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On Weak Generalized Stability of Random
Variables via Functional Equations

Witold Jarczyk , Antal Járai, Janusz Matkowski, and
Jolanta Misiewicz

Abstract. In this paper we characterize random variables which are stable
but not strictly stable in the sense of generalized convolution. We gen-
eralize the results obtained in Jarczyk and Misiewicz (J Theoret Probab
22:482-505, 2009), Misiewicz and Mazurkiewicz (J Theoret Probab 18:837-
852, 2005), Oleszkiewicz (in Milman VD and Schechtman Lecture Notes
in Math. 1807, Geometric Aspects of Functional Analysis (2003), Israel
Seminar 2001–2002, Springer-Verlag, Berlin). The main problem was to
find the solution of the following functional equation for symmetric gen-
eralized characteristic functions ϕ, ψ:

∀ a, b ≥ 0 ∃ c(a, b) ≥ 0 ∃ d(a, b) ≥ 0 ∀ t ≥ 0

ϕ(at)ϕ(bt) = ϕ(c(a, b)t)ψ(d(a, b)t), (A)

where both functions c and d are continuous, symmetric, homogeneous
but unknown. We give the solution of equation (A) assuming that for fixed
ψ, c, d there exist at least two different solutions of (A). To solve (A) we
also determine the functions that satisfy the equation

(
f(t(x + y)) − f(tx)

)(
f(x + y) − f(y)

)

=
(
f(t(x + y)) − f(ty)

)(
f(x + y) − f(x)

)
, (B)

x, y, t > 0, for a function f : (0, ∞) → R. As an additional result we infer
that each Lebesgue measurable or Baire measurable function f satisfying
equation (B) is infinitely differentiable.

Mathematics Subject Classification. 60A10, 60B05, 60E05, 60E07, 60E10,
39B22, 39B32, 26A51.
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1. Introduction

From the point of view of probability theory this paper concerns theory of
weak generalized convolutions. This theory was introduced and developed by
K. Urbanik motivated by the work of Kingman [9] in his papers [25,26,28,29].
Roughly speaking, a generalized convolution is a commutative and associative
operation � on measures such that the generalized convolution δx � δy of
point-mass measures δx and δy does not have to be equal δx+y as in the usual
convolution case.

The weak generalized convolutions are defined by weakly stable distri-
butions. The study of weakly stable distributions was initiated by Kuchar-
czak and Urbanik (see [11,27]) and followed by a series of papers by Urbanik,
Kucharczak, Panorska, and Vol’kovich (see, e.g., [10,12,19,30–32]). Misiewicz,
Oleszkiewicz and Urbanik [16] gave a characterization of weakly stable distri-
butions with non-trivial discrete part and proved some uniqueness properties
of weakly stable distributions. For further information on generalized convo-
lutions and weakly stable laws see [2–7,15,17,18,20].

This paper is a continuation of the papers written by K. Oleszkiewicz [18],
G. Mazurkiewicz and J. Misiewicz [15], W. Jarczyk and J. Misiewicz [2] and it
is a big step on the road to a characterization of stable but not strictly stable
distributions with respect to weak generalized convolution.

From the functional equation theory point of view this paper concerns
solutions of the following three functional equations.
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• The target one is the equation

∀ r, s ≥ 0 ∃ c(r, s) ≥ 0 ∃ d(r, s) ≥ 0∀ t ≥ 0
ϕ(rt)ϕ(st) = ϕ(c(r, s)t)ψ(d(r, s)t), (A)

where ϕ and ψ are unknown symmetric characteristic functions. This
equation implies that, without loss of generality, we may assume that
for all r, s, t > 0 we have c(st, rt) = c(rt, st) = tc(s, r), c(1, 0) = 1, and
d(st, rt) = d(rt, st) = td(s, r), d(1, 0) = 0, and by the interpretation of
functions ψ,ϕ as generalized characteristic functions of some probability
distributions we have the continuity of all considered functions ϕ,ψ, c, d
(for details see [2,15]). Since the cases d ≡ 0 and d(r, s) = 0 for some
r, s > 0 were solved in [2,15] we assume here that d(r, s) > 0 for all
r, s > 0. We solve (A) under the assumption that for fixed ψ and some
functions c, d : [0,∞)2 → [0,∞) there exist at least two different solutions
ϕ of (A).

• To determine solutions of (A) we will also find all Lebesgue measurable
and all Baire measurable functions f : (0,∞) → R satisfying the equation

(
f(t(x + y)) − f(tx)

)(
f(x + y) − f(y)

)

=
(
f(t(x + y)) − f(ty)

)(
f(x + y) − f(x)

)
,

x, y, t > 0. (B)

The first step here is to show that any measurable solution of (B) is in
fact infinitely differentiable.

• As an auxiliary result we also solve the equation

φ(rt)φ(st) = φ(c(r, s)t), r, s, t ≥ 0, (C)

which is known as the equation characterizing strictly stable character-
istic functions. Here, however, we consider it in a more general class of
functions and apply the obtained results to study equation (A).
We will use the following notation. By P(E) we denote the set of all

probability measures on a separable Banach space E (with dual E∗). For sim-
plicity we write P for the set of all probability measures on R and P+ for the
set of probability measures on [0,∞). The symbol δx denotes the probability
measure concentrated at the point x ∈ E.

Given a random vector (or random variable) X we write L(X) for the
distribution of X. For λ ∈ P, λ = L(θ) for some random variable θ, we define
|λ|:=L(|θ|). If μ = L(X) ∈ P(E), then the characteristic function μ̂ : E∗ → C

of the measure μ (of the random vector X) is defined by

μ̂(ξ) = E exp (i < ξ,X >) =
∫

E

exp (i < ξ, x >) μ(dx),

where < ξ, x > is the value of the linear functional ξ on the element x. If
E = E

∗ = R
n then we have < ξ, x >=

∑n
k=1 ξkxk, for x = (x1, . . . , xn) and ξ =

(ξ1, . . . , ξn). Given random vectors X,Y, we write X d= Y whenever L(X) =
L(Y) (here and in what follows d= denotes the equality of distributions). If X
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and Y are independent random vectors, then L(X + Y) is the convolution of
L(X) and L(Y) denoted by L(X) ∗ L(Y).

For t ∈ R, the rescaling operator Tt : P(E) → P(E) is defined as follows:

Ttμ(B) =
{

μ(B/t) if t ∈ R \ {0},
δ0(B) if t = 0,

for every Borel subset B of E. It is easy to see that if μ = L(X) then Ttμ =
L(tX). The scale mixture μ ◦ λ of the measure μ ∈ P(E) with respect to the
measure λ ∈ P is defined by

μ ◦ λ(B) =
∫

R

Ttμ(B)λ(dt).

If μ = L(X) and λ = L(θ) with independent X and θ, then μ ◦ λ = L(Xθ).
A random vector X with the distribution μ on a real separable Banach

space E is called weakly stable if

∀ a, b ∈ R ∃ θ aX + bX′ d= Xθ,

where X′ is an independent copy of X and the random variable θ is independent
of X. For measures on the positive half-line K. Urbanik called such measures
B-stable probability distributions (see [24]). It was proved in [16] that X is
weakly stable if and only if (second condition)

∀ θ1, θ2 ∃ θ θ1X + θ2X′ d= Xθ,

where θ1, θ2 are real random variables such that θ1, θ2,X,X′ are independent
and the random variable θ is independent of X. In the language of probability
measures, defining μ as a weakly stable measure we use the “second condition”
and write:

∀λ1, λ2 ∈ P ∃λ ∈ P (μ ◦ λ1) ∗ (μ ◦ λ1) = μ ◦ λ,

for λ, λi being, respectively, the distributions of θ, θi, i = 1, 2. It was shown
in [16] that the measure λ is uniquely determined if the measure μ is not
symmetric. For a symmetric measure μ we have only the uniqueness of the
measure |λ|.

It was proved in [16] that if a weakly stable distribution μ contains a
discrete part, then it is discrete and either μ = δ0, or μ = 1

2δa + 1
2δ−a for some

a ∈ E\{0}. From now on we will assume that the considered weakly stable
measure μ is non-trivial in the sense that it is not discrete.

We can now define a generalized weak convolution ⊗ = ⊗μ for any non-
trivial weakly stable measure μ.

Definition 1.1. Let X be a nontrivial random vector with the weakly stable
distribution μ. The weak generalized convolution ⊗ = ⊕μ of measures λ1, λ2 ∈
P is defined by

λ1 ⊗ λ2 =

{
λ if μ is not symmetric,
|λ| if μ is symmetric,
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where λ ∈ P is such that (μ ◦ λ1) ∗ (μ ◦ λ2) = μ ◦ λ. For two independent
random variables θ1 and θ2 with distributions λ1 and λ2, respectively, the
weak generalized sum θ1 ⊕ θ2 is a random variable defined by

θ1X + θ2X′ d= X (θ1 ⊕ θ2) ,

where θ1, θ2,X,X′ are independent, the random variable θ1⊕θ2 is independent
of X and L(θ1 ⊕ θ2) = λ1 ⊗ λ2.

Notice that the random variable θ1 ⊕ θ2 is not defined by an explicitly
written operation on the variables θ1, θ2 which in the case of classical convo-
lution is given by θ1 + θ2. The object θ1 ⊕ θ2 is defined only up to equality of
distributions.

The operation ⊗ in P is commutative and associative. Moreover, as shown
in [17], the following conditions hold:

(i) the measure δ0 is the unit element, i.e. δ0 ⊗ λ = λ for all λ ∈ P if μ is
not symmetric and δ0 ⊗ λ = |λ| for all λ ∈ P if μ is symmetric;

(ii) (pλ1 + qλ2) ⊗ λ = p(λ1 ⊗ λ) + q(λ2 ⊗ λ), whenever λ, λ1, λ2 ∈ P and
p ≥ 0, q ≥ 0, p + q = 1 (linearity);

(iii) (Taλ1) ⊗ (Taλ2) = Ta(λ1 ⊗ λ2) for any λ1, λ2 ∈ P and a > 0 (homogene-
ity);

(iv) if λn → λ0 then λn ⊗ λ → λ0 ⊗ λ for all λ ∈ P (continuity with respect
to weak convergence of measures).

The idea of generalized convolutions has been extensively studied after it was
introduced by K. Urbanik in 1964 [25]. The definition proposed by K. Urbanik
is as follows:

A commutative and associative binary operation � : P+ × P+ → P+

is called a generalized convolution if it satisfies conditions (i)÷(iv) with ⊗
replaced by � and the following condition holds:
(v) there exists a sequence (cn)n∈N of positive numbers such that the se-

quence (Tcn
δ�n
1 )n∈N weakly converges to a measure different from δ0.

2. Stable Distributions in the Sense of Generalized Convolution

Definition 2.1. Let μ be a non-trivial symmetric, weakly stable measure on a
separable Banach space E. A measure λ ∈ P is called stable with respect to
the weak generalized convolution ⊗ = ⊗μ if

∀ r, s ≥ 0 ∃ c(r, s) ≥ 0, d(r, s) ∈ R (Trλ) ⊗ (Tsλ) = (Tc(r,s)λ) ⊗ δd(r,s).

