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Abstract. The paper is dedicated to answer Question 1 from the preprint
of the paper (Jones in Am Math Mon 118: 508-521, 2011). We show that
it is possible to construct a complete sequence (xn) such that the achieve-
ment set A( 1

xn
) is not an interval. In particular it can be a Cantorval.
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1. Introduction

For a sequence (xn) of real numbers we study its achievement set defined as
the set of subsums of the series

∑∞
n=1 xn, that is

A(xn) =

{ ∞∑

n=1

εnxn : (εn) ∈ {0, 1}N
}

=

{
∑

n∈A

xn : A ⊂ N

}

The first paper where the achievement set was considered is that of Kakeya,
see [12]. The Author proved the following

Theorem 1.1. If
∑∞

n=1 xn is absolutely convergent with infinite many nonzero
terms and (xn) is non-increasing, then
(1) A(xn) is a finite union of compact intervals iff xk ≤ rk :=

∑∞
n=k+1 xn

for all but finitely many k ∈ N

(2) A(xn) is homeomorphic to a Cantor set, if xk > rk for all but finitely
many k ∈ N

The series
∑∞

n=1 xn, whose terms satisfy the first condition for all natural
numbers is called slowly convergent or interval-filling [5,7,8] or high achiever
[11], while the second condition define quick or fast convergence. Kakeya
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claimed that for an absolutely convergent series with infinitely many nonzero
terms the set A(xn) is either a finite union of compact intervals or a set home-
omorphic to a Cantor set. Due to Guthrie and Nymann [10] we know that
there is one more possible form.

Theorem 1.2. For an absolutely convergent series
∑∞

n=1 xn with infinite many
nonzero terms, the achievement set A(xn) has one of the following fashions:
a finite union of compact intervals, a set homeomorphic to a Cantor set or a
Cantorval, that is a set homeomorphic to A(yn) for y2n−1 = 3

4n , y2n = 2
4n for

all n ∈ N.

Let us consider the ternary Cantor set C, that is C = A( 2
3n ). By its

classical construction we know that C = [0, 1] \ ∪∞
n=1Gn, where Gn is a sum

of 2n−1 removed open intervals of the length 1
3n each. A Cantorval is a set

homemorphic to the set [0, 1] \ ∪∞
n=1G2n. In particular it is regular-closed.

Theorem 1.2 was first published in [10], but the correct proof was given in
[14]. The set GN = A(yn) is called the Guthrie Nymann Cantorval. It is
obtained for a series belonging to a multigeometric class, that is of the form

(xn) = (a1, a2, . . . , am; q) := (a1q, a2q, . . . , amq, a1q
2, a2q

2, . . . , amq2, a1q
3, . . .).

Using that notation the Guthrie Nymann Cantorval can be described as
A(3, 2; 1

4 ). If we denote Σ := A(a1, . . . , am) = {∑m
n=1 εnan : (εn) ∈ {0, 1}m}

then A(a1, a2, . . . , am; q) = {∑∞
n=1 xnqn : (xn) ∈ Σ∞}. Multigeometric se-

ries were considered in [1,2,4]. It is probably the most well known and stud-
ied class, since any possible form of the achievement set can be obtained
and the regularity makes calculations simpler or even possible. Moreover the
set A(a1, a2, . . . , am; q) is attractor of the iterated function system {fσ(x) =
q · x + q · σ : σ ∈ Σ}.

It is worth to mention that the negative answer for Kakeya’s hypothesis
was obtained before Guthrie and Nymann’s result. First counterexample was
given without proof by Weinstein and Shapiro [17]. Ferens [9] constructed a
purely atomic finite measure μ and proved that its range is a Cantorval. The
theory of achievement sets and ranges of purely atomic finite measure coincide.
Indeed we may assume that μ is defined on N. Then rng(μ) = {μ(A) : A ⊂
N} = A(xn), where the terms of our series are the values of measure on atoms,
that is xn = μ({n}) for all n ∈ N. Hence we may say that Ferens observed
that A(7, 6, 5, 4, 3; 2

27 ) is a Cantorval.
Note that if (xn) has no subsequence (xnk

) which tends to 0, then A(xn)
is reduced to finite sums and hence countable.

Definition 1.3. A sequence (xn) of natural numbers is called complete iff
A(xn) = N0.

There are many well known and important Examples of complete se-
quences, for instance consequtive powers of two 1, 2, 4, 8, . . . , 2n, . . . is one of
them. Other and trivial ones are the constant sequence xn = 1 for each n ∈ N
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or shifted constant x1 = 1, xn = 2 for n ≥ 2. Probably the easiest way to
check if the sequence is complete is to use Brown’s characterization, given in
[6].

Theorem 1.4. The non-decreasing sequence (xn) is complete if and only if
xk+1 ≤ ∑k

n=1 xn + 1 for each k ∈ N.

