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Abstract. We study the concept of the continuous mean distance of a
weighted graph. For connected unweighted graphs, the mean distance can
be defined as the arithmetic mean of the distances between all pairs of
vertices. This parameter provides a natural measure of the compactness
of the graph, and has been intensively studied, together with several vari-
ants, including its version for weighted graphs. The continuous analog of
the (discrete) mean distance is the mean of the distances between all pairs
of points on the edges of the graph. Despite being a very natural general-
ization, to the best of our knowledge this concept has been barely studied,
since the jump from discrete to continuous implies having to deal with
an infinite number of distances, something that increases the difficulty of
the parameter. In this paper, we show that the continuous mean distance
of a weighted graph can be computed in time roughly quadratic in the
number of edges, by two different methods that apply fundamental con-
cepts in discrete algorithms and computational geometry. We also present
structural results that allow for a faster computation of this continuous
parameter for several classes of weighted graphs. Finally, we study the
relation between the (discrete) mean distance and its continuous coun-
terpart, mainly focusing on the relevant question of convergence when
iteratively subdividing the edges of the weighted graph.
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1. Introduction

Distances are one of the most essential aspects in the analysis of graphs, re-
gardless of whether they originate in geography, transportation, sociology, or
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communications. The maximum distance between any two nodes in the graph,
known as the diameter, provides a worst-case scenario in terms of distances,
and gives the maximum eccentricity in the graph. Similarly, the average or
mean distance is related to centrality, and provides a measure of the compact-
ness of the graph. In this work we will focus on the latter, the mean distance.

The mean distance of a connected unweighted graph G = (V (G), E(G))
was first introduced by March and Steadman [19, Chap.14] in the context of
architecture to compare floor plans, although interest in the concept dates
back to the work of Wiener in chemistry [35] (after whom the closely related
Wiener index, the sum of all pairwise distances in the graph, is named).

The most usual way to define the mean distance μ(G) is as the arithmetic
mean of all nonzero distances between vertices, i.e.,

μ(G) =
1

(|V (G)|
2

)
∑

{u,v}⊆V (G)

d(u, v), (1)

where |V (G)| ≥ 2, d(u, v) is the length of a shortest path connecting vertices
u and v, and the sum is taken over all unordered pairs of vertices in the graph.

In the context of graph theory, Doyle and Graver [8] were the first to pro-
pose the mean distance as a graph parameter. Since them, it has been inten-
sively studied. For very simple graphs, the mean distance is well-understood.
For instance, it is 1 in any complete graph, and (n + 1)/3 if the graph is an
n-vertex path. However, as soon as the graph becomes more complicated, the
expression for its mean distance becomes much more elusive. In addition to
presenting exact expressions for a few specific graph classes [2,3,8], most previ-
ous work has focused on proving lower and upper bounds on the mean distance
as a function of parameters such as the number of vertices [8,11,27], number of
vertices and edges [32], and connectivity [12]. Considerable effort was also put
into understanding the relation between the mean distance and the minimum
vertex degree [17], as well as some spectral graph properties [20,21,30].

The concept of mean distance has also been extended to weighted graphs,
both for vertex weights [6], and for rational edge weights [9,10]. A few have
also studied the concept for directed graphs [22,27].

As mentioned above, a concept that is closely related to the mean distance
is the Wiener index, defined as the sum of distances between all (unordered)
pairs of vertices in the graph. The Wiener index has been studied extensively
(both for unweighted and weighted graphs) due to its important applications in
chemical graph theory [23], but has also received attention in other areas, such
as mathematics [16] and social graph analysis [25], and it is still the topic of ac-
tive investigation (see, e.g., [31]). From the point of view of computation, there
have been important efforts in computer science to understand how efficiently
the Wiener index can be computed. While it is immediate to obtain a roughly
quadratic-time algorithm that computes each distance in the graph (e.g., by
solving an all-pairs shortest path problem), the challenge is to understand in
which situations this can be done more efficiently. Since for arbitrary graphs it
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is known that this is not possible unless the strong exponential time hypothesis
(SETH) fails [29], the focus has been on identifying classes of graphs for which
the Wiener index can be computed in subquadratic time. Some cases for which
this has been shown to be possible is for graphs with bounded treewidth [1,5],
and most notably for planar graphs with non-negative cycles [4].

Going back to the mean distance, a different direction was adopted by
Doyle and Graver [9,10], who introduced the mean distance of a shape. This is
defined for any weighted graph embedded in the plane. Each edge of the graph
is iteratively subdivided into shorter edges, so that the edge lengths approach
zero. The mean distance of the shape is then defined as the limit of the mean
distance of such a sequence of refinements. While this is a natural definition,
its computation is involved. Doyle and Graver managed to compute its exact
value for seven specific types of simple graphs (i.e., a path, a Y-shape, an H-
shape, a cross, and three more) and six rather specific families of graphs; the
most general ones being cycles and stars with k edges of length 1/k. Examples
of the more specific families studied are graphs consisting of one edge with two
edges attached at each endpoint, and (multi)graphs consisting of three edges
sharing both endpoints, in both cases for very constrained edge lengths. A
summary of these formulas is given in [10]; they are obtained as a consequence
of the techniques developed in [9], mainly, for trees and the so-called geometric
shapes.

In this paper, we study the mean distance in a continuous setting, in a
spirit very similar to that of the shapes of Doyle and Graver [9,10]. Our main
motivation arises from geometric graphs. A geometric graph is an undirected
graph where each vertex is a two-dimensional point, and each edge is a straight
line segment between the corresponding two points. Geometric graphs appear
naturally in many applications, for instance in road, river or computer graphs.
Unlike abstract graphs, in geometric graphs distances are not only defined for
pairs of vertices, but they exist for any two points on the graph, including
points on the interior of edges. Therefore, the concept of mean distance gener-
alizes naturally to (weighted) geometric graphs, defined as the average distance
between all pairs of points on edges of the graph. While being a natural defi-
nition, the jump from discrete to continuous implies that now the mean is the
sum of an infinite number of distances, something that changes the properties
of this index and makes its computation difficult. In this paper, we study this
concept in depth, with the focus on the computational aspects of the continu-
ous mean distance, and on understanding how much it differs from the vastly
studied discrete mean distance.

In particular, our main contributions are:

• We show that the continuous mean distance of a weigthed graph with
m edges can be computed in O(m2) time, once all pair-wise distances
between vertices have been computed. To this end, we present two dif-
ferent methods, one based on a generalization of shortest path trees to
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continuous distances, and one based on Voronoi diagrams for the L1 (or
Manhattan) metric. See Sect. 3.

• We present several structural results that allow a faster computation
of the continuous mean distance for several classes of weighted graphs.
In particular, we give an exact expression for complete graphs where all
edges have the same length, and efficient algorithms for families of graphs
that have a cut vertex, which include weighted trees and weighted cactus
graphs. See Sect. 4.

• We study the relation between the discrete mean distance and the con-
tinuous counterpart. After establishing some relations between them in
Sect. 5, we move to the relevant question of convergence: When does it-
eratively subdividing edges and computing the discrete mean distance
converge to the continuous mean distance? While a definitive answer to
this question does not seem possible, in Sect. 6 we study a refining pro-
cedure that gives a guarantee on how much the discrete and continuous
means can differ as the weighted graph is iteratively refined. The bounds
obtained are tight for some graphs classes, such as trees where all edges
have the same length.
Next we present our problem formally.

2. Preliminaries

Let G = (V (G), E(G)) be a connected graph1 with n vertices and m edges;
when no confusion may arise, we indistinctly write V or V (G) and E or E(G).
Consider a function ω : E −→ R

+ that assigns a positive weight ω(e) to each
edge e ∈ E. The value ω(e) is called the length of edge e, and is also denoted
by |e|. In general, given a subset of edges E′ ⊆ E, its weight or length is
|E′| =

∑
e∈E′ ω(e).

Graph G together with function ω is a weighted graph where every edge
can be identified with a line segment of length ω(e) in the Euclidean plane.
Thus, every point p on an edge e = uv can be expressed as p = λpv+(1−λp)u
for some λp ∈ [0, 1]. Let G� be the set of all points that are on the edges on
G. Note that this definition not only includes all geometric graphs, but also
covers other graphs that are not geometric. A simple example of such a graph
is a triangle where two edges have length 1 and the third one has length 2; such
a graph cannot be realized with three straight line segments, since it would
require the longer edge to overlap with the two shorter ones.