If for every r, s > 0 we have d(r, s) = 0, then we say that λ is strictly stable
with respect to ⊗.

If the symbol ⊗ in the above equality denotes the classical convolution,
then Definition 2.1 reduces to the classical functional equation defining stable
distributions; for details see e.g. [22,33]. It can be easily seen that the weak



175 Page 6 of 35 W. Jarczyk et al. Results Math

generalized convolution defined by a symmetric weakly stable random vector
X coincides with the one defined by any non-trivial one-dimensional projection
of X, and thus without loss of generality we may assume that μ ∈ P. According
to [2] we can also assume that c and d are homogeneous.

The condition described in Definition 2.1 can be written in the language
of generalized characteristic functions for the generalized convolution ⊗μ:

ϕ(rt)ϕ(st) = ϕ(c(r, s)t)ψ(d(r, s)t), r, s ≥ 0, t ∈ R, (A)

where ψ is the characteristic function of the measure μ and ϕ is the charac-
teristic function of the measure μ ◦ λ, i.e.

ϕ(t) =
∫

R

ψ(ts)λ(ds).

It was shown in [2,15] that by the probabilistic interpretation of equation (A)
we have: c(rt, st) = c(st, rt) = tc(r, s) for all r, s, t ≥ 0, c(1, 0) = 1, d(rt, st) =
d(st, rt) = td(r, s) for all r, s, t ≥ 0 and d(1, 0) = 0. Some partial solutions of
equation (A) are already known:

• If d(r, s) = 0 for all r, s > 0, i.e. if the measure λ is strictly stable with
respect to the generalized convolution ⊗μ, then as K. Urbanik proved (see
[25]), for every generalized convolution ⊗ (not only for weak generalized
convolution) there exist α > 0 and A ≥ 0 such that ϕ(t) = exp (−Atα)
for all t ≥ 0. It was shown also in [25,26] that α ≤ κ(⊗), where κ(⊗) is
the characteristic exponent parameter for generalized convolution ⊗.

• The case when the function ψ is fixed (up to a scale) and ψ(t) = exp (−tp)
for every t ≥ 0 was considered by K. Oleszkiewicz in [18] for p = 2 and by
G. Mazurkiewicz and J. Misiewicz in [15] for arbitrary p ∈ (0, 2]. In both
cases authors showed that there exist q > 0 and some positive constants
A,B > 0 such that ϕ(t) = exp (−Atp − Btq). The problem is that not all
configurations of parameters p, q, A,B are possible and big parts of both
papers are devoted to the description of admissible configurations.

• If d �≡ 0 but there exist r, s > 0 such that d(r, s) = 0, then W. Jarczyk
and J.K. Misiewicz showed in [2] that there exist α > 0 and continuous
functions H,K : (0,∞) → (0,∞) such that H(t) = H(rt) = H(st),
K(t) = K(rt) = K(st) for every t > 0 and ϕ(t) = exp (−tαH(t)), ψ(t) =
exp (−tαK(t)). However, if the group generated by the set {r/s : r, s >
0, d(r, s) = 0} is dense in (0,∞), then the functions H,K are constant
and consequently, the only possible stable distributions with respect to
⊗μ are δx for some x > 0.

In this paper we consider the missing case: d(r, s) �= 0 for all r, s > 0. The main
results of this paper are obtained for continuous functions c, d, ϕ, ψ under the
following assumptions:
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⎧
⎪⎪⎨

⎪⎪⎩

c(rt, st) = tc(r, s), d(rt, st) = td(r, s) for all r, s, t > 0,
d(r, s) = d(s, r) > 0, d(r, 0) = 0 for all r, s > 0,
functions ψ ∈ Φ and c, d are fixed,
∃ϕ1, ϕ2 ∈ Φ, ϕ1 �= ϕ2, satisfying equation (A),

⎫
⎪⎪⎬

⎪⎪⎭
(1)

where Φ usually denotes the set of all generalized characteristic functions with
respect to � but for this paper it is enough to assume that

Φ =

⎧
⎨

⎩
ϕ : R → R

∣
∣
∣
∣
∣

ϕ(0) = 1, ϕ(t) = ϕ(−t) for t ∈ R,
ϕ is uniformly continuous on R,
(∃ tn ↘ 0 ϕ(tn) = 1) ⇒ ϕ ≡ 1.

⎫
⎬

⎭
.

The last condition in the description of the set Φ replaces the condition of
positive definiteness of the characteristic function, which is much more difficult
to check. In this work, such a restriction is not essential (see e.g. [14]). We will
be solving equation (A) in the set Φ2 of pairs of characteristic functions (ϕ,ψ)
belonging to the set

Φ2 =
{

(ϕ,ψ) ∈ Φ2 : ∃ λ ∈ P+ ∀ t ∈ R ϕ(t) =
∫

R

ψ(ts)λ(ds)
}

.

The assumption about the existence of two different solutions ϕ1, ϕ2 of (A)
is meaningful. It is easy to see that if the pair (ϕ(·), ψ(·)) ∈ Φ2 is a solution
of equation (A), then for each a > 0 the pair of re-scalings (ϕ(a·), ψ(a·)) also
belongs to Φ2 and it is a solution of (A). However, if we fix functions c, d
and ψ, then it may happen that there exists exactly one (if any) solution of
equation (A).

Because of the symmetry of considered functions we will here restrict
functions ϕ,ψ to the nonnegative half-line [0,∞).

3. Equation (C) and its Solution

For any real characteristic function ϕ we define aϕ:= inf {t > 0 : ϕ(t) = 0}. We
start with the following useful observation.

Lemma 3.1. Assume that the functions c, d, ψ are fixed. If ϕ is a solution of
equation (A) and aϕ < ∞, then equation (A) has exactly one solution ϕ and
there exists α > 0 such that

(1.) c(r, s) = max{r, s} and d(r, s) = α min{r, s} for all r, s ≥ 0;
(2.) ϕ(t) = ψ(αt) for all t ≥ 0.

Proof. Of course aϕ > 0 since ϕ(0) = 1 and ϕ is a continuous function. Recall
that d(1, 0) = 0 and d(r, s) > 0 for all r, s > 0, thus d(1, 1) > 0. We define
ψ0(r):=ψ(d(1, 1)r) and d0(r, s):=d(r, s)/d(1, 1) for all r, s ≥ 0. Then d0(1, 1) =
1 and the equation (A) takes the form

ϕ(rt)ϕ(st) = ϕ(c(r, s)t)ψ0(d0(r, s)t) r, s ≥ 0, t ∈ R.
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Since aϕ < ∞ then for every s, r ∈ [0, aϕ)

ϕ(s)ϕ(r) = ϕ(c(s, r))ψ0(d0(s, r)) �= 0. (2)

Because of the continuity of c and the equality c(0, 0) = 0 we see that

c(s, r) < aϕ for all s, r ∈ (0, aϕ),
ψ0(d0(s, r)) �= 0 for all s, r ∈ (0, aϕ).

If c(1, s) > 1 for some s ∈ (0, 1), then by (2) we have

ϕ

(
aϕ

c(1, s)

)
ϕ

(
aϕs

c(1, s)

)
= ϕ(aϕ)ψ0

(
aϕ

c(1, s)
d0(1, s)

)
= 0,

contrary to the definition of aϕ, since aϕ/c(1, s) < aϕ and aϕs/c(1, s) < aϕ.
Consequently, c(1, s) ≤ 1 for every s ∈ (0, 1). If c(1, s) < 1 for some s ∈ (0, 1)
then, applying (2), for every r ≥ 0 we obtain

ϕ(r)ϕ(rs) = ϕ(rc(1, s))ψ0(rd0(1, s)). (3)

For every r < aϕ the left hand side of this equality is positive, and thus
aψ0 ≥ aϕd0(1, s). On the other hand

ϕ(aϕ)ϕ(aϕs) = ϕ(aϕc(1, s))ψ0(aϕd0(1, s)) = 0.

Since ϕ(aϕ) = 0 and ϕ(aϕc(1, s)) �= 0 we conclude that ψ0(aϕd0(1, s)) = 0 and
hence aϕd0(1, s) ≥ aψ0 . Consequently, aψ0 = aϕd0(1, s). At the same time, for
all r ≥ 0 we have

ϕ(r)2 = ϕ(rc(1, 1))ψ0(rd0(1, 1)) = ϕ(rc(1, 1))ψ0(r). (4)

This implies that for every r ∈ (0, aϕ) we have ψ0(r) �= 0, hence aψ0 ≥ aϕ.
By equalities (4) we see that either c(1, 1) = 1 and then ψ0 = ϕ on (0, aϕ],
ψ0(aϕ) = 0 and aψ0 = aϕ = aϕd0(1, s), or c(1, 1) < 1 and then we see that
ψ0(aϕ) = 0 and again aψ0 = aϕ = aϕd(1, s).

Now, dividing equalities (4) and (3) by sides, for r ≥ 0 (if only the
denominators are not equal to zero) we obtain

ϕ(r)
ϕ(rs)

=
ϕ(rc(1, 1))
ϕ(rc(1, s))

.

The left hand side of this equality is nonzero on (0, aϕ) and zero at aϕ, and
thus the right hand side has the same properties and consequently c(1, 1) = 1
anyway. By (4) we get ϕ = ψ0 on (0,∞) and by (3) we come to ψ0(rs) =
ψ0(rc(1, s)) on (0,∞). Writing the last equality using the random variable X

with the characteristic function ψ0 we get sX
d= c(1, s)X, hence s = c(1, s).

Finally, for each s ∈ [0, 1] we see that either c(1, s) = 1, or c(1, s) = s.
Since the function c is continuous and c(1, 0) = 1 we conclude that c(1, s) = 1
for every s ∈ [0, 1] and for 0 < r < s

c(r, s) = sc
(
1,

r

s

)
= s = max{r, s}.
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By (2) we get d0(r, s) = min{r, s} = d(r, s)/d(1, 1) for r, s ≥ 0. Coming back
to the functions ψ, d and using the fact that ϕ = ψ0, for every r, s > 0 we get

ψ(αr)ψ(αs) = ψ(α max{r, s})ψ(α min{r, s}), (5)

where α = d(1, 1) > 0. �

Remark 1. Assume that c is different from max function or d is not propor-
tional to min function. It follows from Lemma 3.1 that if ϕ is a real-valued char-
acteristic function satisfying equation (A) with some ψ, then aϕ = aψ = ∞.

Remark 2. Note that every characteristic function ψ satisfies equation (5).
This means that for each generalized convolution with probability kernel ψ
the point mass measure μ = δα is stable but not strictly stable with the
characteristic representation (cf. Definition 2.1)

Trδα � Tsδα = Tmax{r,s}δα � Tmin{r,s}δα.

