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Wallace–Simson Theorem on Four Lines
Parallel to a Plane

Jǐŕı Blažek and Pavel Pech

Abstract. The impulse to study this topic came from a variant of the
Wallace-Simson theorem, which deals with the locus of the point P such
that the points that are symmetric to P with respect to three lines in
the plane are collinear. A 3D generalization can be as follows: Given four
straight lines which are parallel to a plane. Determine the locus of the
point P such that points that are symmetric to P with respect to these
four lines are coplanar. Surprisingly, the locus of P is a cylinder of revo-
lution with the axis which is perpendicular to the fixed plane. Moreover,
all planes given by points that are symmetric with an arbitrary point P
of the locus with respect to the given four lines pass through a fixed line
f . While in the planar version the fixed element is the orthocenter of the
triangle given by the three lines, the role of the fixed line f with respect
to the four given lines is not obvious.
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1. Introduction

The well-known Wallace–Simson (W–S) theorem states: The feet of normals
from an arbitrary point P in the circumcircle of a triangle to its side lines
are collinear [1,5,7]. A variant of the W–S theorem says: For any point P
in the circumcircle of a triangle, the points symmetric to P with respect to
the side lines of the triangle are collinear. Moreover, all lines given by points
that are symmetric to a locus point P with respect to the side lines of the
given triangle pass through the orthocenter of the triangle. We will call it a
symmetric variant of the W–S theorem.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-01950-2&domain=pdf
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There are various generalizations of the W–S theorem both planar and
spatial or n-dimensional, see [6,8–14].

A 3D generalization of the W–S theorem on four arbitrary straight lines
which deals with the locus of the point P such that the feet of normals from
P to these four lines are coplanar yields in general as the locus of P a cubic
surface. It is possible to distinguish the individual positions of the lines that
lead to different types of cubic surfaces (or quadrics) and their singular forms
[12]. In our opinion, such a classification has not yet taken place, it is a matter
of further research.

We decided to investigate the case where four given lines k1, k2, k3, k4
are parallel to a fixed plane. One of the reasons to present this result is that
the locus of P was very unexpected to us—we got a cylinder of revolution
(Theorem 1), see [2].

The main results of the paper are given in the Theorem 2 and the The-
orem 3. We investigate the locus of all points P whose reflections in four
mutually skew lines k1, k2, k3, k4 (which are parallel to a plane) are coplanar.
The locus of P is again a cylinder of revolution (Theorem 2). This spatial ver-
sion retains the property of the planar version—all the planes given by points
that are reflected from an arbitrary locus point P in the lines k1, k2, k3, k4 pass
through a fixed line f (Theorem 3).

The computations, especially the elimination of variables, were performed
in the program CoCoA1 [3] which is based on Gröbner bases computations
[4]. Resulting figures showing the searched locus were made in MAPLE and
GeoGebra.

2. W–S theorem: 4 Lines Parallel to a Plane

In this section, we deal with the 3D generalization of the W–S theorem on
four straight lines that are parallel to a plane (Theorem 1). We omit the proof
because a similar problem is discussed in the next section.

Theorem 1. In the Euclidean space E
3 consider four pairwise skew straight

lines k1, k2, k3, k4 that are parallel to a plane. Then the locus of all points P
such that feet of normals from P to the given lines are coplanar is a cylinder
of revolution whose axis is orthogonal to the given plane.

Assume that the lines k1, k2, k3, k4 are parallel to the xy-plane and by
z1, z2, z3, z4 we denote their distances from the xy-plane. Let a1x+b1y+c1 = 0,
a2x+ b2y+ c2 = 0, a3x+ b3y+ c3 = 0 and a4x+ b4y+ c4 = 0 be the equations
of the orthogonal projections of k1, k2, k3, k4 in the xy-plane. Then the locus
equation of the point P = (p, q, r) is

K := A(p2 + q2) + Bp + Cq + D = 0, (1)

1Software CoCoA is freely distributed at http://cocoa.dima.unige.it.

http://cocoa.dima.unige.it
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Figure 1. Given four lines parallel to a plane. The locus of
the point P such that the feet of normals from P to the given
lines are coplanar is a cylinder of revolution

where
A = z2a3a4(a3b4 − a4b3) + z3a2a4(a4b2 − a2b4) + z4a2a3(a2b3 − a3b2),
B = z2(a3c4 + a4c3)(a3b4 − a4b3) + z3(a2c4 + a4c2)(a4b2 − a2b4) + z4(a2c3 +
a3c2)(a2b3 − a3b2),
C = z2(a3a4 + b3b4)(a3c4 − a4c3) + z3(a2a4 + b2b4)(a4c2 − a2c4) + z4(a2a3 +
b2b3)(a2c3 − a3c2),
D = z2c3c4(a3b4 − a4b3) + z3c2c4(a4b2 − a2b4) + z4c2c3(a2b3 − a3b2). �

We see that the locus Eq. (1) represents a cylinder of revolution whose
axis is perpendicular to the xy-plane, Fig. 1.

