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On κ-Pseudocompactess and Uniform
Homeomorphisms of Function Spaces
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Abstract. A Tychonoff space X is called κ-pseudocompact if for every
continuous mapping f of X into R

κ the image f(X) is compact. This
notion generalizes pseudocompactness and gives a stratification of spaces
lying between pseudocompact and compact spaces. It is well known that
pseudocompactness of X is determined by the uniform structure of the
function space Cp(X) of continuous real-valued functions on X endowed
with the pointwise topology. In respect of that A.V. Arhangel’skii asked
if analogous assertion is true for κ-pseudocompactness. We provide an
affirmative answer to this question.
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1. Introduction

In this note, by a space we mean a Tychonoff topological space. For a space
X, by Cp(X) we denote the space of all continuous real-valued functions on X
endowed with the pointwise topology. The symbol C∗

p (X) stands for the sub-
space of Cp(X) consisting of all bounded continuous functions. Recall that X
is pseudocompact if Cp(X) = C∗

p (X), i.e. every real-valued continuous function
on X is bounded. In 1962 J.F. Kennison [7] introduced the following general-
ization of psudocompactness. Let κ be an infinite cardinal. A space X is called
κ-pseudocompact if for every continuous mapping f of X into R

κ the image
f(X) is compact. Clearly, κ-pseudocompactness implies λ-pseudocompactness
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for every infinite cardinal λ ≤ κ. Since metrizable pseudocompact spaces are
compact, it is easy to see that ω-pseudocompactness is precisely pseudocom-
pactness. In particular any κ-pseudocompact space is pseudocompact. It was
established by Uspenskĭı in [12] that pseudocompactness of X is determined
by the uniform structure of the function space Cp(X) (see [4] for a different
proof of this result). In respect of that A.V. Arhangel’skii asked in 1998 if
analogous result holds for κ-pseudocompactness (see [3, Question 13] or [11,
Problem 4.4.2]).

The aim of the present note is to provide an affirmative answer to this
question by proving the following extension of Uspenskĭı’s theorem:

Theorem 1.1. For any infinite cardinal κ, if Cp(X) and Cp(Y ) are uniformly
homeomorphic, then X is κ-pseudocompact if and only if Y is κ-pseudocompact.

Let us recall that that a map ϕ : Cp(X) → Cp(Y ) is uniformly continuous
if for each open neighborhood U of the zero function in Cp(Y ), there is and
open neighborhood V of the zero function in Cp(X) such that (f − g) ∈ V
implies (ϕ(f) − ϕ(g)) ∈ U . Spaces Cp(X) and Cp(Y ) are uniformly homeo-
morphic if there is a homeomorphism ϕ between them such that both ϕ and
ϕ−1 are uniformly continuous.

The proof of Theorem 1.1 is inspired by author’s recent work [8] concerned
with linear homeomorphisms of function spaces. The basic idea in [8] relies on
the fact that certain topological properties of a space X can be conveniently
characterized by the way X is positioned in its Čech-Stone compactification
βX; κ-pseudocompactess is one of such properties. Indeed, Hewitt [6] gave the
following description of pseudocompactness (cf. [1, Theorem 1.3.3]).

Theorem 1.2 (Hewitt). A space X is pseudocompact if and only if every
nonempty Gδ-subset of βX meets X.

It was noted by Retta in [10] that the above result easily extends to
κ-pseudocompactness. We need the following notation. Let κ be an infinite
cardinal. A subset A of a space Z is a Gκ-set if it is an intersection of at most
κ-many open subsets of Z. The Gω-sets are called Gδ-sets and the complement
of a Gδ-set is called Fσ-set. We have (see [10, Theorem 1]):

Theorem 1.3 (Retta). Let κ be an infinite cardinal. A space X is κ-pseudo
compact if and only if every nonempty Gκ-subset of βX meets X.

The uniform structure of spaces of continuous functions was studied by
many authors; the interested reader should consult the book [11]. For our
purposes, the most important are some ideas developed by Gul’ko in [5].

2. Results

For a space Z and a function f ∈ C∗
p (Z) the function ˜f : βZ → R is the unique

continuous extension of f over the Čech-Stone compactification βZ of Z. Let
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ϕ : C∗
p (X) → C∗

p (Y ) be a uniformly continuous surjection. For y ∈ βY and a
subset K of βX we define

a(y,K) = sup{|ϕ̃(f)(y) − ˜ϕ(g)(y)| : f, g ∈ C∗
p (X) such that

| ˜f(x) − g̃(x)| < 1 for every x ∈ K}
Note that a(y, ∅) = ∞ since ϕ is onto.