Note that if the condition (1) is true and aϕ1 = aϕ2 = ∞, then aψ = ∞
and the equalities

ϕ1(rt)ϕ1(st) = ϕ1

(
tc(r, s)

)
ψ
(
td(r, s)

)

and

ϕ2(rt)ϕ2(st) = ϕ2

(
tc(r, s)

)
ψ
(
td(r, s)

)

can be divided by sides. Defining φ = ϕ1/ϕ2 we obtain

φ(rt)φ(st) = φ
(
tc(r, s)

)
, r, s, t ≥ 0. (C)

This functional equation resembles the equation describing the characteristic
function of a strictly stable distribution in the sense of a classical convolution
(see e.g. [21,22]) except that here φ need not be any characteristic function.
For this reason we will solve equation (C) in the class of continuous functions
φ defined on [0,∞) such that φ(0) = 1. We will do it by use of a series of
lemmas.

Lemma 3.2. Assume that condition (1) holds, aϕ1 = aϕ2 = ∞ and let φ =
ϕ1/ϕ2 be a solution of equation (C). Then the function s �→ c(1, s) is one-to-
one on [0,∞).

Proof. By assumption (1) we have ϕ1 �≡ ϕ2, and thus φ is a non-constant
solution of equation (C) on [0,∞). Suppose that for some 0 < s < r we have
c(1, s) = c(1, r). Since φ is continuous and φ(t) > 0 for all t ≥ 0, then by (C)
we get

φ(tc(1, s)) = φ(tc(1, r)) =⇒ φ(ts) = φ(tr), t ≥ 0.

Consequently, for every t ≥ 0 we have

φ(t) = φ
(
t
s

r

)
= φ
(
t
(s

r

)n) n→∞−→ φ(0) = 1.

This means that φ ≡ 1 on [0,∞); a contradiction. �
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Lemma 3.3. If (1) holds, aϕ1 = aϕ2 = ∞ and φ = ϕ1/ϕ2 is a solution of
equation (C), then the function c(1, ·) is strictly increasing on [0,∞).

Proof. Since c(1, ·) is continuous and one-to-one, it is strictly monotonic. Sup-
pose that c(1, ·) is strictly decreasing. Then c(1, s) < c(1, 0) = 1 for every
s ∈ (0,∞). On the other hand we also have that c(1, s) = sc(1, s−1) < s for
all s ∈ (0, 1). Letting s → 0, we get

1 = c(1, 0) = lim
s→0

c(1, s) ≤ lim
s→0

s = 0.

which is impossible. Therefore the function c(1, ·) is strictly increasing. �

Lemma 3.4. If condition (1) is satisfied, aϕ1 = aϕ2 = ∞ and φ = ϕ1/ϕ2 is a
solution of (C), then φ−1({1}) = {0}, i.e. ϕ1(s) �= ϕ2(s) for each s > 0.

Proof. Let t > 0 be such that φ(t) �= 1 and let

a = sup{x ∈ [0, t] : φ(x) = 1}, b = inf{x ∈ (t,∞) : φ(x) = 1}.

Since φ(0) = 1 and φ is continuous, then we have 0 ≤ a < b. Suppose that
b < ∞. Without loss of generality, possibly replacing the function φ by 1/φ, we
can assume that φ(u) > 1 for every u ∈ (a, b). Since φ(x) > 0 for all x ∈ [0,∞)
and

1 = φ(b) = [φ (b/c(1, 1))]2,

we have φ(b/c(1, 1)) = 1 and b/c(1, 1) < b. Consequently, b/c(1, 1) ≤ a.
Notice that the function s → b/c(1, s) is strictly decreasing on the interval
[0, 1], b/c(1, 0) = b and b/c(1, 1) ≤ a. Thus there exists s0 ∈ (0, 1] such that
b/c(1, s0) = a. By equality (C) we have

φ

(
b

c(1, s)

)
φ

(
bs

c(1, s)

)
= φ(b) = 1, s ∈ [0, s0].

Since b/c(1, s) ∈ (a, b) implies that φ(b/c(1, s)) > 1 for all s ∈ (0, s0), we
conclude that φ(bs/c(1, s)) < 1 for every s ∈ (0, s0). In particular, this means
that there exists t0 > 0 such that φ(t) < 1 for each t ∈ (0, t0). By (C) we have
[φ(t)]2 = φ(tc(1, 1)), and thus φ(t) < 1 for each t ∈ (0, t0c(1, 1)). Consequently,

φ(t) < 1 for all t ∈ (0, t0c(1, 1)n) and n ∈ N,

that is for all t ∈ (0,∞), since c(1, 1) > c(1, 0) = 1. This contradicts the
inequality φ(t) > 1 for all t ∈ (a, b). Therefore b = ∞.

Now we see that φ(u) > 1 for every u > a. If a > 0 then 1 = [φ(a)]2 =
φ(ac(1, 1)) > 1 which, together with the inequality ac(1, 1) > a, completes the
proof. �

Lemma 3.5. If condition (1) is satisfied, aϕ1 = aϕ2 = ∞ and φ = ϕ1/ϕ2 is a
solution of equation (C), then the function φ is one-to-one.
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Proof. By Lemma 3.4 we can assume without loss of generality that φ(t) > 1
for each t > 0. Suppose that there exist 0 < s < r such that φ(s) = φ(r). Since
s = c(s, 0) and c(s, r) = rc(1, s/r) > r, then, by the continuity of c(1, ·), there
exists u ∈ (0, r) such that c(s, u) = r. By equality (C) we have

φ(s)φ(u) = φ(c(s, u)) = φ(r) = φ(s),

thus φ(u) = 1 which is impossible. �

Lemma 3.6. Let G : (0,∞)2 → (0,∞) be a solution of the equation

G
(
t,G(s, x)

)
= G(st, x)

which is continuous with respect to each variable and such that the function
G(t, ·) is additive for every t ∈ (0,∞). Then there exists p ∈ R such that

G(t, x) = tpx, t, x ∈ (0,∞).

Proof. Since any continuous additive mapping from (0,∞) to (0,∞) is of the
form x → cx (see e.g. [13]) then for each fixed t ∈ (0,∞) there exists H(t) > 0
such that

G(t, x) = H(t)x, x ∈ (0,∞).

This defines a function H : (0,∞) → (0,∞) which, by our assumptions, is
continuous and satisfies the condition

H(t)H(s)x = H(st)x, s, t, x ∈ (0,∞).

Therefore H is a continuous solution of the multiplicative Cauchy equation
and the assertion follows. �

Proposition 3.7 (Solution of equation (C)). If condition (1) holds, ϕ1, ϕ2 ∈ Φ,
aϕ1 = aϕ2 = ∞, then the function φ = ϕ1/ϕ2 : (0,∞) �→ (0,∞) is a solution
of equation (C) if and only if there are numbers β ∈ R\{0} and p > 0 such
that c(a, b) = (ap + bp)1/p for all a, b ∈ [0,∞) and

φ(t) = exp (βtp) , t ∈ [0,∞).

Proof. We know that the function φ = ϕ1/ϕ is continuous, one-to-one and
φ(0) = 1. It follows that either φ([0,∞)) ⊂ (0, 1], or φ([0,∞)) ⊂ [1,∞).
Therefore, as both φ and 1/φ satisfy equality (C), we may assume the second
possibility.

Put F := lnφ. Then F maps [0,∞) into itself and equality (C) gives

F (at) + F (bt) = F
(
c(a, b)t

)
,

that is

c(a, b)t = F−1
(
F (at) + F (bt)

)

for all a, b, t ∈ (0,∞). Consequently,

F−1
(
F (a) + F (b)

)
t = F−1

(
F (at) + F (bt)

)
, a, b, t ∈ (0,∞).
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Putting x = F (a) and y = F (b) we see that x, y ∈ F ([0,∞)) = [1, ξ) for some
ξ ∈ (1,∞] and we obtain

F
(
tF−1
(
x + y

))
= F
(
tF−1(x)

)
+ F
(
tF−1(y)

)
, x, y, t ∈ [1, ξ).

This means that

G(t, x + y) = G(t, x) + G(t, y), x, y, t ∈ (0,∞),

where G : (0,∞)2 �→ (0,∞) is given by G(t, x) = F
(
tF−1(x)

)
. Moreover,

G
(
t,G(s, x)

)
= F
(
tsF−1(x)

)
= G(st, x), x, y, t ∈ (0,∞).

Therefore, by Lemma 3.6 we infer that F (tF−1(x)) = tpx for all t, x > 0 with
some p ∈ R. Taking here x = β = F (1) we get that

φ(t) = exp (F (t)) = exp (βtp) , t ∈ (0,∞).

Since φ �≡ 1 we have that β �= 0; moreover, as φ is continuous, one-to-one, and
φ(0) = 1 we deduce that p > 0. �

As a simple consequence of Proposition 3.7 and the previous considera-
tions we obtain the following result.

Theorem 3.8. Let ψ ∈ Φ and c, d be functions such that for all r, s, t > 0 we
have

c(st, rt) = c(rt, st) = tc(s, r), c(1, 0) = 1,

and

d(st, rt) = d(rt, st) = td(s, r), d(1, 0) = 0, d(s, r) > 0

whenever sr > 0.
If there are two different solutions ϕ1, ϕ2 ∈ Φ of equation (A), then aϕ1 =
aϕ2 = aψ = ∞, and for some real β and p > 0,

c(r, s) = (rp + sp)1/p, r, s > 0,

and

ϕ2(t) = exp (β|t|p) ϕ1(t), t ∈ R.

If ϕ ∈ Φ is a solution of equation (A) and aϕ < ∞, then ϕ is the unique
solution of (A) and

ϕ(t) = ψ(t), c(r, s) = max{r, s} and d(r, s) = min{r, s}
for all r, s, t ≥ 0.
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4. From Equation (A) to Equation (B)

By Theorem 3.8 we know that the assumption (1) and aϕ1 = aϕ2 = ∞ imply
that there exists p > 0 such that c(a, b)p = ap+bp for all a, b > 0. Consequently,
equation (A) takes the form

∀ a, b > 0 ∃ d(a, b) ∈ R∀ t > 0
ϕ(at)ϕ(bt) = ϕ

(
t(ap + bp)1/p

)
ψ(td(a, b)).

Multiplying this equality by exp (β|t|p(ap + bp)) for any real β and p > 0 we
see that the function t → χ(t):= exp (β|t|p) ϕ(t) is a solution of this equation
providing ϕ is. However, the function χ can be a solution of equation (A) only
if χ ∈ Φ, which is usually hard to verify.

Let x = tap, rx = tbp, h̃(x) = ϕ(x1/p), g̃(x) = ψ(x1/p) and D(x, y) =
d(x1/p, y1/p)p. We see that D(xt, yt) = tD(x, y) for all x, y, t > 0 and equa-
tion (A) can be rewritten in the form

∀ r > 0∃ d(1, r) ∈ R∀x > 0
h̃(x)h̃(rx) = h̃(x(1 + r))g̃(xD(1, r)).