We point out that all graphs considered in this work are connected and
weighted, although both terms will be in general omitted as it is understood
from the context. We will also consider uniform graphs: graphs where all edges
have the same length. We will write α-uniform to refer to a uniform graph
where all edge lengths are α.

1All graphs considered in this work are assumed to be connected.
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Let p, q be two points on G� that are not both on the interior of the same
edge. A path P� between p and q, also called pq-path, is a sequence pu1 . . . ukq
where and the distance d(p, q) between p and q on G� is the length of a shortest
path connecting the two points. When the two points p, q are on the interior
of the same edge u0u1 and, say λp < λq, we have paths between p and q
that go through vertices (whose definition is analogous to the above one) but
also a path in the interior of the edge that is the segment connecting p and
q (edges are identified with segments), and its length is (λq − λp)ω(u0u1). In
this paper, we shall assume that the distance between the two endpoints of
any edge e is |e|. The set of points G� together with this distance function is
a metric space, and it will be treated indistinctly as a graph (with vertex set
V (G�) = V (G) and edge set E(G�) = E(G)) or as a point set. The distance
between an edge e = uv and a point p /∈ e is d(p, e) = min{d(p, u), d(p, v)}
(if p ∈ e, d(p, e) = 0), and the distance between two edges e and e′ = ab is
d(e, e′) = min{d(a, e), d(b, e)}.

We begin by defining the variant of the discrete mean distance that we
will consider in the remainder of this work. The definition below differs from
the Eq. (1) of μ(G) in two aspects: (i) it considers all pairs of distances,
including those that are zero, and (ii) it considers ordered pairs of vertices:

μd(G) =
1
n2

∑

(u,v)∈V ×V

d(u, v) =
2W (G)

n2
, (2)

where W (G) denotes the Wiener index of G. Observe that μd(G) is the arith-
metic mean of the entries of the distance matrix of the graph. Although this
alternative form of mean distance has been considered before [34], our motiva-
tion for studying it comes from the fact that it extends better to the continuous
mean distance (which is the subject of this paper) in a limiting process when
iteratively subdividing the edges of the graph. In particular, it will allow us
to establish a clear relation between the discrete and the continuous mean
distance.

To define formally the continuous mean distance of a weighted graph, we
start by defining it between a point and a set of edges. Given a point p ∈ G�

and a subset of edges E′ ⊆ E(G�), the continuous mean distance between p
and E′ is

μc(p,E′) =
1

|E′|

∫

q∈E′
d(p, q) dq. (3)

For subsets of edges E′, E′′ ⊆ E(G�), the continuous mean distance between
E′ and E′′ is

μc(E′, E′′) =
1

|E′||E′′|

∫∫

p∈E′, q∈E′′
d(p, q) dp dq. (4)

With some abuse of notation, we shall write μc(p,G′) or μc(G′, G′′), where G′

and G′′ are the graphs with edge sets E′ and E′′, respectively.
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Based on the previous, the continuous mean distance of the weighted
graph G� is defined as

μc(G�) = μc(E(G�), E(G�)). (5)

Remark 2.1. In [9, Equations (1) and (3)], the authors show that the discrete
mean distance of an α-uniform graph G can be easily deduced from the 1-
uniform case. They use definition (1) and α ∈ Q

+: μ(G) = αμ(G1) where G1

is the corresponding 1-uniform graph. This can be naturally extended to the
variant μd(G) and α ∈ R

+, and by elementary properties of integration, a
similar formula holds for the continuous mean distance even when the graph
G� is not uniform: μc(G′

�) = βμc(G�) where G′
� is the graph obtained by simply

multiplying all edge lengths of G� by β.

The following observations, which follow directly from Eq. (4), will be
used throughout this work.

Remark 2.2. Let ab and uv be two edges in E(G�).
(i) For any point p ∈ uv we have

μc(uv, ab) =
|up|μc(up, ab) + |pv|μc(pv, ab)

|uv| .

(ii) For each point p ∈ uv and each point q ∈ ab, if d(p, q) = d(p, v) + d(v, q),
we have

μc(uv, ab) = μc(uv, v) + μc(v, ab).

An example: paths It is illustrative to see how the continuous mean dis-
tance can differ from the discrete version. Here we illustrate this for the im-
portant case of paths.

Consider a 1-uniform path P , i.e., a graph consisting of a path with n
vertices and all edges of length 1. The discrete mean distance of such a path
is known to be μd(P ) = (n2 − 1)/3n [34]. By Remark 2.1, this generalizes
to μd(P ) = α(n2 − 1)/3n when P is α-uniform (its total length is α(n − 1)).
For non-uniform paths P , there is no closed formula to compute μd(P ). In
contrast, it is possible to obtain a closed formula for μc(P�), for any path with
arbitrary positive real edge lengths, as explained next.

First observe that, for the continuous mean distance, the number of in-
terior nodes in a path does not play any role, thus we can consider the path
as one single edge. Hence a path P� of length t ∈ R>0 can be seen as the
interval [0, t]. For a point x ∈ [0, t], let d(x, [0, t]) denote the function that
gives the distance between x and any other point x′ in the interval [0, t]; the
shape of this function is illustrated in Fig. 1. The mean value of d(x, [0, t]) is
1
2t (x

2 + (x − t)2).2 Thus,

μc(P�) =
1
t

∫ t

0

1
2t

(x2 + (x − t)2) dx =
t

3
. (6)

2Recall that the mean value of a function f over an interval [a, b] is 1
b−a

∫ b
a f(x) dx.
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0 tx x′

d(x, x′)

Figure 1. Function d(x, [0, t])

Based on a different approach, the same value was given in [9] (see also [10])
for α-uniform paths P� with α ∈ Q

+.

3. Computation of the Continuous Mean Distance

The continuous nature of the continuous mean distance makes its computa-
tion non-trivial, as exemplified by the seemingly simple case of paths. In this
section, we show that despite this, μc(G�) can be computed rather efficiently,
in time roughly quadratic in the number of edges of G�. We will show how
this can be achieved in two different ways, which apply some fundamental
concepts in discrete algorithms and computational geometry: that of shortest
path trees and that of Voronoi diagrams for the L1 (or Manhattan) metric. We
highlight that the relation between the continuous mean distance and these
two ubiquitous structures is interesting on its own.

The main result of this section is the following.

Theorem 3.1. The continuous mean distance of a weighted graph G� with n
vertices and m edges can be computed in O(m2+A(n,m)) time, where A(n,m)
is the time required to compute all vertex-to-vertex distances in G�.

To prove the preceding theorem, we use the following formula, which
states that μc(G�) can be obtained as a weighted sum of the continuous mean
distances of all ordered pairs of edges; this is simply a consequence of Eqs. (4)–
(6), and elementary properties of integration.

μc(G�) =
1

|E|2

⎛

⎝
∑

(e,e′)∈E×E,e�=e′
μc(e, e′)|e||e′| +

∑

e∈E

|e|
3

|e|2
⎞

⎠ . (7)

This fact reflects that understanding how the continuous mean distance
behaves in the case of two edges is the key tool to compute it for the whole
graph. In the next subsections, we present our two different approaches for
the two-edge case. Theorem 3.2 as well as Theorem 3.3 let us conclude that
the continuous mean distance between two edges can be computed in constant
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pve

Cv
e

v

b

a

Figure 2. Point pv
e , for e = ab, is the point furthest from v

on cycle Cv
e (composed of the orange paths and edge ab)

time, once the distance matrix of the vertices of the graph G has been com-
puted. The currently best algorithm to compute all-pairs shortest paths for a
graph with real weights has running time A(n,m) = O(nm log α(m,n)) [26],
where α(m,n) is the extremely slowly growing inverse of the Ackermann func-
tion. We note that for some special graph classes faster algorithms are known,
such as planar graphs with non-negative edge weights (where A(m,n) = O(n2)
[14]), or graphs with integer non-negative edge weights (for which A = O(nm)
[33]).

The continuous mean distance of two equal edges reduces to the mean
distance of a path, which—as we have seen in Eq. (6)—is equal to μc(e, e) =
|e|/3, for any edge e; this is used in Eq. (7). Therefore, in the remainder of the
section, we focus on the mean distance between two distinct edges.