For y ∈ βY define the family

A (y) = {K ⊆ βX : K is compact and a(y,K) < ∞}.

Similarly, for y ∈ βY and n ∈ N let

An(y) = {K ⊆ βX : K is compact and a(y,K) ≤ n}.

It may happen that for some n the family An(y) is empty. However, we
have the following:

Proposition 2.1. For every y ∈ Y , there exists n for which An(y) contains
a nonempty finite subset of X. In particular, for this n the family An(y) is
nonempty.

Proof. By uniform continuity of ϕ, there is n ∈ N and a finite subset F of X
such that

if |f(x) − g(x)| < 1/n for every x ∈ F,

then |ϕ(f)(y) − ϕ(g)(y)| < 1.
(1)

We claim that F ∈ An(y). To see this, take arbitrary functions f, g ∈ C∗
p (X)

such that |f(x) − g(x)| < 1, for every x ∈ F . Put fk = f + k
n (g − f), for

k = 0, 1, . . . , n. Then f0 = f , fn = g and |fk(x) − fk+1(x)| < 1/n for x ∈ F .
Hence, by (1) we get

|ϕ(f)(y) − ϕ(g)(y)|
≤ |ϕ(f0)(y) − ϕ(f1)(y)| + · · · + |ϕ(fn−1)(y) − ϕ(fn)(y)| < n,

as required. �

Clearly, for every y ∈ βY we have A (y) =
⋃

n∈N
An(y). In particular, for

y ∈ Y the family A (y) is always nonempty.
For n ∈ N we set

Yn = {y ∈ βY : An(y) is nonempty}.

Note that y ∈ Yn if and only if βX ∈ An(y). Using this observation it is easy
to show the following:
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Lemma 2.2. For every n ∈ N the set Yn is closed in βY ; hence compact.

Proof. Pick y ∈ βY \ Yn. Since βX /∈ An(y), there are functions f, g ∈ C∗
p (X)

satisfying | ˜f(x) − g̃(x)| < 1 for every x ∈ βX, and |ϕ̃(f)(y) − ˜ϕ(g)(y)| > n.
The set

U = {z ∈ βY : |ϕ̃(f)(z) − ˜ϕ(g)(z)| > n}
is an open neighborhood of y in βY . Moreover if z ∈ U , then f and g witness
that βX /∈ An(z); thus U ∩ Yn = ∅. �

For a space X and a positive integer m, we denote by [X]≤m the space
of all nonempty at most m-element subsets of X endowed with the Vietoris
topology, i.e. basic open sets in [X]≤m are of the form

〈U1, . . . , Uk〉 =

{

F ∈ [X]≤m : ∀i ≤ k F ∩ Ui �= ∅ and F ⊆
k

⋃

i=1

Ui

}

,

where {U1, . . . , Uk} is a finite collection of open subset of X.
For any positive integers n,m we define

Yn,m = {y ∈ βY : An(y) ∩ [βX]≤m �= ∅}
Note that Yn,m ⊆ Yn and by Proposition 2.1 we have

Y ⊆
⋃

n,m

Yn,m (2)

We claim that Yn,m is closed in Yn and hence it is compact:

Lemma 2.3. The set Yn,m is closed in Yn, hence it is compact.

Proof. Consider the following subset Z of the product Yn × [βX]≤m

Z = {(y, F ) ∈ Yn × [βX]≤m : F ∈ An(y)}.

We show that Z is closed. Pick (y, F ) ∈ (Yn × [βX]≤m)\Z. Then F /∈ An(y)
and thus there are f, g ∈ C∗

p (X) satisfying | ˜f(x) − g̃(x)| < 1 for every x ∈ F ,

and |ϕ̃(f)(y) − ˜ϕ(g)(y)| > n. Let U = {x ∈ βX : | ˜f(x) − g̃(x)| < 1} and V =
{z ∈ Yn : |ϕ̃(f)(z) − ˜ϕ(g)(z)| > n}. The set V × 〈U〉 is an open neighborhood
of (y, F ) in Yn × [βX]≤m disjoint from Z.

The set Z, being is closed in the compact space Yn × [βX]≤m, is compact.
Since the set Yn,m is the image of Z under the projection map it must be
compact. �

Corollary 2.4. Suppose that Y is pseudocompact and let ϕ : C∗
p (X) → C∗

p (Y )
be a uniformly continuous surjection. For every y ∈ βY , there exist n and m
such that y ∈ Yn,m.

Proof. By Lemma 2.3, the set
⋃

n,m Yn,m is Fσ in βY and contains Y , by (2).
It follows from Theorem 1.2 that

⋃

n,m Yn,m = βY . �
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For y ∈ ⋃

n,m Yn,m we define

K(y) =
⋂

A (y).