(A′)

We know that the functions ϕ,ψ and, consequently, h̃, g̃ do not vanish. More-
over, the function g̃ and also h̃ are not constant because otherwise ϕ ≡ ψ ≡ 1
which we excluded as a trivial case. Now we can define

h = ln ◦h̃ and g = ln ◦g̃.

Since we focus on the case when D(0, y) = 0 for every y ≥ 0 and D(x, y) �= 0
for each x, y > 0, rescaling if necessary function g, we may assume that q(1) =
D(1, 1) = 1. Putting q(r) = D(1, r) we obtain

∀ r > 0∃ q(r) > 0∀x > 0
h (x) + h (rx) − h ((1 + r)x) = g(q(r)x). (A′′)

Notice that by our assumptions all functions appearing in this equation
are continuous.

Remark 3. In this paper we assume that the function d : [0,∞)2 → [0,∞)
is continuous and such that d(tr, ts) = d(ts, tr) = td(r, s) for all r, s, t ≥ 0,
d(0, t) = 0 for all t ≥ 0 and d(t, s) > 0 if only ts �= 0. Consequently, we have
q(0) = 0 and q(r) > 0 for all r > 0. If we additionally assume that the function
q is one-to-one, then it is increasing and, consequently, differentiable a. e. (with
respect to the Lebesgue measure) on (0,∞).

Remark 4. Notice that by our assumptions, putting r = 1 in equation (A′′),
we have g(2t) = 2h(t) − h(2t), and thus the differentiability of h implies the
differentiability of g. However, in general the differentiability of g does not
imply the differentiability of h. Notice also that the differentiability of h, h̃
and g, g̃ are equivalent.
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Moreover, since h̃ : [0,∞) → (0, 1] and h(0) = 1, then the additional
assumption that h is one-to-one implies that h is strictly decreasing and then
differentiable almost everywhere. Consequently, also the function g̃ is differen-
tiable almost everywhere.

Assume that g is one-to-one and, consequently, the function ψ is one-
to-one. Since at the beginning of this paper (see Sect. 2) we assumed that
(ϕ,ψ) ∈ Φ2, we see that also functions ϕ,ψ are one-to-one. Finally, we infer
that if any of the functions h, g (equivalently h̃, g̃) is one-to-one, then they
both are strictly decreasing and differentiable almost everywhere on (0,∞).

Theorem 4.1. Assume that for the differentiable function h, continuous func-
tion g and continuous, one-to-one function q such that q(r) = rq(1/r) > 0 for
all r > 0 and q(0) = 0, equation (A′′) is satisfied. Then for all r, s, t > 0 we
have

(
h′ (rt) − h′ ((1 + r)t)

)(
h′ (st) − h′ ((1 + r)st)

)

=
(
h′ (rst) − h′ ((1 + r)st)

)(
h′ (t) − h′ ((1 + r)t)

)
.

(B′)

In the proof we will use the below auxiliary result.

Lemma 4.2. Under the assumptions of Theorem 4.1 the function q is differen-
tiable on (0,∞).

Proof. By Remark 4 we see that the function g is differentiable. Thus both
sides of equation (A′′) are differentiable. Denote them by L(r, x) and R(r, x),
respectively. For a function f : (0,∞)2 → R and arbitrarily fixed numbers
r, x ∈ (0,∞) define (in a vicinity of 0, small enough) a function fr,x by the
formula

fr,x(Δ) =
1
Δ

(f(r + Δ, x + Δ) − f(r, x)).

Then

Lr,x(Δ) =
h(x + Δ) − h(x)

Δ

+
h((r + Δ)(x + Δ)) − h(rx)

(r0 + Δ)(x + Δ) − rx

(r + Δ)(x + Δ) − rx

Δ

−h((1 + r + Δ)(x + Δ)) − h((1 + r)x)
(1 + r + Δ)(x + Δ)) − (1 + r)x

(1 + r + Δ)(x + Δ)) − (1 + r)x
Δ

→ h′(x) + h′(rx)(r + x) − h′((1 + r)x)(1 + r + x) when Δ → 0,

since the function h is differentiable. It follows that the respective limit for the
function Rr,x also exists. Note that

Rr,x(Δ) =
g(q(r + Δ)(x + Δ)) − g(q(r)x)

q(r + Δ)(x + Δ) − q(r)x

[
x

q(r + Δ) − q(r)
Δ

+ q(r + Δ)
]

.
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Since g is not constant (cf. the beginning of the present section) we can find a
x ∈ (0,∞) such that g′(q(r)x) �= 0. Then letting Δ → 0 we conclude that q is
differentiable at an arbitrary point r ∈ (0,∞). �

Proof of Theorem 4.1. By our assumptions q(r) > 0 for each r > 0. Substitut-
ing t → t/q(r) in (A′′) we obtain

h

(
t

q(r)

)
+ h

(
rt

q(r)

)
− h

(
(1 + r)t

q(r)

)
= g(t), r, t > 0.

Differentiating both sides of this equality with respect to r and then dividing
both sides by t we see that

−q′(r)
q2(r)

h′
(

t

q(r)

)
+

q(r) − rq′(r)
q2(r)

h′
(

rt

q(r)

)

=
q(r) − (1 + r)q′(r)

q2(r)
h′
(

(1 + r)t
q(r)

)
.

Rearranging parts of this equality and multiplying them by q2(r) we have

(q(r) − rq′(r))
[
h′
(

rt

q(r)

)
− h′
(

(1 + r)t
q(r)

)]
= q′(r)

[
h′
(

t

q(r)

)
− h′
(

(1 + r)t
q(r)

)]
.

Since q(1/r) = r−1q(r), we have q′(1/r) = q(r) − rq′(r) and we can rewrite
the last equality in the form

q′(1/r)
[
h′
(

t

q(1/r)

)
− h′
(

(1 + r−1)t
q(1/r)

)]
= q′(r)

[
h′
(

t

q(r)

)
− h′
(

(1 + r)t
q(r)

)]
.

Putting tq(r) instead of t in the previous equation we obtain

q′(1/r)
[
h′(rt) − h′((1 + r)t)

]
= q′(r)

[
h′(t) − h′((1 + r)t)

]
, r, t > 0.

We can also write for every s > 0

q′(r)
[
h′(st) − h′((1 + r)st)

]
= q′(1/r)

[
h′(rst) − h′((1 + r)st)

]
, r, t > 0.

Multiplying the respective sides of these two equations we obtain

q′(1/r)q′(r)
(
h′(rt) − h′((1 + r)t)

)(
h′(st) − h′((1 + r)st)

)

= q′(1/r)q′(r)
(
h′(rst) − h′((1 + r)st)

)(
h′(t) − h′((1 + r)t)

)
.

By Remark 3 and Lemma 4.2 we have q′(r) > 0 for each r > 0 and we can
divide both sides of this equation by q′(1/r)q′(r). �
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5. Regularity of Measurable Solutions of (B)

The equation
(
f(t(x + y)) − f(tx)

)(
f(x + y) − f(y)

)

=
(
f(t(x + y)) − f(ty)

)(
f(x + y) − f(x)

)
,

x, y, t > 0, (B)

is interesting from the point of view of theory of functional equations. Thus
we decided to solve it in a general situation, with no significant assumptions
on regularity of considered functions. We will study Lebesgue measurable so-
lutions and Baire measurable solutions of this equation.

Notice that any function f : (0,∞) → C satisfying the equation

f(xy) = f(x) + f(y)

or the equation

f(xy) = f(x)f(y),

satisfies also equation (B). Since both these equations have Lebesgue and Baire
non-measurable solutions we conclude that (B) also has some non-measurable
solutions, which are not considered in this work.

Let us recall that Lebesgue density of a measurable set C at a point
c is the limit of the Lebesgue measure of the intersection of C with a ball
centered at c divided by the Lebesgue measure of the ball when the radius of
the ball goes to 0. By Lebesgue’s density theorem it exists and is equal to 1
for almost all points of C and exists and is equal to 0 for almost all points of
the complement of C. We will use this fact in the proof of Theorem 5.2.

Remark 5. Let f : (0,∞) �→ C. If f is almost everywhere (with respect to
the Lebesgue measure) constant solution of equation (B), then it is constant
everywhere.

To see this assume that f = c almost everywhere for some c ∈ C and let
x ∈ (0,∞) be such that f(x) �= c. Substituting t = x/y in (B) we obtain

(
f
(
x + x2/y

)− f
(
x2/y
))(

f(x + y) − f(y)
)

=
(
f
(
x + x2/y

)− f(x)
)(

f(x + y) − f(x)
)
.

(6)

Since f(y) = c for almost all y > 0, also the following conditions hold for
almost all y > 0:

f(y) = c, f(x + y) = c and f(x + x2/y) = c.

This means that for almost all y ∈ (0,∞) the left hand side of (6) equals zero
while the right hand side is (c−f(x))2 �= 0 for a.a y ∈ (0,∞). A contradiction.

In the proof of Theorem 5.2 we need the following version of the Lusin
theorem. By  we denote here the Lebesgue measure on R.

Lusin theorem If f : (0,∞) → C is Lebesgue measurable function, then for
every ε > 0 and every measurable set B ⊂ (0,∞) of finite Lebesgue measure
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there exists a compact set E ⊂ B with (B \ E) < ε such that the function
f |E is continuous with respect to the topology on E inherited from R.

Now we are able to formulate and prove the following result.

Theorem 5.1. Let f : (0,∞) �→ C. If f is a Lebesgue measurable solution of
equation (B) then it is continuous.

Proof. In view of Remark 5 it is enough to consider f which is not constant
almost everywhere. With this assumption the essence of the proof is to show
that the term

Q = Q(x, t, y):=f
(
t(x + y)

)− f(ty) (7)

is nonzero for a “large” set of triples (x, t, y). Hence we may divide both sides
of equation (B) by Q and apply the general methods of [8], especially a variant
of [8, Thm. 8.1]. We will also use the ideas of the proofs of Theorems 3.8, 3.9,
3.10 from [8], but for simplicity we will give here a self-contained proof, using
the ideas but not the results of [8].

Step 1. Since f is not almost everywhere constant, then there exists a
positive integer N such that f |(0,N) is not almost everywhere constant on
(0, N). Let us consider a countable base B of open sets in C. Let

G =
⋃

B∈A
B,

where, for  denoting the Lebesgue measure on R,

A =
{
B ∈ B : 

(
f−1(B) ∩ (0, N)

)
= 0
}

.

Since A is countable then it follows that

�
(
f−1(G) ∩ (0, N)

)
= �

(

f−1

(
⋃

A∈A
A

)

∩ (0, N)

)

≤
∑

A∈A
�
(
f−1(A) ∩ (0, N)

)
= 0.

Step 2. The complement G′ = C\G has at least two points, say b− �= b+,
because otherwise G′ = ∅ or G′ = {b} for some b ∈ C. Consequently, if G′ = ∅
then G = C and we would have the following contradiction:

N = ((0, N)) = 
(
f−1(C) ∩ (0, N)

)
= 0.