3.1. Computation Using Shortest Path Trees

Shortest path trees are one of the most fundamental structures used to repre-
sent distances in graphs, and they are an essential underlying concept behind
most single-source shortest path algorithms. In this section, we introduce a
continuous version of the shortest path tree rooted at a vertex of a weighted
graph G, and later show how it can be used to compute the continuous mean
distance between any two distinct edges of G�.

For G� and a vertex v ∈ V (G�), a continuous shortest path tree is a pair
Tv = (Tv, Sv), where Tv is a (discrete) shortest path tree rooted at v, and Sv

is a subset of G� that contains one point pv
e for each edge e ∈ E(G�)\E(Tv).

Point pv
e is the only point on edge e = ab such that its distance to v is given

by two different paths: one passes through a, and the other one passes through
b. Thus, pv

e is the furthest point to v on any cycle Cv
e determined by e and

shortest paths connecting v with a and b (see Fig. 2). Note that pv
e must exist,

otherwise e ∈ E(Tv). Observe also that for any point on apv
e , its shortest paths

to v go through a, and analogously for points on pv
eb.

As we show next, the continuous shortest path tree can be computed
within the same running time needed to solve the single-source shortest path
problem, denoted by S(n,m). Currently, we have S(n,m) = O(m log α(m,n))



Vol. 78 (2023) Continuous Mean Distance of a Weighted Graph Page 9 of 36 139

time in general [26], in S(n,m) = O(n) time for planar graphs with non-
negative edge weights [14], and in S(n,m) = O(m) time for graphs with integer
non-negative edge weights [33].

Proposition 3.1. Let G = (V,E) be a weighted graph with n vertices and m
edges, and let v ∈ V . A continuous shortest path tree Tv = (Tv, Sv) of G� can
be computed in O(S(n,m)) time, where S(n,m) is the time required to compute
a shortest path tree from v.

Proof. We first compute Tv using a single-source shortest path algorithm in
O(S(n,m)) time. Now, let e = ab ∈ E\E(Tv) and pv

e ∈ Sv. Since pv
e = λeb +

(1 − λe)a for some λe ∈ [0, 1], and pv
e is the furthest point from v on any cycle

Cv
e , we have:

λe|ab| + d(v, a) = d(v, pv
e) =

|ab| + d(v, b) + d(v, a)
2

⇒ λe

=
|ab| + d(v, b) − d(v, a)

2|ab| .

Thus, λe can be computed in constant time. Therefore, the set Sv can be
computed in total O(m) time, once the single-source shortest path tree is
available. �

Depending on whether an edge e belongs to E(Tv), Lemma 3.1 below
provides a different expression for its continuous mean distance to vertex v.
In the proof of this lemma, and throughout this paper, we shall use that, by
the mean value theorem for integrals, the mean value of a function f over an
interval [a, b] coincides with the height of the rectangle with base b − a and
area

∫ b

a
f(x) dx.

Lemma 3.1. Let v ∈ V (G�) and e = ab ∈ E(G�). Then,

μc(v, e) =

⎧
⎪⎪⎨

⎪⎪⎩

min{d(v, a), d(v, b)} +
|ab|
2

if e ∈ E(Tv),
(

d(v, a) +
|apv

e |
2

)
λv

e +
(

d(v, b) +
|pv

eb|
2

)
(1 − λv

e) if e /∈ E(Tv),

where |apv
e | =

|ab| + d(v, b) − d(v, a)
2

and |pv
eb| =

|ab| + d(v, a) − d(v, b)
2

.

Proof. Suppose first that e ∈ E(Tv). Figure 3a illustrates the graph of d(x, v)
for x ∈ e assuming that d(a, v) < d(b, v) (analogous otherwise). This is a
straight-line segment with slope 1, so the height of the rectangle with base
b − a and area

∫ b

a
d(x, v) dx is d(a, v) + |ab|/2. Hence, the result follows.

Assume now that e /∈ E(Tv). We can argue as above but considering two
rectangles determined by the function d(x, v), one for x ∈ [a, pv

e ] and the other
for [pv

e , b], where pv
e = λeb + (1 − λe)a for some λe ∈ [0, 1]; see Fig. 3b. The

heights of these rectangles are, respectively, d(v, a)+ 1
2 |apv

e | and d(v, b)+ 1
2 |pv

eb|.
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a b a bpve

(a) (b)

d(x, v)
x ∈ ab

d(x, v)
x ∈ ab

Figure 3. Function y = d(x, v) when: a e ∈ E(Tv), b e /∈
E(Tv)

To obtain μc(v, e) each of these values must be multiplied by the proportion
of the segment that corresponds to the base.

The expressions for |apv
e | and |pv

eb| come from the fact that pv
e is the

farthest point from v on any cycle Cv
e (see Fig. 2). Thus,

d(v, a) + |apv
e | =

|ab| + d(v, b) + d(v, a)
2

= d(v, b) + |bpv
e |.

�
The preceding lemma will be used to compute the continuous mean dis-

tance between two edges. To do this, we distinguish three cases (Lemmas
3.2–3.4 below), two of which depend on the following property.

Property 3.1 (Same component property). Let ab ∈ E(G�). A vertex v ∈
V (G�)\{a, b} satisfies the same component property with respect to edge ab
and vertex a if the shortest path from a to v goes through b.

The same component property essentially means that all shortest paths from
points on edge ab to v go through b.

Lemma 3.2 (Rectangular case). Let ab, uv ∈ E(G�) be two distinct edges such
that:

(i) |ab| = |uv| = λ,
(ii) d(a, uv) is given by an au-path of length θ, and d(b, uv) is given by a

bv-path of the same length,
(iii) the paths of (ii) do not intersect.

Then μc(ab, uv) = θ +
2λ

3
.

Proof. Edges ab and uv can be seen as the interval [0, λ]. By Eq. (4), we have:

μc(ab, uv) =
1
λ2

∫ λ

0

∫ λ

0

d(x, y) dx dy =
1
λ

∫ λ

0

μc(x, uv) dx
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u v a b

(a)

u v
a

b
(b)

Figure 4. Linear cases: a ab ∈ E(Tu), b ab /∈ E(Tu)

Given a point x ∈ [0, λ] on edge ab, its furthest point on the cycle composed
by ab, uv, the au-path of length θ, and the bv-path of the same length is the
point λ − x on edge uv. This point plays the role of pv

e in Lemma 3.1 with
λv

e = (λ − x)/λ. Note that Lemma 3.1 is stated for vertices and edges of the
graph, but we can always insert a vertex at the required point x and consider,
with some abuse of notation, the tree Tx. Since the shortest x − u and x − v
paths do not contain the edge uv, we have uv /∈ E(Tx). Then, by Lemma 3.1,

μc(x, uv) =
(

x + θ +
λ − x

2

)
λ − x

λ
+

(
λ − x + θ +

x

2

) x

λ
,

where d(x, u) = x + θ and d(x, v) = λ − x + θ. Hence,

μc(ab, uv) =
1
λ2

∫ λ

0

[(
x + θ +

λ − x

2

)
(λ − x) +

(
λ − x + θ +

x

2

)
x

]
dx.

Thus,

μc(ab, uv) =
1
λ2

∫ λ

0

(−x2 + λx + λθ +
λ2

2
) dx = θ +

2λ

3
.

�

Lemma 3.3 (Linear case). Let ab ∈ E(G�) be an edge such that a and b satisfy
the same component property with respect to other edge uv and one of its
endpoints, say u. Then,

μc(uv, ab) =
|uv|
2

+ μc(v, ab).

Proof. In this case, there are two possible situations that may happen for ab
and uv, see Fig. 4. For each p ∈ uv and each q ∈ ab, we have d(p, q) = d(p, v)+
d(v, q). By Remark 2.2(ii), it follows that μc(uv, ab) = μc(uv, v) + μc(v, ab) =
|uv|
2 + μc(v, ab). �

Lemma 3.4 (Cycle case). Let ab, uv ∈ E(G�) be two distinct edges such that
neither u, v nor a, b satisfy the same component property with respect to the
other corresponding edge and one of its endpoints. Then, μc(ab, uv) can be
computed as a weighted sum of at most four linear cases and one rectangular
case.
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a

b

v

pbuv

pauv

u

a

b

v

pbuv

pauv

u

Pav

Pbu

pa∗
uv

pb∗uv

(a) (b)

Figure 5. a Trees Ta (in blue) and Tb (in red), and points
pa

uv and pb
uv. b Cycle C formed by the two edges and the paths

Pav and Pbu; the points pa∗
uv and pb∗

uv are the furthest points
of, respectively, pa

uv and pb
uv on C (color figure online)

Proof. Consider the continuous shortest path trees (Ta, Sa) and (Tb, Sb) rooted
at a and b, respectively. Figure 5a illustrates how Ta and Tb must be located
with respect to edges ab and uv, since no endpoint of these two edges satisfy the
same component property. Note that Ta and Tb might have paths in common.
Observe also that uv /∈ E(Ta) ∩ E(Tb).