Remark 1. The coefficient A by p2 + q2 in (1) depends only on the directions
of the lines k1, k2, k3, k4 and their distances z1, z2, z3, z4 to the fixed xy-plane
due to the absence of the terms c1, c2, c3, c4.

Remark 2. If all lines k1, k2, k3, k4 intersect a line that is perpendicular to the
fixed plane (axis z in our coordinate system), then the locus of P is this line
instead of the cylinder of revolution. To see this, note that in this case all
coefficients c1, c2, c3 and c4 vanish. This means B = C = D = 0 in (1).

Remark 3. Note that for any point P of the locus, the entire line passing
through the point P that is perpendicular to the given plane belongs to the
locus. So it is enough to examine the locus in this plane.
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Figure 2. Points K ′, L′,M ′ lie on a line which passes
through the orthocenter H of ABC

3. Symmetric Variant of W–S Theorem: 4 Lines Parallel to a
Plane

In this section, we study the main topic of the paper—a 3D generalization of
a symmetric variant of W–S theorem on four straight lines that are parallel to
a plane.

The symmetric variant of the W–S theorem says that the locus of the
point P such that points K ′, L′,M ′ which are symmetric to P with respect
to the side lines of a given triangle ABC are collinear is the circumcircle of
ABC. Moreover, for an arbitrary locus point P all lines given by collinear
points K ′, L′,M ′ are concurrent at the orthocenter H of the triangle ABC,
Fig. 2.

The collinearity of the points K ′, L′,M ′ follows from the W–S theorem
since a homothety centered at P with ratio 2 sends the feet K,L,M of normals
from P to the sides of ABC to the collinear points K ′, L′,M ′.

3.1. Symmetric Variant of W–S Theorem

The following is a spatial generalization of the symmetric variant of the W–S
theorem on four straight lines that are parallel to a plane.

Theorem 2. In the Euclidean space E
3 consider four pairwise skew straight

lines k1, k2, k3, k4 that are parallel to a plane. Then the locus of the point P
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such that points X1,X2,X3,X4 that are symmetric to P with respect to the
straight lines k1, k2, k3, k4 are coplanar is a cylinder of revolution.

Proof. With the proper choice of a Cartesian coordinate system, we achieve
that a1x+b1y+c1 = 0, a2x+b2y+c2 = 0, a3x+b3y+c3 = 0, a4x+b4y+c4 = 0
are equations of orthogonal projections of the lines k1, k2, k3, k4. Denote by
X1 = (x1, y1, z1), X2 = (x2, y2, z2), X3 = (x3, y3, z3), X4 = (x4, y4, z4) the
points that are symmetric to P = (p, q, r) with respect to the lines k1, k2, k3, k4.
Then:
X1 is symmetric to P with respect to k1 ⇒
h1 := a1(p + x1) + b1(q + y1) + 2c1 = 0, h2 := b1(p − x1) − a1(q − y1) = 0,
X2 is symmetric to P with respect to k2 ⇒
h3 := a2(p + x2) + b2(q + y2) + 2c2 = 0, h4 := b2(p − x2) − a2(q − y2) = 0,
X3 is symmetric to P with respect to k3 ⇒
h5 := a3(p + x3) + b3(q + y3) + 2c3 = 0, h6 := b3(p − x3) − a3(q − y3) = 0,
X4 is symmetric to P with respect to k4 ⇒
h7 := a4(p + x4) + b4(q + y4) + 2c4 = 0, h8 := b4(p − x4) − a4(q − y4) = 0,
X1,X2,X3,X4 are coplanar ⇒

h9 :=

∣
∣
∣
∣
∣
∣
∣
∣

x1, y1, z1, 1
x2, y2, z2, 1
x3, y3, z3, 1
x4, y4, z4, 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (2)

The elimination of the eight variables x1, y1, . . . , x4, y4 in the ideal J =
(h1, . . . , h9) leads to a locus equation. In fact, the computation in CoCoA does
not terminate due to the complex computation.

