corresponding spherical distances are equal, as well (see Fig. 3). Now, the sum
of the interior angles

∑3
i=1(ωi) can be considered as three consecutive spherical
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E0

A3

A2
2

A2

A1
A1

A3

3

3

2

T2
3

T3

T3
2

T1
2

T2

T1
3

1

2

3

2

3

Figure 3. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 1, 1), A3 = (1, 1/2, 3/2, 1/2), its translated copies
A2

1A
2
3E0, A3

1A
3
2E0 with angles ωi (i ∈ {1, 2, 3}

arcs (T 2
3 T 2

1 ), (T 2
1 T 3

1 ), T 3
1 T 3

2 ). Since the triangle inequality holds on the sphere,
the sum of these arc lengths is greater or equal to the half of the circumference
of the main circle on the unit sphere i.e. π. �

The following lemma is an immediate consequence of the above proof:

Lemma 3.3. The angle sum
∑3

i=1(ωi) of a Nil translation triangle A1A2A3 is
π if and only if the points T j

i ((i, j) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)})
lie in an Euclidean plane (Fig. 4).

Now, we distinguish the cases, when the internal angle sum is exactly π.

Lemma 3.4. If the vertices of a translation triangle A1A2A3 lie in a plane
perpendicular to the base plane (coordinate plane [x, y]) of the model of Nil
geometry then the interior angle sum

∑3
i=1(ωi) = π.

Proof. We get from the equation system (2.10) of the translation curves that
the points of a translation curve tE0P (P ∈ Nil) lie in an Euclidean plane that
is perpendicular to [x, y] base plane, therefore, its tangent line also lies in this
plane.

Moreover, a direct consequence of formulas (2.10) and (3.3) than if a
translation triangle A1A2A3 lies in this to base plane perpendicular α plane
then its translated image by a translation lies also in a to the base plane
perpendicular plane α′ and each to the base plane orthogonal α′ can be de-
rived as a translated copy of α. Thus, applying the Lemma 3.3 we proved this
lemma. �
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=A1E0A3

A2

=A1E0
A3

A2

Figure 4. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 1/2, 2), A3 = (1, 3,−3/2, 1). The translation
curve segments tA1A2 , tA2A3 , tA3A1 lie on a plane orthogo-
nal to the [x, y] base plane. The interior angle sum of this
translation triangle is

∑3
i=1(ωi) = π

Table 1. A2(1,−1, 1, 1), A3(1, 1/2, y3, 1/2)

y3 ω1 ω2 ω3

∑3
i=1(ωi)

−10 1.85298 0.75454 0.58205 3.18956
−2 1.78411 0.52781 0.83577 3.14770
−1 1.70632 0.44929 0.98637 3.14198
1/10 1.35152 0.46598 1.32927 3.14677
3/4 1.19668 0.68254 1.31811 3.19733
3/2 1.19912 1.08556 0.97181 3.25650
5 1.24271 1.94607 0.36983 3.55861
10 1.25686 2.12780 0.40324 3.78790

We can determine the interior angle sum of arbitrary translation triangle.
In the following table we summarize some numerical data of interior angles of
given translation triangles (Table 1):

4. Introduction to Isoptic Curves

It is well known that in the Euclidean plane the locus of points from a segment
subtends a given angle α (0 < α < π) is the union of two arcs except for the
endpoints with the segment as common chord. If this α is equal to π

2 then
we get the Thales circle. Replacing the segment to another general curve, we
obtain the Euclidean definition of isoptic curve:
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Definition 4.1 ([45]). The locus of the intersection of tangents to a curve meet-
ing at a constant angle α (0 < α < π) is the α—isoptic of the given curve.
The isoptic curve with right angle called orthoptic curve.

Remark 4.2. Sometimes we consider the α—and π − α—isoptics together.
Thus, in the case of the section, we get two circles with the segment as a
common chord (endpoints of the segment are excluded). Hereafter, we call
them α—isoptic circles.