Let pa
uv ∈ Sa and pb

uv ∈ Sb. Suppose first that the two points are dis-
tinct and, assume without loss of generality, that pa

uv is closer to u than pb
uv, see

Fig. 5a. Applying Remark 2.2(i) twice, we have μc(ab, uv) = |upa
uv|

|uv| μc(ab, upa
uv)+

|pa
uvpb

uv|
|uv| μc(ab, pa

uvpb
uv) + |pb

uvv|
|uv| μc(ab, pb

uvv). Further, μc(ab, upa
uv) can be com-

puted by Lemma 3.3 as a linear case: it suffices to consider the shortest paths
in Ta and Tb connecting, respectively, a and b with u; vertices a and b satisfy
the same component property with respect to pa

uvu and point pa
uv. The sit-

uation is analogous for μc(ab, pb
uvv), and it remains to obtain μc(ab, pa

uvpb
uv).

Note that Property 3.1 is stated for vertices and edges of the graph, but one
can always insert vertices at the required points, such as pa

uv, in order to deal
with the situation as a linear case.

We now consider the cycle C determined by edges ab and uv, and the
shortest paths in Ta and Tb giving, respectively, d(a, uv) and d(b, uv). Suppose,
without loss of generality that those paths, denoted by Pav and Pbu, connect a
with v and b with u (see Fig. 5b). Observe that C is indeed a cycle as pa

uv �= pb
uv;

otherwise we would have a common sub-path in Pav and Pbu, so there would be
a point satisfying that its further point on uv would be the same as the furthest
points of a and b on uv, which would imply pa

uv = pb
uv. Note also that C is

a cycle of minimum length containing edges ab and uv since |Pav| = d(a, uv)
and |Pbu| = d(b, uv).

Let pa∗
uv be the point furthest from pa

uv on C, and let pb∗
uv be defined

analogously for pb
uv. Refer to Fig. 5b. By construction of the cycle, these points

are on edge ab, since C contains a shortest apa
uv-path and a shortest bpb

uv-path.
This implies that the furthest point of a on C is either pa

uv or is located in
between pa

uv and b. Analogously, the furthest point of b on C is either pb
uv or
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is located in between pb
uv and a. As the order of furthest points has to be

preserved in every cycle, pa∗
uv and pb∗

uv have to be located in between a and b.
Applying Remark 2.2(i) twice from “edge” pa

uvpb
uv to ab, with points pa∗

uv

and pb∗
uv in ab, yields

μc(ab, pa
uvpb

uv) =
|apa∗

uv|
|ab| μc(apa∗

uv, pa
uvpb

uv) +
|pa∗

uvpb∗
uv|

|ab| μc(pa∗
uvpb∗

uv, pa
uvpb

uv)

+
|pb∗

uvb|
|ab| μc(pb∗

uvb, pa
uvpb

uv).

With an analogous argument as above, μc(apa∗
uv, pa

uvpb
uv) and μc(pb∗

uvb, pa
uv

pb
uv) can be obtained by Lemma 3.3 as linear cases (for the first case, for

example, take the two shortest paths connecting, respectively, pa
uv and pb

uv

with a, which go through u and v; pa
uv and pb

uv satisfy the same component
property with respect to apa∗

uv and endpoint pa∗
uv).

The value μc(pa∗
uvpb∗

uv, pa
uvpb

uv) can be computed as a rectangular case of
Lemma 3.2. It is easy to check that |pa

uvpb
uv| = |pa∗

uvpb∗
uv| as the distances

d(pa
uv, pa∗

uv) and d(pb
uv, pb∗

uv) equal the semiperimeter of C. This also implies
that the paths on C connecting, respectively, pb∗

uv with pa
uv, and pa∗

uv with pb
uv,

have the same length.
In total, there are at most four linear cases and one rectangular case in

order to obtain μc(ab, uv). If pa
uv and pb

uv are the same point, the number of
linear cases reduces to two and there is no rectangular case since μc(ab, uv) =
|upa

uv|
|uv| μc(ab, upa

uv) + |pa
uvv|

|uv| μc(ab, pa
uvv). �

Next, we observe that the conditions that need to be checked to compute
the continuous mean distance between two edges can be checked in constant
time. Notice that we do not need the explicit construction of the continuous
shortest path trees from each vertex, we only need to check the conditions in
Lemmas 3.5 and 3.6 below.

Lemma 3.5. Given v ∈ V (G�), e = ab ∈ E(G�), and the values of d(v, b) and
d(v, a), it can be checked in constant time whether edge e belongs to E(Tv).

Proof. It follows from the fact that e /∈ E(Tv) if and only if |d(v, b)−d(v, a)| <
|ab|. �
Lemma 3.6. For every edge uv ∈ E(G�), it can be checked in constant time
whether u and v satisfy the same component property with respect to any other
edge ab ∈ E(G�) and one of its endpoints, assuming that d(a, u), d(a, v), d(b, u),
and d(b, v) are known.

Proof. Consider an edge ab and the endpoint a. Having the same component
property with respect to edge ab and vertex a is equivalent to say that (i)
d(a, u) = d(a, b) + d(b, u), and (ii) d(a, v) = d(a, b) + d(b, v). �

Since any pair of distinct edges falls into one of the three cases considered
above (rectangular, linear, or cycle), we conclude the following.
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Theorem 3.2. Let G be a weighted graph. Given two edges e, e′ ∈ E(G�), the
function μc(e, e′) can be expressed as a weighted sum of O(1) distances between
pairs of points on e and e′.

3.2. A Geometric View Based on Lower Envelopes and Voronoi Diagrams

In this subsection, we present an alternative approach based on well-known
geometric tools, which shows that the continuous mean distance between two
edges and, therefore, of the whole graph can be computed completely using
simple geometric arguments. Recall that the lower envelope of a set of functions
is the function resulting from taking the point-wise minimum of all functions
in the set.

Lemma 3.7. Given two distinct edges e, e′ ∈ E(G�), the function d(p, q), where
p ∈ e and q ∈ e′ can be seen as the lower envelope of at most four planes in
3D.

Proof. Any path connecting points p and q must go through an endpoint of
e = uv and an endpoint of e′ = u′v′. Assume first that the four endpoints
are distinct. Parametrizing the points on e and e′ as p = xv + (1 − x)u and
q = yv′ + (1 − y)u′ for x, y ∈ [0, 1], we obtain four planes. For each of the
four possible pairs of endpoints of e and e′, the corresponding plane gives
the length of a shortest pq-path among the pq-paths that go through those
endpoints; their equations are:

P (u, u′) : z = |e|x + |e′|y + d(u, u′)
P (u, v′) : z = |e|x + |e′|(1 − y) + d(u, v′)
P (v, u′) : z = |e|(1 − x) + |e′|y + d(v, u′)
P (v, v′) : z = |e|(1 − x) + |e′|(1 − y) + d(v, v′)

(8)

where, for instance, P (u, u′) indicates that the paths considered to connect
the points on e with those on e′ go through endpoints u and u′. Hence, for any
two points p ∈ e and q ∈ e′, the function d(p, q) is the minimum among the
four values obtained.

The above argument can be adapted naturally when e and e′ have a
common endpoint, in which case there are only two planes. �

The previous result implies that the continuous mean distance between
any two edges can be computed in constant time if the distances between their
endpoints are known. However, we give next a direct way to compute it that
avoids the computation of lower envelopes. In particular, we show that it is
also possible to compute μc(e, e′) in constant time by considering the volume
of a three-dimensional body with a rectangular base (one side with the length
of e and the other with the length of e′), four vertical faces from each of the
four base edges, and a roof that is the lower envelope defined in Lemma 3.7.
Next, we describe how this lower envelope or roof can be viewed.

We consider a rectangle whose corners are labeled with the possible com-
binations of endpoints of e = uv and e′ = u′v′, as done to define the four planes



Vol. 78 (2023) Continuous Mean Distance of a Weighted Graph Page 15 of 36 139

((u, u′), d(u, u′)) ((v, u′), d(v, u′))

((v, v′), d(v, v′))((u, v′), d(u, v′))

(p, q)

(a) The length of the dashed path allows to
compute the distance d(p, q).