Remark. For y ∈ Y the set K(y) is the support introduced by Gul’ko in [5]
(see also [2,4,9]).

Lemma 2.5. For every y ∈ ⋃

n,m Yn,m the set K(y) is a nonempty finite subset
of βX. Moreover, K(y) ∈ A (y). If y ∈ Y , then K(y) is a subset of X.

Proof. We show that the family A (y) is closed under finite intersections. Pick
K1,K2 ∈ A (y) and let f, g ∈ C∗

p (X) be such that | ˜f(x) − g̃(x)| < 1 for every
x ∈ K1 ∩ K2. Let

U = {x ∈ βX : | ˜f(x) − g̃(x)| < 1}.

The set U is open in βX and K1 ∩ K2 ⊆ U .
Since K1 and K2\U are disjoint closed subsets of the compact space βX,

by Urysohn’s lemma there is a continuous function u : βX → [0, 1] such that

u(x) =

{

1 for x ∈ K1

0 for x ∈ K2 \ U

Let

˜h = u · ( ˜f − g̃) + g̃

and let h ∈ C∗
p (X) be the restriction of ˜h to X. We have:

• ˜h(x) = ˜f(x) for x ∈ K1,
• ˜h(x) = g̃(x) for x ∈ K2\U and
• if x ∈ U , then |˜h(x) − g̃(x)| = |u(x)| · | ˜f(x) − g̃(x)| < 1, by definition of

U and the fact that u maps into [0, 1].
In particular, since K1 ∩ K2 ⊆ U , we get

• |˜h(x) − g̃(x)| < 1 for x ∈ K2.

Since K1 ∈ A (y) and ˜h(x) = ˜f(x) for x ∈ K1, we get |ϕ̃(f)(y) −
ϕ̃(h)(y)| ≤ a(y,K1) < ∞. Similarly, since |˜h(x) − g̃(x)| < 1 for x ∈ K2

and K2 ∈ A (y), we have | ˜ϕ(g)(y) − ϕ̃(h)(y)| ≤ a(y,K2) < ∞. Hence,

|ϕ̃(f)(y) − ˜ϕ(g)(y)| ≤ |ϕ̃(f)(y) − ϕ̃(h)(y)| + |ϕ̃(h)(y) − ˜ϕ(g)(y)|
≤ a(y,K1) + a(y,K2).

So a(y,K1∩K2) ≤ a(y,K1)+a(y,K2) and thus K1∩K2 ∈ A (y). By induction
the result follows for any finite intersection.

The family A (y), consisting of closed subsets of βX, is closed under finite
intersections and ∅ /∈ A (y) so by compactness the intersection

⋂

A (y) must
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be nonempty. It is finite because y ∈ Yn,m guarantees that the family A (y)
contains a subset of βX which is at most m-element.

Since A (y) contains a finite subset F of βX, the set K(y) ⊆ F is an
intersection of finitely many elements of A (y) so the first part of the proof
implies that K(y) ∈ A (y).

Finally, if y ∈ Y then y ∈ ⋃

n,m Yn,m, by (2). So K(y) is well defined.
The inclusion K(y) ⊆ X follows from Proposition 2.1. �

For y ∈ ⋃

n,m Yn,m we define

a(y) = a(y,K(y))

By Lemma 2.5, K(y) ∈ A (y) so a(y) < ∞. For a subset A of βX we set

K−1(A) =

{

y ∈
⋃

n,m

Yn,m : K(y) ∩ A �= ∅
}

.

Combining Corollary 2.4 and Lemma 2.5 we get

Proposition 2.6. Suppose that ϕ : C∗
p (X) → C∗

p (Y ) is a uniformly continuous
surjection. If Y is pseudocompact then, for every y ∈ βY , the set K(y) is a
well-defined nonempty finite subset of βX that belongs to the family A (y).
Also, a(y) is a well-defined number, for every y ∈ βY .

The proof of the next lemma is analogous to the proof of [2, Lemma 1.3].