We can introduce some simplifications that do not affect the final result.
Another approach that seems more readable is the following.

By eliminating x1, y1 in h1 = 0, h2 = 0, then x2, y2 in h3 = 0, h4 = 0, etc.
we get
x1 = (−(a21 − b21)p − 2a1b1q − 2a1c1)/(a21 + b21),
y1 = (−2a1b1p + (a21 − b21)q − 2b1c1)/(a21 + b21),
x2 = (−(a22 − b22)p − 2a2b2q − 2a2c2)/(a22 + b22),
y2 = (−2a2b2p + (a22 − b22)q − 2b2c2)/(a22 + b22),
x3 = (−(a23 − b23)p − 2a3b3q − 2a3c3)/(a23 + b23),
y3 = (−2a3b3p + (a23 − b23)q − 2b3c3)/(a23 + b23),
x4 = (−(a24 − b24)p − 2a4b4q − 2a4c4)/(a24 + b24),
y4 = (−2a4b4p + (a24 − b24)q − 2b4c4)/(a24 + b24).

Assume that the vectors (a1, b1), (a2, b2), (a3, b3), (a4, b4) are unit and
put a1 = c1 = 0, b1 = 1 and z1 = 0 which has no effect on the generality. We
substitute x1, y1, . . . , x4, y4 into the determinant (2) and after rearrangement,
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Figure 3. The locus of all points P such that the points that
are symmetric to P with respect to the given four lines are
coplanar is a cylinder of revolution

we get instead of (2) the relation
∣
∣
∣
∣
∣
∣
∣

a22p + a2b2q + a2c2, a2b2p − a22q + b2c2, z2/2
a23p + a3b3q + a3c3, a3b3p − a23q + b3c3, z3/2
a24p + a4b4q + a4c4, a4b4p − a24q + b4c4, z4/2

∣
∣
∣
∣
∣
∣
∣

= 0 (3)

which yields (1). We obtain a cylinder of revolution, Fig. 3. �

3.2. Fixed Line

In this part, we will show that all planes given by the points X1,X2,X3,X4

pass through a fixed line for any locus point P .

Theorem 3. Let P be an arbitrary point of the locus (1). Then all planes given
by the points X1,X2,X3,X4 that are symmetric to P with respect to the straight
lines k1, k2, k3, k4 pass through a fixed line f .

Proof. For every point P of the locus circle (and all points on the line through
P which is perpendicular to the given plane) there exists a corresponding plane
given by the points X1,X2,X3,X4. To determine the fixed line, we proceed in
the following way:
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First, we find two distinct points P1 and P2 in the locus circle (1), whose
coordinates are rational in a1, . . . , a4, b1, . . . , b4, c1, . . . , c4, z1, . . . , z4. In this
way we avoid cases where the locus point coordinates contain radicals.

Second, we determine two planes given by points X1,X2,X3,X4 that
correspond to the points P1, P2.

Third, we identify the intersection line f of these two selected planes.
Fourth, we verify that the line f lies in all planes corresponding to any

point P in the locus circle.
Let P123 be a plane given by the points X1,X2,X3

P123 :

∣
∣
∣
∣
∣
∣
∣

a22p + a2b2q + a2c2, a2b2p − a22q + b2c2, z2/2
a23p + a3b3q + a3c3, a3b3p − a23q + b3c3, z3/2

x + p, y − q, z

∣
∣
∣
∣
∣
∣
∣

= 0,

with P = (p, q, 0) obeying (1), see (3). Eliminating q in the ideal I = (P123,K)
we gain an elimination ideal generated by one polynomial (principle ideal).
This gives a factored equation

f(p) · g(x, y, z, p) = 0,

where f(p) is linear in p and does not contain x, y, z, while g(x, y, z, p) is
quadratic in x, y, z, p. From f(p) = 0 we get the first coordinate of the point
P1 = (p1, q1, 0) of the locus

p1 =
−a2c2z

2
3 + z2z3(a2a3 + b2b3)(a3c2 + a2c3) − a3c3z

2
2

a22z
2
3 − 2a2a3z2z3(a2a3 + b2b3) + a23z

2
2

.

The case f(p) = 0 in f(p) · g(x, y, z, p) = 0 demonstrates the situation where
the points X1,X2,X3 are collinear and the corresponding plane is not uniquely
determined. For an idea of how complex the computation is, the polynomial
f(p) · g(x, y, z, p) in the elimination ideal has 5758 terms.