(u, u′) (v, u′)

(v, v′)(u, v′)

(b) Subdivision into simpler shapes for simpler
computation.

Figure 6. The roof determined by the distances between
points on e = uv and e′ = u′v′, and a pair of points (p, q)
located in the region associated to (u, u′). Each corner is la-
beled with the height of the vertical edge of that corner, and
the arrows show the direction of maximum slope of each roof

in the proof of Lemma 3.7. The labels also include a weight equal to the dis-
tance between the corresponding endpoints; when no confusion may arise, we
shall only indicate in the figures the weights of the corners. In addition, the
rectangle is split (into at most four regions) by the orthogonal projection onto
the (x, y)-plane of the (at most five) intersections of the planes defined by the
equations in (8). Refer to Fig. 6a.

Thus, for instance, a pair (p, q), with p ∈ e and q ∈ e′, is located in the
region associated to (u, u′) if d(p, q) is given by a path that goes through u
and u′, that is, by the plane z = |e|x + |e′|y + d(u, u′) of Lemma 3.7. Hence,
for p = xv +(1−x)u and q = yv′ +(1−y)u′ with x, y ∈ [0, 1], the value d(p, q)
is just the distance in the L1 metric3 from (p, q) to the corner (u, u′) plus the
weight of that corner, which is d(u, u′). This is analogous for the remaining
corners of the rectangle. Thus, the projections of the intersections between
the planes of equations in (8) can be viewed as the bisectors of the additively
weighted Voronoi diagram for the L1 metric [24] of the corners of the rectangle.
Therefore, the first step to compute d(p, q) is to determine the region in which
(p, q) lies, as it determines the plane that defines the lower envelope over (p, q).

The mean distance of the points in each of the (at most) four Voronoi
regions is the volume of a truncated prism (with the corresponding Voronoi
region as base and the corresponding plane of Lemma 3.7 as roof) divided by
the area of the base. From a practical point of view, since there is no formula
for a direct computation of that volume, it is better to subdivide the original
Voronoi diagram into sub-rectangles and triangles, as Fig. 6b shows, since, in
those cases, the volume of the truncated prism is given by the average height

3The L1-distance between two points p = (xp, yp) and q = (xq, yq) is given by |xp − xq | +
|yp − yq |.
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0 d(v, u)

0d(u, v)

Figure 7. The case e = e′

of the corners, see [15]. In the proof of Proposition 4.3, we use this technique
to compute the continuous mean distance of the 1-uniform complete graph,
and it is also referred in the proof of Proposition 5.1.

Remark 3.1. Although we have already seen in Eq. (6) that μc(e, e) = |e|/3,
we can give an interpretation of this value in terms of a roof-diagram (see
Fig. 7). In this case, the rectangle becomes a square, and the roof is formed by
two planes:

P (u, v) : z = |e|(y − x)
P (v, u) : z = |e|(x − y),

where P (u, v) indicates that point p = xv + (1 − x)u is closer to u than
q = yv + (1 − y)u (analogous for P (v, u)).

Summarizing the above discussion, we have the following theorem.

Theorem 3.3. Let G be a connected weighted graph. Given two edges e, e′ ∈
E(G�), the function μc(e, e′) can be expressed as a weighted volume of at most
eight truncated rectangular prisms.

4. Specific Cases: Trees, Cactus, and Complete Graphs

The study developed in the previous section reflects the difficulties of com-
puting the continuous mean distance, even for specific weighted graphs. As
mentioned in the Introduction, the value of this parameter is only known for
seven other simple graphs and six very specific graph families [9,10]. In this
section we deal with complete graphs and graphs that have cut vertices. For
graphs that have this structural property, the continuous mean distance can
be computed faster than using Theorem 3.1, by studying each block indepen-
dently.

Lemma 4.1. Let G� be a weighted connected graph with a cut-vertex v, i.e.,
G� = G1

� ∪ G2
� and G1

� ∩ G2
� = {v}. Then, μc(G1

� , G
2
�) = μc(v,G1

�) + μc(v,G2
�)
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and

μc(G�) =
(

|G1
� |

|G�|

)2

μc(G1
�) +

(
|G2

� |
|G�|

)2

μc(G2
�)

+2
(

|G1
� ||G2

� |
|G�|2

)
(
μc(v,G1

�) + μc(v,G2
�)

)
.

Proof. If p ∈ G1
� and q ∈ G2

� , then d(p, q) = d(p, v) + d(v, q). By Eqs. (4) and
(3), we have:

μc(G
1
� , G2

�)
(4)
=

1

|G1
� ||G2

� |
∫∫

p∈G1
� , q∈G2

�

d(p, q) dp dq

=
1

|G1
� ||G2

� |

(∫∫

p∈G1
� , q∈G2

�

d(p, v) dp dq +

∫∫

p∈G1
� , q∈G2

�

d(v, q) dp dq

)

(3)
=

1

|G1
� ||G2

� |

(

|G1
� |

∫

q∈G2
�

μc(v, G1
�)dq + |G2

� |
∫

p∈G1
�

μc(v, G2
�)dp

)

.

Since in the last equation the integrated functions are constant with respect
to the corresponding differentials, we obtain:

μc(G1
� , G

2
�) =

1
|G1

� ||G2
� |

(
μc(v,G1

�)|G1
� ||G2

� | + μc(v,G2
�)|G1

� ||G2
� |

)

= μc(v,G1
�) + μc(v,G2

�).

The formula for μc(G�) is then obtained as follows:

μc(G�)
(4)
=

1

|G�|2
∫∫

p,q∈G�

d(p, q) dp dq

=
1

|G�|2
(∫∫

p,q∈G1
�

d(p, q) dp dq +

∫∫

p,q∈G2
�

d(p, q) dp dq

+2

∫∫

p∈G1
� , q∈G2

�

d(p, q) dp dq

)

=
1

|G�|2
(
|G1

� |2μc(G
1
�) + |G2

� |2μc(G
2
�) + 2|G1

� ||G2
� |μc(G

1
� , G2

�)
)

=
1

|G�|2
(
|G1

� |2μc(G
1
�) + |G2

� |2μc(G
2
�) + 2|G1

� ||G2
� |(μc(v, G1

�) + μc(v, G2
�))

)
.

�

Thus, if we know a direct formula to obtain the continuous mean distance
of each block of G�, then μc(G�) can be computed in linear time. For instance,
this is the case for trees.

Proposition 4.1. The continuous mean distance of a weighted tree T� with n
vertices can be computed in O(n) time.
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Proof. We apply induction on n. The continuous mean distance of an edge e is,
by Eq. (6), |e|/3. For n ≥ 3, take a non-leaf vertex v of a tree T�, which is a cut-
vertex, and consider the two sub-trees connected by v. By Lemma 4.1, μc(T�)
is obtained by computing the total length of each sub-tree, its continuous
mean distance, and its continuous mean distance from v. By induction, these
values can be computed in linear time and combined in constant time to obtain
μc(T�). �

Another interesting application of Lemma 4.1 is for the well-known cactus
graphs, see for instance [18,36] for studies in the context of location on graphs.
This type of graphs has cut vertices, and each block is either an edge or a cycle.
Since the continuous mean distance of a cycle C� is |C�|/4 (see [10]), and that
of an edge is given by Eq. (6), we obtain (again, by induction) the following
result.

Proposition 4.2. The continuous mean distance of a weighted cactus graph with
n vertices can be computed in O(n) time.

When the graphs have no cut vertices, the method described in Sect. 3.2
is a useful tool to compute the continuous mean distance. Next, we apply
this method to the α-uniform complete graph Kα

n . While the value μd(Kn) =
(n − 1)/n is trivial to compute, the continuous version is much harder.

Proposition 4.3. The continuous mean distance of the α-uniform complete graph
Kα

n is given by the following formula:

μc((Kα
n )�) =

α(9n2 − 22n + 12)
6 (n2 − n)

.