Although the name “isoptic curve” was suggested by Taylor in 1884 ([41]),
reference to former results can be found in [45]. In the obscure history of isop-
tic curves, we can find the names of la Hire (cycloids 1704) and Chasles (conics
and epitrochoids 1837) among the contributors of the subject. A very inter-
esting table of isoptic and orthoptic curves is introduced in [45], unfortunately
without any exact reference of its source. However, recent works are available
on the topic, which shows its timeliness. In [2] and [3], the Euclidean isoptic
curves of closed strictly convex curves are studied using their support function.
Papers [11,43,44] deal with Euclidean curves having a circle or an ellipse for
an isoptic curve. Further curves appearing as isoptic curves are well studied in
Euclidean plane geometry E2, see e.g. [12,42]. Isoptic curves of conic sections
have been studied in [9] and [27,28]. There are results for Bezier curves by
Kunkli et al. as well, see [10]. Many papers focus on the properties of isop-
tics, e.g. [13–15], and the references therein. There are some generalizations of
the isoptics as well e.g. equioptic curves in [25] by Odehnal or secantopics in
[24,29] by Skrzypiec.

We can extend the very first question to the space: “What is the locus of
points where a given segment subtends a given angle?” Or a question equivalent
to the former: “For the given spatial points A and B, what is the locus of the
points P for which the internal angle at P of the triangle ABP� is a given
angle?” We use this to define the α—isoptic surface of a Euclidean spatial
segment.

Definition 4.3. The α—isoptic surface of a Euclidean spatial segment A1A2 is
the locus of points P for which the internal angle at P in the triangle, formed
by A1, A2 and P is α. If α is the right angle, then it is called the Thaloid of
A1A2.

It is easy to see in the Euclidean space that:

Theorem 4.4. The locus of points in the Euclidean space from where a given
segment subtends a given angle α (0 < α < π) or π − α is a self-intersecting
torus obtained by rotating the α—isoptic circles drawn in any plane containing
the section around the line of the section. �

Remark 4.5. 1. The torus in the above theorem contains both the isoptic
surface for the given angle and the supplementary angle. In this case,
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we can easily separate the α—and π − α—isoptic surfaces along the self-
intersection. Specifically, the orthoptic surface is a sphere whose diameter
is the section. We can call this the Thaloid of the segment.

2. There is no point in examining the isoptic surface defined in the above
way for other spatial curves, because if the curve is not of constant 0
curvature, then there is an external point from which the curve and the
point cannot be fitted into a plane. In this case, the above definition needs
to be generalized.

For further isoptic surfaces in Euclidean geometry, see [7,8], where we
extend the definition of isoptic surfaces to other spatial objects. The notion
of isoptic curve can be extended to the other planes of constant curvature
(hyperbolic plane H2 and spherical plane H2). We studied these questions in
[4] and [5].

5. Translation-Like Isoptic Surfaces in Nil

In the rest of this study, we will focus on the isoptic surface of the translation-
like segment in Nil geometry, which in the projective model is far from straight,
but a parametric curve described in (2.10). We can make the following defini-
tion along the lines of the Definition 4.3.

Definition 5.1. The Nil translation-like α—isoptic surface of a translation-like
segment A1A2 is the locus of points P for which the internal angle at P in the
translation-like triangle, formed by A1, A2 and P is α. If α is the right angle,
then it is called the translation-like Thaloid of A1A2.

We emphasize here that the section itself does not appear in our calcu-
lations, we only deal with the endpoints. An interesting question beyond this
study is how the ruled surface, or more precisely in this case, how the trian-
gular surface looks like generated by the curves drawn from the outer point to
all points of the section. Thus the angle can really be considered planar in Nil
sense or any non desirable intersection occurs between the segment and the
rays. The section itself and the rays can be translation-like or geodesic-like as
well. Some of these questions arise in [37].

We can assume by the homogeneity of the Nil geometry that one of
its endpoints coincide with the origin A1 = E0 = (1, 0, 0, 0) and the other
is A2(1, a, b, c). Considering a point P (1, x, y, z), we can determine the angle
A1PA2∠ along the procedure described in the previous section.

We apply T−1
P to all three points. This transformation preserves the angle

A1PA2∠ and pulls back P to the origin, hence the angle in question seems
in real size. We get T−1

P by replacing x2, y2 and z2 in (3.2) with x, y and z
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respectively:

T−1
A3

=

⎛
⎜⎜⎝

1 −x −y xy − z
0 1 0 0
0 0 1 −x
0 0 0 1,

⎞
⎟⎟⎠ (5.1)

T−1
P (P ) = (1, 0, 0, 0);

T−1
P (A1) = (1,−x,−y, xy − z);

T−1
P (A2) = (1, a − x, b − y,−bx + xy + c − z).