If G′ = {b}, then f |(0,N)= b except the set f−1(C \ {b}) ∩ (0, N) with the
Lebesgue measure zero, in contradiction with the choice of the interval (0, N).

Step 3. Take any different b−, b+ ∈ C\G. There exist disjoint open neigh-
borhoods U, V ∈ B\A of b− and b+, respectively, such that

(f−1(U)) ≥ (f−1(U) ∩ (0, N)) > 0

and

(f−1(V )) ≥ (f−1(V ) ∩ (0, N)) > 0.

By the Lusin theorem there exist compact subsets C− ⊂ f−1(U) and C+ ⊂
f−1(V ) having positive measure such that f|C− and f|C+ are continuous. Let



175 Page 18 of 35 W. Jarczyk et al. Results Math

c− and c+ be density 1 points of the sets C− and C+, respectively. Without
loss of generality we may assume that c− < c+ (otherwise we may interchange
b− and b+). Clearly if 0 < c− < c+ < a for some a > 0, then for c:=c+ − c−

we also have 0 < c < a.
Step 4. Let x0 > 0 be arbitrary. We prove that f is continuous at x0. Let

t0:=c/x0 and y0:=c−/t0; we have t0x0 = c, t0y0 = c− and t0(x0 + y0) = c+.
Let us fix a ≥ N such that a > x0 + y0 and hence a > x0 and a > y0. We
choose η > 0 such that


(
[c+ − 3t0η, c++3t0η] ∩ C+

)
> 0.99 · 6t0η,


(
[c− − 2t0η, c− + 2t0η] ∩ C+

)
> 0.99 · 4t0η,

X := [x1, x2] := [x0 − η, x0 + η] ⊂ (0, a),
Y := [y1, y2] := [y0 − η, y0 + η] ⊂ (0, a)

and
[c+ − 3t0η, c+ + 3t0η] ⊂ (0, a), [c− − 2t0η, c− + 2t0η] ⊂ (0, a),
[c − 2t0η, c + 2t0η] ⊂ (0, a), [x0 + y0 − 2η, x0 + y0 + 2η] ⊂ (0, a).

Let us choose t1, t2 such that

t0 max
{

1
2
,

x0 + y0 − 3η

x0 + y0 − 2η
,

y0 − 2η

y0 − η
,
x0 − 2η

x0 − η

}
≤ t1

< t0 < t2 ≤ t0 min
{

x0 + y0 + 3η

x0 + y0 + 2η
,

y0 + 2η

y0 + η
,

x0 + 2η

x0 + η

}
.

Let T :=[t1, t2]. Because the function g3, defined by g3(x, t, y):=tx, is strictly
monotonic in t and x, and

t1x1 ≥ t0
x0 − 2η

x0 − η
(x0 − η) = c − 2t0η, t2x2 ≤ t0

x0 + 2η

x0 + η
(x0 + η) = c + 2t0η,

it maps Δ:=X × T × Y into [c − 2t0η, c + 2t0η]. Similarly, putting

g1(x, t, y):=x + y, g2(x, t, y):=y, g4(x, t, y):=ty, and g5(x, t, y):=t(x + y)

we see that
g1 maps Δ into [x0 + y0 − 2η, x0 + y0 + 2η],
g2 maps Δ into [y0 − η, y0 + η],
g4 maps Δ into [c− − 2t0η, c− + 2t0η],

and

g5 maps Δ into [c+ − 3t0η, c++3t0η].

Let δ > 0 be such that δ < (t2−t1)x1/2 and δ < η/4. Using the Lusin theorem
we may choose a compact set C ⊂ (0, a) such that 

(
(0, a)\C

)
< δ and f |C is

continuous. Now for any x ∈ X let

T × Y ⊃ Dx

: =
{
(t, y) : gi(x, t, y) ∈ C for i = 1, 2, 3, g4(t, x, y) ∈ C−, g5(t, x, y) ∈ C+

}
,
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and, moreover,

D:=
⋃

x∈X

{x} × Dx.

Clearly, if (x, t, y) ∈ D, then equation (B) can be rewritten in the form

f(x) = f(x + y) +
(
f(y) − f(x + y)

)f
(
t(x + y)

)− f(tx)
f
(
t(x + y)

)− f(ty)
. (8)

Using the notation

h(z1, z2, z3, z4, z5):=z1 + (z2 − z1)
z4 − z3
z5 − z4

(9)

equation (8) takes the form

f(x) = h
(
f
(
g1(x, t, y)

)
, f
(
g2(x, t, y)

)
, . . . , f(g5(x, t, y)

))
. (10)

We will prove that f is continuous at x0, i.e., that for each ε > 0 there
exists γ > 0 such that if |x − x0| < γ, then |f(x) − f(x0)| < ε. We will use
equation (10). Because h is continuous on its open domain

{
(z1, z2, z3, z4, z5) ∈

R
5 : z4 �= z5

}
, it is uniformly continuous on the compact set f(C) × f(C) ×

f(C) × f(C−) × f(C+), hence there exists α > 0 such that if (z1, z2, z3, z4, z5)
and (z′

1, z
′
2, z

′
3, z

′
4, z

′
5) are α-close in this set (i.e. the distance of these points is

less than α in the Euclidean or in any other norm), then h(z1, z2, z3, z4, z5) and
h(z′

1, z
′
2, z

′
3, z

′
4, z

′
5) are ε-close. By the uniform continuity of f on the compact

set C ∪ C− ∪ C+, we get β > 0 such that if u and u′ are in this set and
|u−u′| < β, then |f(u)−f(u′)| < α. Since the functions gi, i = 1, 2, 3, 4, 5, are
continuous, and hence uniformly continuous on the compact set X × T × Y ,
we get γ > 0 such that if (x, t, y) and (x′, t′, y′) are γ-close in this set, then
gi(x, t, y) and gi(x′, t′, y′) are β-close for i = 1, 2, 3, 4, 5. We will choose x′ = x0

and t′ = t, y′ = y, hence the proof is complete if we prove that for each x ∈ X
the set Dx ∩ Dx0 is nonempty, because then the functional equation implies
that from the fact that x and x0 are γ-close in X we obtain that the fact f(x)
and f(x0) are ε-close, hence the continuity of f at x0.

Step 5. To prove this, let Tx:={t ∈ T : tx ∈ C}. The set {x} × (T \
Tx) × Y is mapped by g3 into a set having measure x(T \ Tx) but contained
in (0, a)\C. Hence (T\Tx) < δ/x ≤ δ/x1 < (t2 − t1)/2. Applying this for any
x ∈ X and then for x = x0 we obtain that Tx and Tx0 both have -measure
greater than (t2 − t1)/2, hence their intersection is non-empty. Let us fix t
from this intersection. We will investigate the sets Y1,x,t:={y ∈ Y : x+y ∈ C},
Y2,x,t:={y ∈ Y : y ∈ C}, Y4,x,t:={y ∈ Y : t(x+y) ∈ C+}, Y5,x,t:={y ∈ Y : ty ∈
C−}. For the first two sets, their measure is greater than 2η − δ. For the third
set, Y \ Y4,x,t is mapped by g4 into a subset having measure t(Y \ Y4,x,y) but
contained in [c+−3t0η, c++3t0η]\C+ having measure less than 0.06t0η. Hence
(Y \Y4,x,t) < 0.06t0η/t ≤ 0.06t0η/t1 ≤ 0.06t0η/(t0/2) = 0.12η. Similarly, we
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obtain that (Y \ Y5,x,t) < 0.08η. Of course, the same estimates hold true for
the special case x = x0. Hence we get that the set

⋂

i=1,2,4,5

(
Yi,x,t ∩ Yi,x0,t

)

has measure at least 2η − 4δ − 0.4η > 0.6η, so it is non-empty. �

Remark 6. Let f : (0,∞) → C. If f is a solution of equation (B) which is
constant everywhere except for a set of first category, then it is constant ev-
erywhere.

This follows from similar arguments as those used in Remark 5.

Theorem 5.2. Let f : (0,∞) → C. If f is a Baire measurable solution of
equation (B) then it is continuous.

Proof. In view of Remark 6 it is enough to consider the case of Baire mea-
surable solution of (B) which is not constant on the complement of some first
category set. The proof makes use of similar ideas as the proof of the previ-
ous theorem but it is somewhat simpler: we prove that for a solution which
is nonconstant on the complement of any set having first category the term
Q(x, t, y) = f

(
t(x + y)

)− f(ty) is nonzero for a “large” set of triples (x, t, y),
hence we may divide by it and apply the general methods of [8], especially a
variant of Theorem 9.1. We will also use the ideas of the proofs of from [8,
Thms. 4.1, 4.2, 4.3], but for simplicity we will give here a self-contained proof,
using only ideas of [8], not the results.

If a function f : (0,+∞) → C is Baire measurable, then there exists a
set E ⊂ (0,+∞) having complement of the first category such that f |E is
continuous. The function f |E cannot be constant, hence there exist c− and
c+ in E such that f(c−) �= f(c+). Without loss of generality we may assume
that c− < c+. Let c:=c+ − c−. We will prove that f is continuous at any fixed
x0 > 0.

Let us choose disjoint open neighborhoods V − ⊂ (0,+∞) and V + ⊂
(0,+∞) of c+ and c−, respectively, such that each element of f(E ∩ V −) is
less than any element of f(E ∩ V +). Let X, Y and T be neighborhoods of x0,
c/x0 and x0c

−/c, respectively, such that for each x ∈ X, y ∈ Y and t ∈ T we
have ty ∈ V − and t(x + y) ∈ V +. Let us choose t0 ∈ T such that t0x0 ∈ E
and then y0 ∈ Y such that y0 ∈ E, x0 + y0 ∈ E, t0y0 ∈ E and t0(x0 + y0) ∈ E.
Because for z:=f(x0), z1:=f(x0+y0), z2:=f(y0), z3:=f(t0x0), z4:=f(t0y0) and
z5:=f

(
t0(x0 + y0)

)
we have z4 �= z5 and by the equality

z = z1 + (z2 − z1)
z4 − z3
z5 − z4

,



Vol. 78 (2023) On Weak Generalized Stability of Random Variables Page 21 of 35 175

for an arbitrary neighborhood W of z there exist neighborhoods W1, W2, W3,
W4 and W5 of z1, z2, z3, z4 and z5, respectively, such that for any z′

1 ∈ W1,
z′
2 ∈ W2, z′

3 ∈ W3, z′
4 ∈ W4 and z′

5 ∈ W5 we have z′
4 �= z′

5 and

z′ = z′
1 + (z′

2 − z′
1)

z′
4 − z′

3

z′
5 − z′

4

∈ W.