Using elimination of p in the ideal I = (P123,K) we get the second
coordinate of the point P1 in the locus

q1 =
−z2z3(a2b3 − a3b2)(a2c3 − a3c2)

a22z
2
3 − 2a2a3z2z3(a2a3 + b2b3) + a23z

2
2

.

Similarly, using the plane P124 given by the points X1,X2,X4, we eliminate p
and then q in the ideal J = (P124,K) and get the coordinates of the second
point P2 = (p2, q2, 0) in the locus

p2 =
−a2c2z

2
4 + z2z4(a2a4 + b2b4)(a4c2 + a2c4) − a4c4z

2
2

a22z
2
4 − 2a2a4z2z4(a2a4 + b2b4) + a24z

2
2

and

q2 =
−z2z4(a2b4 − a4b2)(a2c4 − a4c2)

a22z
2
4 − 2a2a4z2z4(a2a4 + b2b4) + a24z

2
2

.
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The substitution of p2, q2 for p, q into the equation of the plane P123 gives the
equation of the plane P123(p2, q2)

P123(p2, q2) : A1x + B1y + C1z + D1 = 0,

while the substitution of p1, q1 for p, q into the equation of the plane P124 yields
the equation of the plane P124(p1, q1)

P124(p1, q1) : A2x + B2y + C2z + D2 = 0,

where A1, B1, C1,D1 and A2, B2, C2,D2 are certain polynomials containing
a1, . . . , a4, b1, . . . , b4, c1, . . . , c4 and z1, . . . , z4.

Now we identify the intersection of the planes P123(p2, q2) and P124(p1, q1).
The common line f = P123(p2, q2) ∩ P124(p1, q1) is

f : X = F + t · v ,
where X = (x, y, z), F = (f1, f2, 0), v = (v1, v2, v3), with
f1 = (z2a3a4(b4c3−b3c4)+z3a2a4(b2c4−b4c2)+z4a2a3(b3c2−b2c3))/(z2a3a4(a3b4−
a4b3) + z3a2a4(a4b2 − a2b4) + z4a2a3(a2b3 − a3b2)),
f2 = (z2b3b4(a4c3−a3c4)+z3b2b4(a2c4−a4c2)+z4b2b3(a3c2−a2c3))/(z2a3a4(a3b4−
a4b3) + z3a2a4(a4b2 − a2b4) + z4a2a3(a2b3 − a3b2)),
and
v1 = 4a2a3a4(c2(a3b4 − a4b3) + c3(a4b2 − a2b4) + c4(a2b3 − a3b2)),
v2 = 4(a3a4b2c2(a3b4 −a4b3)+a2a4b3c3(a4b2 −a2b4)+a2a3b4c4(a2b3 −a3b2)),
v3 = a3a4z2(a3b4 − a4b3) + a2a4z3(a4b2 − a2b4) + a2a3z4(a2b3 − a3b2).

Finally, we verify that the line f is fixed for all planes when P moves
along the locus circle (1). Substitution of the coordinates of the line f for x, y
and z into the equation of the plane P123 yields

S = K ·
(

4a2a3(a3b2 − a2b3) · t +
a3b3z2 − a2b2z3

A

)

,

where

K = A(p2 + q2) + Bp + Cq + D.

However, for every point P in the locus circle (1) K = 0 and therefore
S = 0. This implies that for every point P in the locus circle all points of the
line f lie in the plane P123.

We can conclude:
All planes given by points X1,X2,X3,X4 pass through the line f when

P moves along the locus circle, Fig. 4. �

Remark 4. Note that if c1 = c2 = c3 = c4 = 0, then v ∼ (0, 0, 1). The fixed line
f is orthogonal to the xy-plane and intersects all four given lines k1, k2, k3, k4.
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Figure 4. All planes given by points X1,X2,X3,X4 pass
through a fixed straight line f when P moves along the locus
circle

4. Conclusion

This paper deals with a 3D version of a variant of the W–S theorem, where
four given lines are parallel to a plane. We examine the points P such that
the points that are symmetric to P with respect to the given four lines are
coplanar. The locus of P is a cylinder of revolution. This fact may be considered
as another method of construction of a cylinder of revolution.

Moreover, all planes given by the points that are symmetric to P with
respect to the given four lines pass through a fixed line f for every locus point
P . Unlike the planar version, where the fixed element is the orthocenter of the
triangle, which is given by three lines, the role of the fixed line f with respect
to the four given lines is unknown. The authors will try to clarify this in the
future.

The authors are still working on additional cases according to the position
of the four lines.
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