Proof. By Remark 2.1, it suffices to prove the result for α = 1. We use Eq. (7)
and the technique described in Sect. 3.2 to compute the continuous mean
distance between two distinct edges. There are two types of pairs of distinct
edges e and e′, incident and non-incident:

Case 1. If e and e′ are incident at a vertex u, there is another edge connecting
their non-common endpoints, say v and v′. With respect to the description
in Sect. 3.2, we only have two planes: z = x + y (where d(u, u′) = 0) and
z = 2 − x − y + d(v, v′), and the corresponding roof–diagram is illustrated in
Fig. 8a. The partition of the diagram into one rectangle, one square and two
triangles is shown in Fig. 8b, where the number inside each region indicates the
value of the volume of the truncated prism with that base; this number is given
by the average height of the corners. Taking into account the corresponding
areas of the base, we have μc(e, e′) = 1

2 · 3
4 + 1

4 · 4
3 + 1

4 = 23
24 , and the total

number of this type of pairs of edges is n(n − 1)(n − 2).
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Figure 8. a Roof–diagram for two incident edges in K1
n. b

Partition into truncated prisms; the value of the mean dis-
tance is indicated in each region in boldface, as well as the
weights of the corners

1

11

1

2 3
2

3
2

3
2

3
2

Figure 9. The roof–diagram for two non-incident edges in K1
n

Case 2. If e and e′ are non-incident, the roof–diagram looks as that of Fig. 9.
Now, μc(e, e′) = 3/2, and the total number of these pairs of edges is

(
n

2

)2

− n(n − 1)(n − 2) −
(

n

2

)
,

where the last term is subtracted to take into account all pairs where e = e′,
which are already considered in Eq. (7). For α = 1, this equation then gives

μc((K1
n)�) =

4
n2(n − 1)2

⎛

⎝
∑

(e,e′)∈E×E,e�=e′
μc(e, e′) +

n(n − 1)
6

⎞

⎠
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where
∑

(e,e′)∈E×E
e�=e

μc(e, e′) =
23n(n − 1)(n − 2)

24

+
3
2

(
n2(n − 1)2

4
− n(n − 1)(n − 2) − n(n − 1)

2

)
.

Hence,

μc((K1
n)�) =

92(n − 2)
24n(n − 1)

+
3
2

− 6(n − 2)
n(n − 1)

− 3
n(n − 1)

+
2

3n(n − 1)

=
9n2 − 22n + 12

6n(n − 1)
.

�

Although this section is focused on the computation of the continuous
mean distance of some specific weighted graphs, we conclude it with a result
on the range of values of μc(T�), as it extends a similar result for the discrete
case, which we believe is of interest. Indeed, in [13], the author proves that the
Wiener index of any tree T on n vertices is lower-bounded by the Wiener index
of the star S on n vertices, and upper-bounded by the Wiener index of the path
P with the same number of vertices (where the three graphs are unweighted).
Therefore, by definition, μd(S) ≤ μd(T ) ≤ μd(P ). Next, we prove that, when
the graph is uniform, these bounds also hold for the continuous case.

Proposition 4.4. Let S� and P� be an α-uniform star and α-uniform path, re-
spectively, on n vertices. Then,

μc(S�) ≤ μc(T�) ≤ μc(P�)

for every α-uniform tree T� with n vertices.

Proof. It suffices to prove the result for α = 1 (see Remark 2.1). We apply
induction on n. Let T ′

� := T�\{u1}, S′
� := S�\{u2}, and P ′

� := P�\{u3} where
ui is, in each case, a leaf adjacent to a vertex vi, 1 ≤ i ≤ 3, of the corresponding
graph. Lemma 4.1 gives expressions for μc(T�), μc(S�), and μc(P�) in terms of
the continuous mean distances of the corresponding edge uivi and, respectively,
T ′

� , S′
�, and P ′

� (simply set G1
� as the graph on n − 1 vertices and G2

� as the
edge uivi). For T� we obtain:

μc(T�) =
(

n − 2
n − 1

)2

μc(T ′
�) +

1
3(n − 1)2

+ 2
(

n − 2
(n − 1)2

)(
μc(v1, T ′

�) +
1
2

)
,

and analogous expressions are obtained for μc(S�) and μc(P�) (by simply re-
placing T ′

� and v1 by either S′
�, v2 or P ′

� , v3, respectively). Hence, by induction,
it suffices to prove that μc(v2, S′

�) ≤ μc(v1, T ′
�) ≤ μc(v3, P ′

�) where v2 is the
central vertex of S′

�, and v3 is an endpoint of P ′
� .
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Given a vertex v of any 1-uniform tree T with m edges, by Eq. (3) and
Lemma 3.1,

μc(v, T ) =
∑

e∈T μc(v, e)
m

=
m
2 +

∑
e∈T d(v, e)
m

,

since all edges in the tree belong to E(Tv) and have weight 1. Therefore,
μc(v, T ) is determined by the vector V (v, T ) = (d(v, e1), d(v, e2), . . . , d(v, em)),
where E(T ) = {e1, . . . , em} and d(v, ei) is sorted in increasing order. The first
coordinate of the vector is always 0 (v belongs to at least one edge), and
the difference between two consecutive coefficients of the vector is at most 1
(the length of any edge in the tree). Thus, the smallest possible vector in a
tree with n − 2 edges (ordered by the sum of its coordinates) is (0, 0, . . . , 0),
which corresponds to the case of the star, and the largest possible vector is
(0, 1, 2, . . . , n−3), which corresponds to the path. This implies that μc(v2, S′

�) ≤
μc(v1, T ′

�) ≤ μc(v3, P ′
�). �

5. Discrete Versus Continuous Mean Distances

There is no obvious relation between the discrete and the continuous mean
distances, in the sense that for different graphs, any of them can be larger.
From the result for Kα

n in the previous section (Proposition 4.3) it follows
that the continuous mean distance can be larger than the discrete counterpart.
This also happens for cycles4 and, on the other hand, we have seen (in the
Introduction) that the opposite occurs for paths.

This and the following section are devoted to better understanding the
relationship between the two parameters. We first present bounds on the con-
tinuous mean distance of two edges in terms of discrete distances, which lead
to bounds for the whole graph (in Corollary 5.1 below) whenever it is uniform.

Proposition 5.1. Let e and e′ be two distinct edges in a weighted graph G.
Then,

d(e, e′) +
|e| + |e′|

4
≤ μc(e, e′) ≤ d(e, e′) +

|e| + |e′|
2

,

and both bounds are tight.

Proof. For the upper bound, let p ∈ e = ab and q ∈ e′ = uv and, without loss
of generality, let d(e, e′) = d(a, u). We have d(p, q) ≤ d(p, a)+d(a, u)+d(u, q) =
d(p, a) + d(e, e′) + d(u, q). Hence,

μc(e, e′)
(4)
=

1
|e||e′|

∫∫

p∈e, q∈e′
d(p, q) dp dq

≤ 1
|e||e′|

(∫∫

p∈e, q∈e′
d(p, a) dp dq +

∫∫

p∈e, q∈e′
d(e, e′) dp dq

4The continuous mean distance of an 1-uniform cycle Cn of n vertices is n/4 [10], as well as

μd(Cn) for n even; otherwise μd(Cn) =
n
4

− 1
4n

[34].
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+
∫∫

p∈e, q∈e′
d(u, q) dp dq

)

=
1

|e||e′|

(∫

q∈e′

|e|2
2

dq + d(e, e′)|e||e′| +
∫

p∈e

|e′|2
2

dp

)

=
|e|
2

+ d(e, e′) +
|e′|
2

.

Note that
∫

p∈e
d(p, a) dp = |e|2

2 since a is an endpoint of the edge e, and so the
integral is the area of a triangle with base and height equal to |e|. Analogously,
∫

q∈e′ d(u, q) dq = |e′|2
2 .

For the lower bound we have:

d(p, q) = min

⎧
⎪⎪⎨

⎪⎪⎩

d(p, a) + d(q, u) + d(a, u)
d(p, b) + d(q, u) + d(b, u)
d(p, a) + d(q, v) + d(a, v)
d(p, b) + d(q, v) + d(b, v)

⎫
⎪⎪⎬

⎪⎪⎭
≥ min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d(p, a) + d(q, u)

d(p, b) + d(q, u)

d(p, a) + d(q, v)

d(p, b) + d(q, v)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ d(e, e′).