Jones [11] asked the following question:

Question 1. If (xn) is complete, what can we say about A( 1
xn

) ?
The Author was inspired by the sequence of Fibonacci numbers Fn. It

is the example of complete sequence and such that the achievement set of its
reciprocals A( 1

Fn
) is interval. The Author compare the notions of completeness

and slow convergence. Both of them are described by the inequalities. In the
completeness we use the preeceding terms, while in the slow convergence the
tails. Both notions mean that A(xn) is as large as possible for the considered
kinds of sequences. For that reason Jones [11] admits that high achievers are
analogous to the completeness.

By our knowledge there is no Example of a complete sequence (xn) such
that A( 1

xn
) is not an interval except some trivial cases which should be omitted.

One of them is a complete sequence, which is constant for large enough indexes.
Then ( 1

xn
) does not tend to 0 and A( 1

xn
) is a countable set, which contains all

finite subsums. We will also not consider the sequence for which
∑∞

n=1
1

xn
= ∞

and ( 1
xn

) → 0. Then we have A( 1
xn

) = [0,∞). Hence we are interested in
complete sequences (xn) such that

∑∞
n=1

1
xn

is absolutely convergent.

2. Main results

In the ‘typical’ case the set A( 1
xn

) is interval. Indeed, let us consider the
following Examples.

Example 2.1. Let xn = 2n−1. Then we have A( 1
2n−1 ) = [0, 2].

Example 2.2. From Steinhaus Theorem we know that C + C = [0, 2] for the
ternary Cantor set C. But 3

2C = A( 1
3n−1 ), so 3

2C + 3
2C = A( 1

xn
) = [0, 3] for

(xn) = (1, 1, 3, 3, 9, 9, 27, . . .), which is complete.

Example 2.2 is connected with the famous result proved by Steinhaus
[18]. The Author showed that the algebraic sum of two meager or null sets can
be large in both senses of category and measure. The result was rediscovered
many times, for instance see [16]. Now the equality C+C = [0, 2] is rather well-
known fact, however it is still popular and being developed in many aspects.
Nymann [13] counted the numbers of subsums representations for points in
achievement set, while Pavone [15] found another and completely different
method of proving the equality C + C = [0, 2].
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Moreover note that if (xn) is complete, then x1 = 1 and xn ≤ 2n−1 for
all n ∈ N. Thus

∑∞
n=2

1
xn

≥ ∑∞
n=2

1
2n−1 = 1 = 1

x1
, so the sequence ( 1

xn
) can

not be quickly convergent. Note that if we assume a weaker condition than
the quick convergence, that is xn > rn for all n ≥ k, where k ∈ N, then its
achievement set is still a Cantor set as a finite sum of Cantor sets. However
as we show in Theorem 2.3 this kind of sequences are not possible for the
reciprocals of a complete sequence.

Theorem 2.3. Let (xn) be a complete sequence. Then the inequality 1
xn

≤
∑∞

k=n+1
1

xk
holds for infinite many indexes n.

Proof. Let us consider δn =
∑n−1

k=1 xk−xn. By the completeness of the sequence
(xn) we obtain that δn ≥ −1 for each n ∈ N. Suppose that there exists r ∈ N

such that 1
xn

>
∑∞

k=n+1
1

xk
for all n > r. We will show it implies that there

exists an decreasing subsequence (δmn
) of (δn), that is for some n0 we have

δn0 < −1, which is impossible for complete sequence (xn). Fix any n larger
than r and put m1 = n. We have

δn+1 − δn =
n∑

k=1

xk − xn+1 −
(

n−1∑

k=1

xk − xn

)

= 2xn − xn+1

δn+2 − δn = (δn+2 − δn+1) + (δn+1 − δn)
= (2xn+1 − xn+2) + (2xn − xn+1)
= 2xn + xn+1 − xn+2

Thus for each p ∈ N we have:

δn+p − δn = 2xn + xn+1 + xn+2 + xn+3 + . . . + xn+p−2 + xn+p−1 − xn+p

We will show that δn+p0 − δn < 0 for some p0. Suppose that δn+p − δn ≥ 0 for
all p ∈ N. Then

δn+p − δn = 2xn + xn+1 +
n+p−1∑

i=n+2

xi − xn+p ≥ 0 for every natural p

Hence

xn+p ≤ 2xn + xn+1 +
n+p−1∑

i=n+2

xi = 2xn + xn+1 +
n+p−2∑

i=n+2

xi + xn+p−1

≤ 2xn + xn+1 +
n+p−2∑

i=n+2

xi + 2xn + xn+1

+
n+p−2∑

i=n+2

xi = 2 ·
(

2xn + xn+1 +
n+p−2∑

i=n+2

xi

)
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= 2 ·
(

2xn + xn+1 +
n+p−3∑

i=n+2

xi + xn+p−2

)

≤ 4

(

2xn + xn+1 +
n+p−3∑

i=n+2

xi

)

≤ . . . ≤ 2p−2(2xn + xn+1) ≤ 2pxn,

so 1
2p

1
xn

≤ 1
xn+p

for all p. But then
∑∞

p=1
1

xn+p
≥ 1

xn

∑∞
p=1

1
2p = 1

xn
, which

contradicts with the quick convergence of the series
∑

n>r
1

xn
. Hence δn+p0 <

δn for some p0. We put m2 = n+p0 and continue the construction in the same
way for m2 and so on. Thus we obtain a decreasing sequence (δmn

) of natural
numbers, which contradicts with the completeness of the sequence (xn). �

By Theorem 2.3 we see that if it is possible to obtain that A( 1
xn

) is
a Cantor set, then it will not be the trivial case observed by Kakeya. Now
we show that one can find a complete sequence (xn) such that A( 1

xn
) is a

Cantorval.