Because f |E is continuous at zi, there exist open sets V1, . . . V5 such that
for z′

i ∈ E ∩ Vi we have f(z′
i) ∈ Wi for i = 1, 2, 3, 4, 5. Now there exist

neighborhoods X0, Y0 and T0 of x0, y0 and t0, respectively, contained in X,
Y and T , such that x + y ∈ V1, y ∈ V2, tx ∈ V3, ty ∈ V4 and t(x + y) ∈ V5

whenever x ∈ X0, y ∈ Y0 and t ∈ T0. Fixing any x ∈ X0 let us choose t ∈ T0

such that tx ∈ E. Then let us also choose y ∈ Y0 such that y ∈ E, x + y ∈ E,
ty ∈ E and t(x + y) ∈ E. For z′:=f(x), z′

1:=f(x + y), z′
2:=f(y), z′

3:=f(tx),
z′
4:=f(ty) and z′

5:=f
(
t(x + y)

)
we have z′

4 �= z′
5 and by the equality

z′ = z′
1 + (z′

2 − z′
1)

z′
4 − z′

3

z′
5 − z′

4

∈ W.

This proves that f is continuous at x0. �

In the next two theorems we will use the following result.
Theorem 1.28 from [8] Let X, Y , and Z be open subsets of Rr, Rs, and R

t,
respectively, let D be an open subset of X × Y and let W be an open subset
of D × Zn, where r, s, t, n ∈ N. Let f : X → Z, gi = (gi,1, . . . , gi,r) : D → X
for all i = 1, 2, . . . , n, and h : W → Z. Assume that

(i) h and g1, . . . , gn are of class C∞;
(ii) there exists a compact subset C of X such that for each i = 1, 2, . . . , n

and for each x ∈ X there exists y = (y1, . . . , ys) for which (x, y) ∈ D,
gi(x, y) ∈ C and the matrix

∂gi

∂y
(x, y) =

[∂gi,k

∂yj
(x, y)

]

k≤r,j≤s

has rank r;
(iii) if (x, y) ∈ D then

(
(x, y), f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

)) ∈ W and

f(x) = h
(
(x, y), f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

))
.

If f is Lebesgue or Baire measurable, then it is of class C∞.

Theorem 5.3. Let f : (0,∞) → C be a one-to-one Lebesgue measurable (or
Baire measurable) solution of equation (B). Then f is of class C∞.

Proof. We may use the previous two theorems to infer that Lebesgue mea-
surable solutions and Baire measurable solutions are continuous. More simply,
expressing the term f(x) from equation (B), we may use Theorem 1.25 from
[8] to obtain that f is continuous. Although, for real valued solutions, Theorem
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1.26 from [8] can be applied to obtain f ∈ C∞, because one-to–one and contin-
uous solutions are strictly monotonic, hence almost everywhere differentiable,
this method does not work for complex-valued solutions. So instead we are
going to apply Theorem 1.28 from [8] but this cannot be done directly. The
reason is, roughly speaking, that if x is large then x + y is even larger, hence
we cannot keep it in a compact set if x moves in a larger open set. We may try
to express f(x + y) from equation (B) and introduce a new free variable, say
x′ = x + y instead of, say x; but in this case we have a problem if x′ is small:
y is even smaller, hence we cannot keep it in a compact subset of (0,+∞) if
x′ moves in a larger open set.

The basic idea is to remove the term f(x + y) completely. From (B) we
obtain

f(x + y)
[
f(tx) − f(ty)

]

= f(x)
[
f(t(x + y)) − f(ty)

]− f(y)
[
f(t(x + y)) − f(tx)

]
.

(11)

Replacing t, x, y by t′, x′, y′, respectively, we obtain

f(x′ + y′)
[
f(t′x′) − f(t′y′)

]

= f(x′)
[
f(t′(x′ + y′)) − f(t′y′)

]− f(y′)
[
f(t′(x′ + y′)) − f(t′x′)

]
.

(12)

Assume that x + y = x′ + y′. Multiplying (11) by f(t′x′) − f(t′y′) and (12) by
f(tx) − f(ty), and then, subtracting the second of the resulting equality from
the first one, we get
(
f(t′x′) − f(t′y′)

)[(
f(x) − f(y)

)
f(t(x + y))−f(x)f(ty) + f(y)f(tx)

]

=
(
f(tx)−f(ty)

)[(
f(x′) − f(y′)

)
f(t′(x + y))−f(x′)f(t′y′) + f(y′)f(t′x′)

]
.

(13)

Of course x′ is no more a free variable but a function of x, y, y′, i.e., x′ =
x + y − y′. The functional equation (13) is satisfied for all x, y, t, y′, t′ > 0
for which x + y − y′ > 0. Expressing f(x) from equation (13) we obtain the
following functional equation

f(x) = f(y)
f(t(x + y))−f(tx)
f(t(x + y))−f(ty)

+
(
f(tx)−f(ty)

)

×
[
f(x′)

(
f(t′(x + y))−f(t′y′)

)− f(y′)
(
f(t′(x + y))−f(t′x′)

)]

(
f(t′x′)−f(t′y′)

)(
f(t(x + y))−f(ty)

)

(14)

satisfied on an open set D, where

D = {(x, y, t, y′, t′) : x, y, t, y′, t′ > 0, y′ < x + y, x′ �= y′} .

Let arbitrary a > 0 and b ≥ 18a be fixed. We will apply Theorem 1.28 from [8]
to deduce that f ∈ C∞((a, b)

)
. It is clear that for all the functions g1, . . . , g9,

given by
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g1(x, y, t, y′, t′) = y, g2(x, y, t, y′, t′) = tx,
g3(x, y, t, y′, t′) = ty, g4(x, y, t, y′, t′) = x + y − y′,
g5(x, y, t, y′, t′) = y′, g6(x, y, t, y′, t′) = t′(x + y),
g7(x, y, t, y′, t′) = t′y′, g8(x, y, t, y′, t′) = t′(x + y − y′),
g9(x, y, t, y′, t′) = t(x + y),

respectively, the rank of the matrix ∂gi/∂(t, y, t′, y′) is 1 whenever x, y, t, y′, t′ >
0. Hence it is enough to prove that for each a < x < b we have y, t, y′, t′ such
that (x, y, t, y′, t′) ∈ D and all gi(x, y, t, y′, t′), i = 1, . . . , 9, is in the compact
subset [2a, b − a] of the open interval (a, b). We consider three cases.

If a < x ≤ 2a then let y = x + 2a, y′ = x + a (then x′ = x + a), let t = 2
and t′ = 1 (then tx = 2x, ty = 4a + 2x, t(x + y) = 4a + 6x, t′x′ = a + x,
t′y′ = a + x, t′(x + y) = 2a + 2x).

If 2a < x < b − 4a then let y = 3a, y′ = 3a (then x′ = x), let t = 1
and t′ = 1 (then tx = x, ty = 3a, t(x + y) = 3a + x, t′x′ = x, t′y′ = 3a,
t′(x + y) = 3a + x).

If b − 4a ≤ x < b then let y = 8a, y′ = x − 2a (then x′ = 6a), let
t = 1/2 and t′ = 1/2 (then tx = x/2, ty = 4a, t(x + y) = 4a + x/2, t′x′ = 3a,
t′y′ = x/2 − a, t′(x + y) = 4a + x/2).

Now Theorem 1.28 in [8] and equation (14) imply that f ∈ C∞((a, b)
)
. Be-

cause a > 0 and b ≥ 18a were arbitrary we obtain that f ∈ C∞
(
(0,+∞)

)
. �

We would like to extend the previous theorem to the case where f is not
assumed to be one-to-one. We also use the ideas of the previous proof. First
we will prove an auxiliary result.

Lemma 5.4. Let X be any set and f : (0,∞) → X. If f is not a constant
function, then for an arbitrary nonempty interval (a, b) ⊂ (0, 1) there exist
γ ∈ (a, b) and u, v > 0 such that f(u) �= f(v) and u/v = γ.

Proof. Suppose on the contrary that there exists a nonempty interval (a, b) ⊂
(0, 1) for which such γ, u, v do not exist. In particular, this means that for
any choice of u, v > 0, u < v we have either f(u) = f(v) or u/v �∈ (a, b).
Consequently, we have that if u, v > 0 and u/v ∈ (a, b) then f(u) = f(v).

Let u1 > 0 and f(u1) = c. For every v > 0 such that u1/v ∈ (a, b), i.e. for
every v > 0 such that v ∈ (u1/b, u1/a) we have f(v) = c. Putting u2 = bu1/a
and repeating these arguments we see that for every v > 0, v ∈ (u1/a, bu1/a2)
we get f(v) = c. Consequently, using mathematical induction we obtain

f−1
({c}) ⊃

∞⋃

n=0

(
u1

b

bn

an
,
u1

a

bn

an

)
.

Moving in other direction we put v2 = au1/b. For every v > 0 such that
v2/v ∈ (a, b), i.e. for every v > 0 such that v ∈ (v2/b, v2/a) = (au1/b2, u1/b)



175 Page 24 of 35 W. Jarczyk et al. Results Math

we have f(v) = c. Consequently, by mathematical induction we finally have

f−1
({c}) ⊃

∞⋃

n=−∞

(
u1

b

bn

an
,
u1

a

bn

an

)
.

This means that the function f is constant on the whole positive half-line
except for countably many points u1b

n/an+1, n ∈ N ∪ (−N). Because u1 was
arbitrarily chosen we conclude that f is a constant function. �

Theorem 5.5. Let f : (0,+∞) → C be a continuous solution of equation (B).
Then f is of class C∞.

Proof. We may assume that f is nonconstant. We will use the notations of the
proof of the previous theorem. By Lemma 5.4 there exist positive γ1, u1, v1
and γ2, u2, v2 such that

u1
v1

= γ1 ∈ (
√
5−1
2 , 1

)
, f(u1) �= f(v1),

u2
v2

= γ2 ∈ (0, 1
3

)
, f(u2) �= f(v2).

Then γ1 > γ2, u1 < v1 <
√
5+1
2 u1 and v2 > 3u2. Considering

w1: = v1 − u1, z1: = u1 + v1, w2: = v2 − u2

we see that 0 < w1 < u1 < v1 < z1 and u2 < w2 < v2. Now we choose a > 0
small enough and b > 0 large enough to have

w1, u1, v1, z1, u2, w2, v2 ∈ (a, b) and b(1 − γ1)/γ1 > a(1 − γ2)/γ2.

Since the function γ �→ (1 − γ2)/γ is strictly decreasing on the interval (0, 1),
then

α:=
a(1 − γ2

1)
γ1

< a

(
1 −
(√

5 − 1
2

)2) 2√
5 − 1

= a

and

β := b(1 − γ2)(1 + γ1) > b
2
3

(

1 +
√

5 − 1
2

)

= b
1 +

√
5

3
> b.