If the last minimum is denoted by Θ(p, q), then d(p, q) ≥ Θ(p, q) + d(e, e′).
Therefore,

μc(e, e′)
(4)
=

1
|e||e′|

∫∫

p∈e, q∈e′
d(p, q) dp dq

≥ 1
|e||e′|

(∫∫

p∈e, q∈e′
Θ(p, q) dp dq +

∫∫

p∈e, q∈e′
d(e, e′) dp dq

)

=
1

|e||e′|

(
|e||e′| |e| + |e′|

4
+ |e||e′|d(e, e′)

)
=

|e| + |e′|
4

+ d(e, e′),

where
∫∫

p∈e, q∈e′ Θ(p, q) dp dq is the volume determined by the roof–diagram
depicted in Fig. 10, which can be computed as follows:

∫∫

p∈e, q∈e′
Θ(p, q) dp dq = 4

∫∫

p∈[a, a+b
2 ], q∈[u, u+v

2 ]

d(p, a) + d(q, u) dp dq

= 4
(

|e|2
8

· |e′|
2

+
|e′|2
8

· |e|
2

)
= |e||e′|

(
|e| + |e′|

4

)
.

Next, we observe that both bounds are tight. For instance, the mean dis-
tance of two edges that are connected by a unique path gives the upper bound,
and the lower bound is attained by two edges whose endpoints are at the same
distance so that d(e, e′) is given by any of the four possible combinations of
endpoints. �

As a consequence of the preceding proposition we obtain, for α-uniform
graphs G, bounds on μc(G�) in terms of the discrete mean distance of a
weighted version of its line graph. Recall that the line graph L(G) of an un-
weighted graph G has a vertex associated with each edge in G, and two vertices
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0

00

0
|e|/2

|e′|/2

Figure 10. The roof–diagram for Θ(p, q)

are adjacent if the corresponding edges of G have a vertex in common. When
G is α-uniform, we consider the α-uniform line graph Lα(G) that is defined
analogously but, in addition, every edge has length α.

The Wiener index of L(G) is known as the edge-Wiener index of G
(see, for instance, [7,28] and the references therein). It is defined as We(G) =∑

{e,e′}⊆E dL(G)(e, e′), where dL(G)(e, e′) is the distance of the corresponding
vertices (to e and e′) in L(G). This can be naturally extended to Lα(G) for α-
uniform graphs G with m edges, and thus we may consider the discrete mean
distance μd(Lα(G)) = 2W (Lα(G))/m2.

Corollary 5.1. Let G be an α-uniform graph with m edges. Then,

μd(Lα(G)) +
α

3m
− (m − 1)α

2m
≤ μc(G�) ≤ μd(Lα(G)) +

α

3m

where Lα(G) is the α-uniform line graph of G.

Proof. It can be easily checked that, by construction, d(e, e′) = dL(G)(e, e′)−1
for distinct edges e and e′ in an unweighted graph G; this extends to d(e, e′) =
dLα(G)(e, e′) − α when the graph G is α uniform. Proposition 5.1 then gives
dLα(G)(e, e′) − α

2 ≤ μc(e, e′) ≤ dLα(G)(e, e′) for distinct edges e and e′ of G�.
Now, by Eq. (7), we obtain:

μc(G�) =
1

α2m2

⎛

⎝
∑

(e,e′)∈E×E,e�=e′
μc(e, e′)α2 +

∑

e∈E

α3

3

⎞

⎠

=
1

m2

∑

(e,e′)∈E×E,e�=e′
μc(e, e′) +

α

3m
.

Therefore,

μc(G�) ≥ 1
m2

⎛

⎝
∑

(e,e′)∈E×E,e�=e′
dLα(G)(e, e′)

⎞

⎠ +
α

3m
− (m − 1)α

2m
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and

μc(G�) ≤ 1
m2

⎛

⎝
∑

(e,e′)∈E×E,e�=e′
dLα(G)(e, e′)

⎞

⎠ +
α

3m
.

The result then follows by definition of μd(Lα(G)). �
In their seminal work on the mean distance for shapes [9], Doyle and

Graver already studied the continuous mean distance by using an iterative
edge refinement process. Following this direction, next we present an edge
subdivision approach for trees. One may think that if the subdivision points are
chosen arbitrarily, the discrete mean distance of the refined tree may increase
significantly with respect to the original one. However, this is not the case, as
we can see in the next theorem.

Theorem 5.1. Let T be a weighted tree with n vertices, and let T (k) be the tree
resulting from subdividing each edge of T by adding k new vertices on it. Then
μd(T (k)) <

n

n − 2k
k+1

μd(T ).

Proof. We start by noting that T (k) has n + k(n − 1) vertices: n old vertices
and k(n−1) new vertices. The value μd(T (k)) is the average of (n+k(n−1))2

distances, of three types: (i) between two old vertices, (ii) between an old
and a new vertex, (iii) between two new vertices. To avoid any confusion, we
shall use dT and dT (k) to indicate distances in, respectively, the trees T and
T (k). Further, with some abuse of notation, we shall write u ∈ T instead of
u ∈ V (T ).

Consider a distance of type (ii), between an old vertex u ∈ T and a new
vertex a ∈ T (k)\T . Since T (k) is a tree, there is a unique path from u to a.
Moreover, since a is interior to an edge of T , the path can be extended in
direction away from u until the first old vertex v ∈ T . Clearly, dT (k)(u, a) ≤
dT (k)(u, v) = dT (u, v).

Similarly, associated to a distance of type (iii), between two new vertices
a, b ∈ T (k) \T , there is a unique path in T (k) that can be extended in both
directions until starting and ending, respectively, at vertices u, v ∈ T . Again,
dT (k)(a, b) ≤ dT (k)(u, v) = dT (u, v).

In this way, each distance involving a new vertex (types ii or iii) can be
upper-bounded by a distance between two old vertices. Moreover, the distance
d(u, v) of a pair of vertices (u, v) ∈ T 2 can only be an upper bound for up to
(k2 +2k) distances: 2k of type (ii), and k2 of type (iii). Observe that the same
happens for the distance d(v, u). This leads to an upper-bound on μd(T (k)) as
follows:

μd(T
(k)

)

=

∑

(u,v)∈T 2

dT (k)(u, v) +
∑

(u,a)∈T ×(T (k)\T )

dT (k)(u, a) +
∑

(a,u)∈(T (k)\T )×T

dT (k)(a, u) +
∑

(a,b)∈(T (k)\T )2

dT (k)(a, b)

(n(k + 1) − k)2
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≤

∑

(u,v)∈T 2

dT (u, v) + (k
2
+ 2k)

∑

(u,v)∈T

dT (u, v)

(n(k + 1) − k)2
=

(k + 1)
2

∑

(u,v)∈T 2

dT (u, v)

(n(k + 1) − k)2
.

Since (n(k+1)−k)2 = n2(k+1)2(1− 2k
n(k+1) )+k2 > n2(k+1)2(1− 2k

n(k+1) ),
we obtain:

μd(T (k)) <

(k + 1)2
∑

(u,v)∈T 2

dT (u, v)

n2(k + 1)2(1 − 2k
n(k+1) )

=
μd(T )

1 − 2k
n(k+1)

=
n

n − 2k
k+1

μd(T ).

�

Theorem 5.1 gives an upper bound of n
n−2μd(T ) for the discrete mean

distance of any subdivision of a tree T but, if the subdivision points are chosen
more carefully, one can expect more precise results. Thus, Theorem 5.1 is the
initial motivation of the following section where, in particular, we explore the
convergence of the discrete mean distance to its continuous counterpart when
subdividing the edges of a tree (see Corollary 6.2).

6. Convergence: Graph Subdivision

A natural question is whether the discrete mean distance is convergent to its
continuous counterpart when iteratively subdividing the edges of the graph.
One may propose different subdivision schemes but, as we shall see later in
this section, not all of them guarantee convergence. By definition of contin-
uous mean distance, the convergence happens for uniform graphs by simply
adding, at each step, a new vertex on each edge. Further, it is not hard to
devise a subdivision scheme with guaranteed convergence if the ratio between
the lengths of the longest and the shortest edges approaches one as the subdi-
vision progresses. However, such a scheme completely depends on the original
structure of the graph.

In this section we present an edge subdivision scheme that does not de-
pend on the graph structure, and allows us to obtain bounds on the discrete
mean distance of its k-th edge subdivision, and on its limit when k tends to
infinity. We begin by introducing some notation.