Definition 2.4. By a gap in the achievement set A(xn) we mean any open
interval (a, b) such that a, b ∈ A(xn) and (a, b) ∩ A(xn) = ∅.

In particular A(xn) is an interval if and only if it has no gaps and A(xn)
is a finite union of compact intervals iff it has finitely many gaps. The following
lemma can be found in [3].

Lemma 2.5 (First Gap Lemma) r If xk > rk then (rk, xk) is a gap in A(xn).

Theorem 2.6. There exists a complete sequence (xn) such that A( 1
xn

) is a Can-
torval.

Proof. Let us start with the Guthrie-Nymann’s Cantorval GN = A(3, 2; 1
4 ).

Then 2
3GN = A( 12 , 1

3 , 1
8 , 1

12 , 1
32 , . . .) is a Cantorval. The problem now is the

sequence (2, 3, 8, 12, 32, . . .) lacks completeness. We will add more terms to
fulfill the completeness, but not too much because we do not want to obtain
an interval as achievement set. Let us consider

x1 = 1, x6n−4 = 2 · 16n−1, x6n−3 = x6n−2 = x6n−1 = 3 · 16n−1,

x6n = 8 · 16n−1, x6n+1 = 12 · 16n−1

for all n ∈ N. The sequence (xn) satisfies the following inequalities for every
n ∈ N:

x6n+1 = 12 · 16n−1 < 14 · 16n−1 = x6n + x6n−1 + x6n−2

x6n = 8 · 16n−1 < 9 · 16n−1 = x6n−1 + x6n−2 + x6n−3

x6n−3 = 3 · 16n−1 = 2 · 16n−1 + 16 · 16n−2 < 2 · 16n−1 + 20 · 16n−2

= x6n−4 + x6n−5 + x6n−6
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Moreover x2 = x1 + 1 and for n ≥ 2 we have:

6n−5∑

k=1

xk = 1 +
n−1∑

k=1

x6k−4 +
n−1∑

k=1

x6k−3 +
n−1∑

k=1

x6k−2 +
n−1∑

k=1

x6k−1 +
n−1∑

k=1

x6k

+
n−1∑

k=1

x6k+1 = 1 +
n−1∑

k=1

(2 + 3 + 3 + 3 + 8 + 12) · 16k−1

= 1 + 31 · 1 − 16n−1

1 − 16

=
31
15

· 16n−1 − 16
15

≥ 2 · 16n−1 = x6n−4.

Hence the sequence (xn) is complete. Note that for all n ≥ 2 we have ( 1
xn

) =
2
3 (12, 8, 8, 8, 3, 2; 1

16 ), so the sequence of reciprocals of (xn) is summable. We
have

∞∑

k=6n

1
xk

=
( 1

8 · 16n−1
+

1
12 · 16n−1

+
1

2 · 16n
+

3
3 · 16n

)
· 1
1 − 1

16

=
1

16n−1

(1
8

+
1
12

+
1
32

+
1
16

)
· 16
15

Thus for each n ∈ N we get
∞∑

k=6n

1
xk

=
1

16n−1
· 29
96

· 16
15

=
1

16n−1
· 29
90

<
1

16n−1
· 1
3

=
1

x6n−1
,

which by First Gap Lemma means that (
∑∞

k=6n
1

xk
, 1

x6n−1
) is a gap in A( 1

xn
).

Hence A( 1
xn

) is not a finite union of compact intervals. Moreover A( 1
xn

) ⊃
2
3GN , so the achievement set is Cantorval. �

Remark 2.7. Note that there is a correspondence between the sequences of
reciprocals of natural numbers and specific multigeometric sequences. Indeed
if we have a multigeometric sequence with ratio 1

p , which is a reciprocal of
a natural number, then (a1, a2, . . . , am; 1

p ) can be scaled into the sequence of
reciprocals of natural numbers. We have

p

a1a2 . . . am

(

a1, a2, . . . , am;
1
p

)

=
(

1
a2a3 . . . am

,
1

a1a3 . . . am
,

1
a1a2a4 . . . am

, . . . ,
1

a1a2 . . . am−1
,

1
pa2a3 . . . am

, . . .

)

Problem 2.8. Let (xn) be a complete sequence. Is it possible to construct A( 1
xn

),
which is a Cantor set ?
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