Lemma 2.7. Suppose that U ⊆ βX is open and let n be a positive integer. For
every y ∈ K−1(U) ∩ Yn there exists an open neighborhood V of y in βY such
that for every z ∈ V ∩ Yn and every A ∈ An(z) we have A ∩ U �= ∅.
Proof. Fix x0 ∈ K(y) ∩ U witnessing y ∈ K−1(U). Since K(y) is finite,
shrinking U if necessary we can assume that U ∩ K(y) = {x0}. Note that
βX\U /∈ A (y) for otherwise K(y) would be a subset of βX \U and this is not
the case because x0 ∈ K(y) ∩ U . It follows that there are f, g ∈ C∗

p (X) such
that

| ˜f(x) − g̃(x)| < 1 for every x ∈ βX \ U and (3)

|ϕ̃(f)(y) − ˜ϕ(g)(y)| > a(y) + n (4)

Let ˜h ∈ Cp(βX) be a function satisfying

˜h(x) = ˜f(x) for every x ∈ βX \ U, and ˜h(x0) = g̃(x0), (5)

and let h ∈ C∗
p (X) be the restriction of ˜h.

Note that by (3) and (5), |˜h(x)−g̃(x)| < 1 for every x ∈ K(y). Therefore,

|ϕ̃(h)(y) − ˜ϕ(g)(y)| ≤ a(y). (6)
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According to (4) and (6) we have

|ϕ̃(f)(y) − ϕ̃(h)(y)| ≥ |ϕ̃(f)(y) − ˜ϕ(g)(y)| − |ϕ̃(h)(y) − ˜ϕ(g)(y)| > n.

(7)

Let

V = {z ∈ βY : |ϕ̃(f)(z) − ϕ̃(h)(z)| > n}.

The set V is open and y ∈ V , by (7). We show that V is as required.
Take z ∈ V ∩ Yn and let A ∈ An(z). If A ∩ U = ∅ then ˜h(x) = ˜f(x) for

every x ∈ A, by (5). So |ϕ̃(f)(z) − ϕ̃(h)(z)| ≤ n, contradicting z ∈ V . �

Proposition 2.8. Suppose that Y is pseudocompact. If U ⊆ βX is open, then
the set K−1(U) is a Gδ-subset of βY .

Proof. By Proposition 2.6, for every y ∈ βY , the set K(y) is a nonempty finite
subset of βX. For n = 1, 2, . . ., let

Ln = K−1(U) ∩ Yn.

For y ∈ Ln let V y
n be an open neighborhood of y in βY provided by Lemma 2.7,

i.e.

if z ∈ V y
n ∩ Yn and A ∈ An(z), then A ∩ U �= ∅. (8)

Let

Vn =
⋃

{V y
n : y ∈ Ln}.

We claim that

K−1(U) =
∞
⋂

m=1

∞
⋃

n=m

Vn.

Indeed, pick y ∈ K−1(U) and fix an arbitrary m ≥ 1. Since βY =
⋃∞

n=1 Yn (cf.
Corollary 2.4), there is i such that y ∈ Yi. Since Yn ⊆ Yn+1, we can assume
that i > m. We have y ∈ Li whence y ∈ V y

i ⊆ Vi ⊆ ⋃∞
n=m Vn, because i > m.

To prove the opposite inclusion, take z ∈ ⋂∞
m=1

⋃∞
n=m Vn. Again, there

is i such that z ∈ Yi. Let j be a positive integer satisfying j > max{a(z), i}.
By our assumption, z ∈ ⋃∞

n=j Vn, so there is k ≥ j such that z ∈ Vk. Clearly,
z ∈ Yk and since k > a(z) we have

K(z) ∈ Ak(z). (9)

By definition of Vk, there is y ∈ Lk such that z ∈ V y
k . Now, from (8) and (9)

we get z ∈ K−1(U). �

Remark 2.9. If ϕ : C∗
p (X) → C∗

p (Y ) is a uniform homeomorphism, we may
consider the inverse map ϕ−1 : C∗

p (Y ) → C∗
p (X) and apply all of the above

results to ϕ−1. In particular, if X is pseudocompact, then for every x ∈ βX
we can define the set K(x) ⊆ βY and the real number a(x) simply by inter-
changing the roles of X and Y above.



154 Page 8 of 11 M. Krupski Results Math

Lemma 2.10. Suppose that both X and Y are pseudocompact spaces. Let ϕ :
C∗

p (X) → C∗
p (Y ) be a uniform homeomorphism. For any x ∈ βX there is

y ∈ K(x) such that x ∈ K(y).

Proof. Let x ∈ βX. Applying Proposition 2.6, first to ϕ−1 and then to ϕ, we
infer that the set F =

⋃{K(y) : y ∈ K(x)} ⊆ βX is finite being a finite union
of finite sets. Let M be a positive integer such that

M > max{a(y) : y ∈ K(x)}.