(5.2)

According to (2.10) and (2.11), the tangent of the translation curve be-
tween the origin and a point T (1, x, y, z) at the origin can be obtained by the
following formulas:

t = (u, v, w) =
(
x, y, z − xy

2

)
(5.3)

Let us denote with t1 and t2 the tangents of the translation curves to
T−1

P (A1) and T−1
P (A2) from the origin E0 = T−1

P (P ) at the origin. We can
calculate these tangents by applying (5.3) to (5.2).

t1 =
(
−x,−y,

xy

2
− z

)

t2 =
(

a − x, b − y, c − z +
(x + a)(y − b)

2

) (5.4)

Finally, fixing the angle of the t1 and t2 to α, we get the translation-like
α—isoptic surface of A1A2.

Theorem 5.2. Given a translation-like segment in the Nil geometry by its end-
points A1 = (1, 0, 0, 0) and A2 = (1, a, b, c). Then the translation-like α—
isoptic surface of the translation-like segment A1A2 have the implicit equation:

cos(α) =

x (x − a) + y (y − b) +
(
z − xy

2

) (
z − c − (x + a)(y − b)

2

)

√√√√(
x2 + y2 +

(
z − xy

2

)2) (
(x − a)2 + (y − b)2 +

(
z − c − (x + a)(y − b)

2

)2
)

(5.5)

�

On Fig. 5, one can see some isoptic surfaces to a general translation-like
segment in Nil geometry. The left side shows the isoptic surface to an acute
angle, the right side shows the translation-like Thaloid of the same segment.

Let us examine the special case when the endpoints of the segment are
situated on the z axis, i.e. A1 = (1, 0, 0, 0) and A2 = (1, 0, 0, c). In this case, the
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Figure 5. Isoptic surface with A2 = (1, 1, 1, 2) and α = π
3

(left) and π
2 (right)

translation-like segment looks like a Euclidean segment in the model. Replacing
in (5.5) a, b and α with 0, 0 and π

2 we get the following equation:

x2 + y2 +
(
z − xy

2

) (
z − xy

2
− c

)
= 0 (5.6)

Or, after some transformation:

x2 + y2 +
(
z − xy

2
− c

2

)2

=
c2

4
(5.7)

Now, applying T−1
F to all points of this equation, where F (1, 0, 0, c/2),

we obtain

T−1
F (P ) = (1; x′, y′, z′) = (1; x, y, z)

⎛
⎜⎜⎝

1 0 0 − c
2

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ =

(
1; x, y, z − c

2

)
(5.8)

(x′)2 + (y′)2 +
(
z′ − xy

2

)2

=
c2

4
(5.9)

Comparing (5.9) equation with (2.13), we can claim the following lemma:

Lemma 5.3. Given a translation-like segment in the Nil geometry by its end-
points A1 = (1, 0, 0, 0) and A2 = (1, a, b, c). Then the translation-like Thaloid
of this line segment is a Nil sphere without the endpoints of the segment if and
only if a = b = 0. Then the center of the Nil sphere is F (1, 0, 0, c/2) and its

radius is
|c|
2

.

Proof. To prove Lemma 5.3, we need further consideration to the other direc-
tion, not covered by the calculations above. Due to lengthy calculations and
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Figure 6. Isoptic surface (translation-like Thaloid) of trans-
lation segment A1A2 where A1 = (1, 0, 0, 0), A2 = (1, 0, 0, 4)
and α = π

2 .

formulas, we only present here the outline of the proof. First, we need to find
the midpoint F of the translation section A1A2 and its length, half of which
will be the radius of the sphere. Then, using T−1

F and (2.13), we write the
equation of the translation sphere whose diameter is A1A2. We compare this
to the numerator of the right side in equation (5.5) (substituting α = π/2).
Finally, considering the difference of the two equations, we get that it will be
0 if and only if ay − bx = 0, or ay − bx = 2ab − 4c which is equivalent to
a = b = 0. �

On Fig. 6 we can see the translation-like Thaloid related to the translation
segment A1 = (1, 0, 0, 0) and A2 = (1, 0, 0, 4), as well as a sphere with center
F = (1, 0, 0, 2) and radius 2.
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