We will apply Theorem 1.28 from [8] to infer that f is in C∞ on (α, β). Let D
be the set of all quintuples (x, t, y, t′, y′) for which α < x < β, the values of all
the inner functions gi, i = 1, . . . , 9, are greater than a and less than b, i.e.

a < y, tx, ty, t(x + y), x′, y′, t′x′, t′y′, t′(x + y) < b,

where x′ = x + y − y′, moreover f
(
t(x + y)

) �= f(ty) and f(t′x′) �= f(t′y′).
Of course, if (x, t, y, t′, y′) ∈ D, then equation (13) can be rewritten in the
form (14). Hence we may apply the above mentioned theorem with the com-
pact set C:=[a, b] provided we prove that for each x ∈ X:=(α, β) there exists
(x, t, y, t′, y′) ∈ D. There are two possible cases.

We start with the first one when α < x < b(1 − γ1)/γ1. In this case we
choose t and y such that t(x + y) = v1 and ty = u1, i.e., y/(x + y) = γ1,



Vol. 78 (2023) On Weak Generalized Stability of Random Variables Page 25 of 35 175

y:=γ1/(1 − γ1)x and t:=u1(1 − γ1)/γ1. Then tx = w1. Next we choose t′ and
y′ such that t′y′ = v1 and t′x′ = u1, i.e., x′/y′ = (x + y)/y′ − 1 = γ1,

1 + γ1 =
x + y

y′ =
x + y

y

y

y′ =
1
γ1

y

y′ ,

hence y′:=y/
(
γ1(1 + γ1)

)
= x/(1−γ2

1) and t′ := v1(1−γ2
1)/x. Then t′(x+y) =

t′(x′ + y′) = z1. We have to check that y, y′, x′ ∈ (a, b). Because x′ < y′ and

γ1(1 + γ1) >

√
5 − 1
2

√
5 + 1
2

= 1,

we have x′ < y′ < y, hence it is enough only to give a lower estimate of x′:

x′ = γ1y
′ =

γ1x

1 − γ2
1

>
γ1α

1 − γ2
1

= a.

Similarly, the upper estimate is y = xγ1/(1 − γ1) < b.
Now we pass to the second case when b(1 − γ1)/γ1 ≤ x < β. Here we

choose t and y such that t(x + y) = v1 and ty = u2, i.e., y/(x + y) = γ2,
y := γ2/(1 − γ2)x and t := u2(1 − γ2)/γ2. Then tx = w2. We choose also t′

and y′ such that t′y′ = u1 and t′x′ = v1, i.e., 1/γ1 = x′/y′ = (x + y)/y′ − 1,

1 + 1/γ1 =
x + y

y′ =
x + y

y

y

y′ =
1
γ2

y

y′ ,

hence y′:=y/
(
γ2(1 + 1/γ1)

)
= x/
(
(1 − γ2)(1 + 1/γ1)

)
and t′:=u1(1 − γ2)(1 +

1/γ1)/x. Then t′(x + y) = t′(x′ + y′) = z1. We have to check that y, y′, x′ ∈
(a, b). Because y′ < x′ and

γ2(1 + 1/γ1) <
1
3

(
1 +

2√
5 − 1

)
=

√
5 + 3
6

< 1,

we have y < y′ < x′, hence we find the lower estimate y = xγ2/(1 − γ2) > a
and the upper estimate

x′ =
y′

γ1
=

x

(1 − γ2)(γ1 + 1)
<

β

(1 − γ2)(1 + γ1)
= b.

This proves, that f ∈ C∞((α, β)
)
, especially f ∈ C∞((a, b)

)
. Because

a can be arbitrarily small and b can be arbitrarily large, we obtain f ∈
C∞((0,+∞)

)
. �

Corollary 5.6. Every Lebesgue measurable and every Baire measurable solution
f : (0,∞) �→ C of equation (B) is of class C∞.

6. Solution of Equation (B)

In this section we give all measurable solutions of the equation
(
f(t(x + y)) − f(tx)

)(
f(x + y) − f(y)

)

=
(
f(t(x + y)) − f(ty)

)(
f(x + y) − f(x)

)
,

x, y, t > 0. (B)

We will use the following auxiliary fact.
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Proposition 6.1. If f : (0,∞) → R is a Lebesgue measurable or Baire measur-
able solution of equation (B), then f is either constant or strictly monotonic.

The basic tool in the proof of Proposition 6.1 is the following “folk lemma”.

Lemma 6.2. Let I ⊂ R be an open interval and f : I → R be a continuous
function. If c ∈ I is a point of a local extremum of f , then for every positive
ε small enough there is a point x ∈ I such that x + ε ∈ I, x ≤ c ≤ x + ε and
f (x + ε) = f(x).

Proof. Assume that c is a point of local maximum of f and choose a positive
ε0 such that (c − ε0, c + ε0) ⊂ I and f(c) ≥ f(x) for every x ∈ (c − ε0, c + ε0).
Fix any ε ∈ (0, ε0) and define a function ϕε : [c − ε, c] → R by ϕε(x) =
f (x + ε) − f(x). Then, since ϕε is continuous,

ϕε(c − ε) = f(c) − f(c − ε) ≥ 0

and

ϕε(c) = f(c + ε) − f(c) ≤ 0,

we can find an x ∈ [c−ε, c] such that ϕε(x) = 0. This implies that x ≤ c ≤ x+ε;
x, x + ε ∈ I, and f(x + ε) = f(x). �

Now we are ready to prove Proposition 6.1 but first let us recall that
microperiodic function is any periodic function without the smallest positive
period. The Dirichlet function 1Q serves as an example. A folk theorem states
that any continuous microperiodic function mapping R into R is constant. It
has plenty of variants and generalizations of this results. Some of them rely
on weakening the assumption of continuity, others on extending the class of
admissible domains. Sometimes Polish mathematicians connect it with the
names of Stanis�law Ruziewicz and/or Antoni �Lomnicki.

Proof of Proposition 6.1. By Theorems 5.1 and 5.2 we know that f is contin-
uous. Assume that it is not strictly monotonic. Since f is continuous it follows
that it is not one-to-one and, consequently, has at least one point of local
extremum. Let c ∈ (0,∞) denote any of such local extremum points.

We prove that the limit f(0+) exists and f(0+) = f(c). By Lemma 6.2
we can find a positive number ε0 such that for every ε ∈ (0, ε0) there is an
xε ∈ (0,∞) satisfying the conditions

xε ≤ c ≤ xε + ε and f (xε + ε) = f (xε) .

If f(ε) = f (xε) for every ε from a right vicinity of 0, then f(ε) = f (xε) → f(c)
while ε tends to 0, so f(0+) exists and equals f(c). In the opposite case there
exists a sequence (ε(n))n∈N

of numbers from (0, ε0), tending to 0 and such
that f(ε(n)) �= f

(
xε(n)

)
for all n ∈ N. Then f(ε(n)) �= f

(
xε(n) + ε(n)

)
and,

using (B) for x = xε(n) and y = ε(n), we see that

f
(
t
(
xε(n) + ε(n)

))− f
(
txε(n)

)
= 0, t ∈ (0,∞), n ∈ N,



Vol. 78 (2023) On Weak Generalized Stability of Random Variables Page 27 of 35 175

that is

f(t) = f (αnt) , t ∈ (0,∞), n ∈ N,

where αn = xε(n)

xε(n)+ε(n) . Since limn→∞αn = c
c+0 = 1 we conclude that the

function f ◦ exp is microperiodic. Being continuous, it is constant, so is f . In
particular, f(0+) = f(c).

Let d = sup {x ∈ (0,∞) : f(x) = f(c)}. Since c was taken as an arbitrary
point of local extremum of f , the equality f(0+) = f(c) implies that f takes
exactly one local extremum value, viz. f(c). Thus, since f(0+) = f(c) = f(d−)
and f is continuous, it follows that the function f |(0,d) is constant. Suppose
that d < ∞. Take any x ∈ (d/2, d) and ε ∈ (0, d−x), and put y = x+ ε. Then
0 < x < y < d < x + y, so f(x) = f(y) = f(c) and f(x + y) �= f(c), whence
f(x + y) − f(x) = f(x + y) − f(y) �= 0. Now (B) gives

f (t (x + y)) − f (tx) = f (t (x + y)) − f (ty) ,

that is

f(ty) = f(tx)

for every t > 0, hence, for every t > 0

f (t) = f

(
x

y
t

)
= f

((
x

y

)n

t

)
= lim

n→∞f

((
x

y

)n

t

)
= f(0+).

This means that f is constant. �

Another useful tool in the proof of Theorem 6.4 is provided by the lemma
below.

Lemma 6.3. Let � : N → R, q ∈ R and let g : (0,∞) → R be a continuous
function such that

g(nx) = g(x) + �(n)xq, x > 0, n ∈ N. (15)

Then there exist a, b ∈ R such that either q = 0 and

g(x) = a ln x + b, x > 0,

or q �= 0 and

g(x) = axq + b, x > 0.

Proof. For every m,n ∈ N and every x > 0 we have g(mnx) = g(x)+�(mn)xq

and, on the other hand,

g(mnx) = g(nx) + �(m)(nx)q = g(x) + �(n)xq + �(m)nqxq.

Consequently,

�(mn) = �(n) + �(m)nq = �(m) + �(n)mq, m, n ∈ N.

This implies that

�(n)(mq − 1) = �(m)(nq − 1), m, n ∈ N.
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If q �= 0 then this means that there exists a number a such that �(n) =
a(nq − 1). Using equation (15) twice we obtain

g
(m

n
x
)

= g(x) +
(
�(m) − �(n)

) (x

n

)q

= g(x) + a
((m

n

)q

− 1
)

xq

for all n,m ∈ N and every x > 0, that is

g (rx) = g(x) + a (rq − 1) xq, x > 0, r ∈ Q+.

The continuity of the function g with substitution x = 1 implies now that for
all t > 0 we have g(t) = atq + (g(1) − a). If q = 0 then �(mn) = �(m) + �(n)
for all m,n ∈ N and

g
(m

n
x
)

= g(x) +
(
�(m) − �(n)

)

for all m,n ∈ N and every x > 0. Substituting x = 1 we obtain that �(m) −
�(n) = g(m/n) − g(1) for all m,n ∈ N and, consequently,

(
g(rx) − g(1)

)
=
(
g(x) − g(1)

)
+
(
g(r) − g(1)

)
, x > 0, r ∈ Q+.

The continuity of the function g implies that this equality holds for each x, r >
0 and, consequently (see [13], Theorem 3.1.5), there exists a real number a ∈ R

such that

g(x) − g(1) = a ln x, x > 0,

which ends the proof. �

Now we are able to prove the main result of this section.

Theorem 6.4. Let f : (0,∞) → R be a Lebesgue measurable, or a Baire mea-
surable solution of equation (B). Then there exist numbers a, b, q ∈ R such
that either

q = 0 and f(x) = a ln x + b, x > 0,

or

q �= 0 and f(x) = axq + b, x > 0.

Proof. Theorems 5.1 and 5.2 imply that f is a continuous function. By Propo-
sition 6.1 the function f is either constant, or strictly monotonic. In the second
case the equation (B) can be rewritten in the following way:

f(tx) − f(ty)
f(x) − f(y)

=
f(tx + ty) − f(ty)
f(x + y) − f(y)

, x, y, t ∈ (0,∞), x �= y.