Striving for a contradiction, suppose that x /∈ F . Let ˜f, g̃ ∈ Cp(βX) be
functions satisfying

˜f(z) = g̃(z) for every z ∈ F and | ˜f(x) − g̃(x)| > M · a(x). (10)

Let f ∈ C∗
p (X) and g ∈ C∗

p (X) be the restrictions of ˜f and g̃, respectively.
Since for every y ∈ K(x) the functions ˜f and g̃ agree on K(y) ⊆ F , we have

|ϕ̃(f)(y) − ˜ϕ(g)(y)| ≤ a(y) < M, for every y ∈ K(x). (11)

For k ∈ {0, 1, . . . ,M} define a function ˜hk ∈ Cp(βY ) by the formula

˜hk = ϕ̃(f) + k
M

(

˜ϕ(g) − ϕ̃(f)
)

.

Obviously, ˜h0 = ϕ̃(f) and ˜hM = ˜ϕ(g). Moreover, by (11), we have

|h̃k+1(y) − ˜hk(y)| = 1
M | ˜ϕ(g)(y) − ϕ̃(f)(y)| < 1, for every y ∈ K(x). (12)

For k ∈ {0, 1, . . . ,M} let hk ∈ C∗
p (Y ) be the restriction of ˜hk. Using (12) we

get:

| ˜f(x) − g̃(x)| = | ˜ϕ−1(ϕ(f))(x) − ˜ϕ−1(ϕ(g))(x)| = | ˜ϕ−1(h0)(x) − ˜ϕ−1(hM )(x)|
≤ | ˜ϕ−1(h0)(x) − ˜ϕ−1(h1)(x)| + · · ·

+ | ˜ϕ−1(hM−1)(x) − ˜ϕ−1(hM )(x)| ≤ M · a(x)

This however contradicts (10). �

Now we are ready to prove of our main result.

Proof of Theorem 1.1. Let κ be an infinite cardinal and let ϕ : Cp(X) →
Cp(Y ) be a uniform homeomorphism. By symmetry it is enough to show
that if Y is κ-pseudocompact then so is X. So let us assume that Y is κ-
pseudocompact. Then, in particular Y is pseudocompact and hence by Uspen-
skĭı’s theorem [12, Corollary] (cf. [11, V.136]), so is X. Hence, Cp(Y ) = C∗

p (Y )
and Cp(X) = C∗

p (X). In order to prove that X is κ-pseudocompact we will
employ Theorem 1.3. For this purpose fix a nonempty Gκ-subset G of βX. It
suffices to prove that G ∩ X �= ∅.

Claim 1. The set K−1(G) = {y ∈ βY : K(y) ∩ G �= ∅} is nonempty.
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Proof. The set G is nonempty so let us fix x ∈ G. According to Lemma 2.10
there is y ∈ K(x) such that x ∈ K(y). In particular, y ∈ K−1(G). �

Claim 2. The set K−1(G) = {y ∈ βY : K(y) ∩ G �= ∅} is a Gκ-set in βY .

Proof. Write G =
⋂{Uα : α < κ}, where each Uα is an open subset of βX.

We can also assume that the family {Uα : α < κ} is closed under finite
intersections. It follows from Proposition 2.8 that for each α < κ, the set
K−1(Uα) is Gδ in βY . Thus, it is enough to show that

K−1(G) =
⋂

α<κ

K−1(Uα).

To this end, take y ∈ ⋂

α<κ K−1(Uα). According to Proposition 2.6, the set
K(y) is a nonempty finite subset of βX. Enumerate K(y) = {x1, . . . , xk},
where k is a positive integer. If y /∈ K−1(G), then for every i ≤ k there is
αi < κ such that

xi /∈ Uαi
. (13)

The family {Uα : α < κ} is closed under finite intersections, so there is γ < κ
with Uγ = Uα1 ∩ · · · ∩ Uαk

. But y ∈ ⋂

α<κ K−1(Uα) ⊆ K−1(Uγ). Hence,
there is j ≤ k such that xj ∈ Uγ ⊆ Uαj

, which is a contradiction with (13).
Therefore, we must have y ∈ K−1(G). This provides the inclusion K−1(G) ⊇
⋂

α<κ K−1(Uα). The opposite inclusion is immediate. �

It follows from Claims 1 and 2 that the K−1(G) is a nonempty Gκ-
subset of βY . Hence, by Theorem 1.3, there exists p ∈ K−1(G) ∩ Y . We have
K(p) ∩ G �= ∅ and since p ∈ Y , we infer from Lemma 2.5 that K(p) is a
nonempty finite subset of X. Therefore, ∅ �= K(p) ∩ G ⊆ X ∩ G. �
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Mascarúa, A.:Basic and classic results on pseudocompact spaces. In: Pseudo-
compact Topological Spaces, vol. 55 of Dev. Math. Springer, Cham, pp. 1–38
(2018)
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