Consequently, by mathematical induction, for all n ∈ N we have

f(tx) − f(ty)
f(x) − f(y)

=
f(tx + nty) − f(ty)
f(x + ny) − f(y)

, x, y, t ∈ (0,∞), x �= y. (16)

Case 1. f(0+) = b ∈ R. Without loss of generality, replacing if necessary f
by f − b, we may assume that b = 0. Assume, for instance, that f is strictly
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increasing and f(r) > 0 for every r > 0. By the continuity of the function f ,
tending with x to 0 in equality (16), we see that

f(ty)
f(y)

=
f(nty) − f(ty)
f(ny) − f(y)

, y, t > 0, n ≥ 2.

Hence, after some elementary calculations, we come to the condition

f(nty)
f(ty)

=
f(ny)
f(y)

, y, t > 0, n ∈ N.

Since t can be chosen arbitrarily we see that f(nx)
f(x) = f(n)

f(1) for each n ∈ N.
Taking the logarithm of both sides of this equality we obtain

ln f(nx) − ln f(x) = �(n), x > 0, n ∈ N,

where �(n):= ln f(n)− ln f(1). By Lemma 6.3 we infer that ln f(x) = q ln x+d,
x > 0, for some real q and, consequently, f(x) = axq for x > 0. If f(0+) = b
then we have f(x) = axq + b for x > 0.
Case 2. f(0+) = ∞. Now equation (16) can be rewritten in the form

f(tx + nty) − f(ty)
f(x + ny) − f(y)

=
f(tx)
f(x)

1 − f(ty)
f(tx)

1 − f(y)
f(x)

, x, y, t ∈ (0,∞), x �= y.

Letting x → 0+ we see that f(ty)/f(tx) → 0 and f(y)/f(x) → 0 and thus
there exist the limits of both sides of this equality and we have

lim
x→0+

f(tx)
f(x)

=
f(nty) − f(ty)
f(ny) − f(y)

for every t > 0 and every n ≥ 2. Thus the function f is regularly varying at
0 (cf. [1], sec. 1.4.1 or [23], Sec. 1.3). According to the fundamental theory of
such functions there exists q ∈ R such that

lim
x→0+

f(tx)
f(x)

= tq, t > 0.

Now for every n ∈ N we have

f(nty) − f(ty)
f(ny) − f(y)

= tq, y, t ∈ (0,∞).

Substituting ty = x we see that

f(nx) − f(x)
xq

=
f(ny) − f(y)

yq
, x, y > 0.

This means that for each n ∈ N there exists a number �(n) such that f(nx) =
f(x) + �(n)xq for all x > 0 and a direct application of Lemma 6.3 gives
f(x) = axq + b for some a, b, q ∈ R. This completes the proof. �
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7. Solving Equation (A)

Recall that the probabilistic kernel ψ(t) for the generalized convolution ♦ is
equal to the generalized characteristic function of this convolution for the point
measure δt (in particular ψ �≡ 1), ϕ is the generalized characteristic function
of the measure μ. Recall also that for any continuous real function f we define
af := inf{t > 0 : f(t) = 0}. Since aψ < ∞ if and only if aϕ < ∞, Lemma 3.1 is
equivalent to the result below.

Theorem 7.1. For every generalized convolution ♦ on P+ every point mass
measure δt, t > 0, is stable but not strictly stable with respect to convolution
♦ with c(r, s) = max{r, s}, d(r, s) = min{r, s} since

δrt♦δst = δtmax{r,s}♦δtmin{r,s} r, s, t > 0.

If aψ < ∞ then the point mass measures are the only stable but not strictly
stable measures with respect to the generalized convolution ♦ corresponding to
the probability kernel ψ.

By Proposition 3.7 we know that under assumptions (1) if aψ = ∞ then
there exists p > 0 such that

c(r, s) = (rp + sp)1/p, r, s ≥ 0.

Recall that in this paper function d : [0,∞)2 → R is homogenous, d(0, t) = 0
for all t ≥ 0 and d(s, t) > 0 for all s, t > 0.

Our aim is to find the general solution of equation (A) under assump-
tions (1), with (ϕ,ψ) ∈ Φ2, however, in this paper we can do it only by
using the solution of equation (B), where the implication (A) ⇒ (B) (Sect. 4)
was shown only under some additional assumptions described in Theorem 4.1.
Consequently, our solution is not truly general.

The main result of the probabilistic part of this work, taking into account
the assumptions of Theorem 4.1, includes the following theorem.

Theorem 7.2. Assume that condition (1) holds and let (ϕ,ψ) ∈ Φ2 be a pair
of real and symmetric functions satisfying equation (A). Then

(a) c(r, s) = (rp + sp)1/p, r, s ≥ 0 for some p > 0.
If, in addition, the function d(1, ·) is one-to-one and

1. ϕ is differentiable on (0,∞) and ψ is one-to-one on (0,∞) or
2. ψ is differentiable and one-to-one on (0,∞),

then
(b) there are A,B, p, r > 0, r �= 1, such that

ϕ(x) = e−Axrp−Bxp

and ψ(x) = e−Axrp

, x ∈ [0,∞),

and

d(x, y)rp = xrp + yrp − (xp + yp)r
, x ∈ [0,∞).
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If the function d(1, ·) is one-to-one, one of conditions 1. and 2. holds and ψ is
a characteristic function (i.e. the corresponding measure μ such that ψ = μ̂ is
weakly stable and the corresponding generalized convolution is weak), then the
representation (b) holds with r ∈ (0,min{1, 2/p}) ∪ (1, 2/p].

Proof. Notice that if condition (1) hold, then aϕ = aψ = ∞, since otherwise,
by Lemma 3.1, we have ϕ1 ≡ ϕ2. By Theorem 3.8 there exists p > 0 such that
c(r, s)p = rp + sp which completes the proof of (a).

Observe also that the assumptions 1. and 2. are equivalent. The impli-
cation 1 ⇒ 2, stating that differentiability of ϕ implies differentiability of ψ,
was already noticed in Remark 4. To see that differentiability of ψ implies
differentiability of ϕ note first that if (ϕ,ψ) ∈ Φ2 then there exists λ ∈ P+

such that

ϕ(t) =
∫ ∞

0

ψ(st)λ(ds), t > 0.

Moreover, we know that aϕ = aψ = ∞, ψ(0) = 1 = max{ψ(x) : x ≥ 0},
and thus the assumption that ψ is one-to-one implies that ψ is strictly de-
creasing and bounded from below, so ϕ is also strictly decreasing on (0,∞)
and differentiable on (0,∞). Moreover, ψ′ is negative and increasing. If g =
limx→∞ ψ(x) ∈ (0, 1) and ψ is a characteristic function of some weakly stable
measure μ, then g = 0 in view of Theorem 6 in [16].

Using now Theorem 4.1 for the function f = h′ where h(x) = lnϕ(x1/p),
and then Theorem 6.4, we infer that there exists a, b, q ∈ R such that either

q = 0 and f(x) = a ln x + b, x > 0,

or

q �= 0 and f(x) = axq + b, x > 0.

Since ϕ is positive on (0,∞) and ϕ′ is negative on (0,∞), then f is negative
on (0,∞) and, consequently, either q = 0, a = 0, b < 0, or q �= 0, a ∈ R, b < 0.
To finish the proof we will consider the following three possible cases.
Case 1. If the function f is constant, say −f ≡ A, then A > 0 and ϕ(t) =
exp (−Atp). This implies that d(r, s) = 0 for all r, s > 0 which means that the
considered measure is strictly stable with respect to the generalized convolution
contrary to our assumptions.
Case 2. If there exists limit f(0+) = b and f is not constant, then a, b < 0 and
q > 0 are such that f(x) = axq + b for all x > 0. Then

ϕ(t) = exp (−Atrp − Btp) , ψ(x) = e−Axrp

, t > 0,

where A = − a
q+1 , r = q + 1 > 1 and B = −b. If ψ is a characteristic function,

then we see that rp ∈ (0, 2] and, consequently, r ∈ (1, 2/p].
Case 3. If f(0+) = −∞ then q < 0, a < 0, f(t) = atq + b for all t > 0 and

ϕ(t) = exp (−Atrp − Btp) , ψ(x) = e−Axrp

t > 0,
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where A = − a
q+1 , r = q + 1 and B = −b. If ψ is a characteristic function we

see that A > 0 and rp ∈ (0, 2]. Then a < 0 and r ∈ (0,min{1, 2/p}).
In the Cases 2 and 3 it is enough to substitute the obtained function ϕ into
the equation (A) to get the explicit formulas for ψ and d. �

Remark 7. Notice that Theorem 7.2 presents only solutions of functional equa-
tion (A). We still do not know whether the resulting form of function ϕ guar-
antees that ϕ is a characteristic function. In the Case 2 for p ∈ (0, 2] and
r ∈ (1, 2/p] every configuration of parameters A,B > 0 is admissible, which
means that the obtained function ϕ is a characteristic function. To see this
notice first that rp ∈ (0, 2]. Thus it follows from the theory of stable distribu-
tions that for each A > 0 the function ψ is a characteristic function. Now it is
enough to notice that

ϕ(t) = exp (−Atrp − Btp) =
∫ ∞

0

e−A(st)rp

λ(ds),

where λ = δ1 ∗ γ, with γ = L(θ1/rp) for the positive random variable θ
with r−1−stable distribution with the Laplace transform of the form exp(−BA−1/rt1/r

)
. Now it is enough to know that any scale mixture of a charac-

teristic function with respect to a probability measure is also a characteristic
function.

Remark 8. In all other situations, i.e. if p > 2 or r < 1 not every configuration
of parameters A,B > 0 is admissible. For the discussion of admissible and not
admissible pairs (A,B) we refer the interested reader to the papers [18] by K.
Oleszkiewicz and [15] by G. Mazurkiewicz and J.K. Misiewicz.
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[8] Járai, A.: Regularity Properties of Functional Equations in Several Variables.
Springer, New York (2005)

[9] Kingman, J.F.C.: Random walks with spherical symmetry. Acta Math. 109(1),
11–53 (1963)

[10] Kozubowski, T., Panorska, A.: On moments and tail behaviour of ν stable ran-
dom variables. Stat. Probab. Lett. 29, 307–315 (1996)

[11] Kucharczak, J., Urbanik, K.: Quasi-stable functions. Bull. Pol. Acad. Sci. Math.
22(3), 263–268 (1974)

[12] Kucharczak, J., Urbanik, K.: Transformations preserving weak stability. Bull.
Pol. Acad. Sci. Math. 34(7–8), 475–486 (1986)

[13] Kuczma, M.: An Introduction to the Theory of Functional Equations and In-
equalities, 2nd edn. Cauchy’s Equation and Jensen’s Inequality, Birkhäuser, Bas-
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