For a graph G = (V,E) with n vertices and m edges, let G1 = (V 1, E1)
be the graph that results from subdividing each edge of G by inserting a new
vertex at its midpoint. Then, for a given k ≥ 2, we subdivide each edge of G1

into 2k−1 new edges of the same length by inserting 2k−1 − 1 vertices. The
resulting graph Gk = (V k, Ek) is called the k-th subdivision of G (note that
the graph G1 could be viewed as a subdivision of G but for our purpose it will
be distinguished). Refer to Fig. 11. The vertices of the original graph G are
called black vertices; the set of vertices inserted into G to obtain G1 is denoted
by B, and they are called blue vertices. Thus, V 1 = V ∪B and |B| = m. We use
Rk to refer to the set of new vertices inserted into G1, which are called the red
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G G1 G2 G3

−→ −→ −→ −→ .....

Figure 11. Subdividing the edges of a graph

vertices; clearly, |Rk| = 2m(2k−1 − 1) = m(2k − 2). Hence, V k = V ∪ B ∪ Rk

and |V k| = n + m(2k − 1). Further, the edges of the original graph G can be
identified within Gk: we write ek to indicate the k-th subdivision of an edge
e ∈ E, which is a path in Gk with 2k + 1 vertices (there are 2 black, 1 blue,
and 2k − 2 red vertices). Equation (2) then gives:

μd(Gk) =
2W (Gk)

(n + m(2k − 1))2
, (9)

where W (Gk) =
∑

{u,v}⊂V k d(u, v) is the Wiener index of Gk. With some abuse
of notation, we write, for sets A,B ⊆ V k, W (A;B) =

∑
u∈A\B, v∈B\A d(u, v)+∑

{u,v}⊆A∩B d(u, v) and W (A) = W (A;A). Further, we shall indistinctly use
sets of vertices or graphs in this notation, for instance, W (A; ek) is simply a
sum of distances between vertices in the set A and vertices in the path ek.
With this notation, for k ≥ 2, we have:

W (Gk) = W (V 1) + W (Rk) + W (Rk;V ) + W (Rk;B) (10)

The following two subsections are devoted to proving our main result in
this section (which, in addition, will allow us to gain a deeper understanding
of the limit of μd(Gk) when k tends to infinity):

Theorem 6.1. Let G = (V,E) be a weigthed graph with n vertices and m ≥ 2
edges, and let Gk = (V k, Ek) be its k-th subdivision, where k ≥ 2. Let B be the
set of vertices inserted into G to obtain the graph G1. Then,

2
[
Ωk(G, G1) − ρ

(
3
(
m
2

)
+ m(n − 2)

) (
2k−2 − 1

2

)]

(n + m(2k − 1))2
< μd(Gk) ≤ 2 Ωk(G, G1)

(n + m(2k − 1))2

where ρ = max{|e| : e ∈ E}, and

Ωk(G, G1) = W (V 1) + (2k − 2)
(
2kW (B) + W (B; V )

)
+ |E|

(
22k−1

3
− 2k−1 +

1

3

)
.

Moreover, the upper bound is tight.

The limit of the upper bound in Theorem 6.1, when k tends to infinity,
is given by the coefficients of the term 22k. Thus,

lim
k→∞

μd(Gk) ≤ lim
k→∞

2Ωk(G,G1)
(n + m(2k − 1))2

=
2(W (B) + |E|/6)

m2
.
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Hence, by Eq. (2), we obtain the following bounds.

Corollary 6.1. Let G = (V,E) be a weighted graph with m ≥ 2 edges, and let
Gk = (V k, Ek) be its k-th subdivision, where k ≥ 2. Let B be the set of vertices
inserted into G to obtain the graph G1. Then,

lim
k→∞

μd(Gk) ≤ μd(B) +
|E|
3m2

.

Moreover, if G is α-uniform then,

lim
k→∞

μd(Gk) = μc(G�) ≤ μd(B) +
α

3m
.

We want to highlight that all trees attain the preceding upper bounds
(this is a consequence of the study developed in Sect. 6.1 below).

Corollary 6.2. Let T = (V,E) be a weighted tree with n ≥ 3 vertices, and let
T k be its k-th subdivision. Let B be the set of vertices inserted into T to obtain
T 1. Then,

lim
k→∞

μd(T k) = μd(B) +
|E|

3(n − 1)2
.

Moreover, if T is α-uniform then,

μc(T�) = lim
k→∞

μd(T k) = μd(B) +
α

3(n − 1)
.

Corollary 6.2 gives simple examples where the discrete mean distance,
when subdividing the edges of the graph, does not converge to the continuous
counterpart. Consider, for example, a path P with 4 vertices and edge lengths
2, 1, 1; we have μc(P�) = 4/3 ≈ 1.33, whilst from Corollary 6.2 we obtain
limk→∞ μd(P k) = 10/9 + 4/27 = 34/27 ≈ 1.26.

6.1. Proof of the Upper Bound in Theorem 6.1

First, we upper bound the Wiener index of Gk. By Equation (10), it suffices
to compute upper bounds on W (Rk),W (Rk;V ), and W (Rk;B).

To upper-bound W (Rk), we begin by distinguishing the distances be-
tween red vertices, depending on whether they are on the k-th subdivision of
the same edge or of distinct edges. We use the notation ek ∩Rk to indicate the
set of red points that are on the k-th subdivision of an edge e; analogously,
the notation ek ∩ B will refer to the blue point that is on ek.

W (Rk) =
∑

{e1,e2}⊆E
e1 �=e2

W (ek
1 ∩ Rk; ek

2 ∩ Rk) +
∑

e∈E

W (ek ∩ Rk). (11)

For red vertices that are on the same edge, we can compute the sum of distances
exactly.
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Lemma 6.1. The following formula holds for k ≥ 2:
∑

e∈E

W (ek ∩ Rk) = |E|
(

22k−1

3
− 3 · 2k−2 +

5
6

)
.

Proof. Given an edge e = wz ∈ E, we have:

W (ek ∩ Rk) = W (ek) − W ({w, z}; ek) − W (ek ∩ Rk; ek ∩ B). (12)

The value W (ek) is the Wiener index of an |e|
2k -uniform path on 2k +1 vertices,

which can be deduced from μd(ek) by Eq. (2) and Remark 2.1. It is also
known that the discrete mean distance of a 1-uniform path on n vertices is
(n + 1)(n − 1)/3n [34]. Thus, we have:

W (ek) =
|e|
2k

(
μd(ek)(2k + 1)2

2

)
=

|e|
2k

(
(2k + 2)(2k + 1)2k

6

)
=

|e|
2k

(
2k + 2

3

)
.

(13)

Further,

W ({w, z}; ek) = d(w, z) +
∑

u∈{w,z}
v∈ek−{w,z}

d(u, v)

= |e| + 2
(

|e|
2k

(1 + 2 + 3 + · · · + 2k − 1)
)

= 2k|e|. (14)

Finally,

W (ek ∩ Rk; ek ∩ B) = 2

( |e|
2k

(1 + 2 + 3 + · · · + (2k−1 − 1))

)
= |e|

(
2k−2 − 1

2

)
.

(15)

By Eqs. (12)–(15) we obtain:
∑

e∈E

W (ek ∩ Rk) = |E|
(

1
2k

(
2k + 2

3

)
− 2k − 2k−2 +

1
2

)

= |E|
(

22k−1

3
− 3 · 2k−2 +

5
6

)
.

�

It remains to upper-bound the sum of distances, for every pair of distinct
edges, of red vertices that are on the subdivision of the edges; see Eq. (11).
Roughly speaking, the maximum value of this sum is obtained when, for every
pair of distinct edges, all shortest path between any two of their vertices use the
same endpoints of those edges; see Fig. 12a, which considers the subdivisions
e31 and e32 of two distinct edges e1 and e2. This is because when we can enter
and get out of the edges using different endpoints, the distance between any
two vertices (black, red, or blue) on the subdivision of the edges, in the best
case, decreases. For example, in Fig. 12a, d(r6, s5) would be smaller if there
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would be another shortest path (not only the orange one) connecting the two
edges via the endpoints z1 and z2. The following lemma gives the maximum
value of that sum of distances.

Lemma 6.2. If for every two distinct edges e1 and e2 all shortest paths con-
necting any two vertices located on ek

1 and ek
2 , respectively, go through the same

endpoints of e1 and e2, then:
∑

{e1,e2}∈E,e1 �=e2

W (ek
1 ∩ Rk, ek

2 ∩ Rk) = (2k − 2)2W (B).

Proof. Consider two distinct edges e1 = w1z1 and e2 = w2z2, and assume that
all shortest paths connecting any two vertices on ek

1 and ek
2 go through w1 and

w2 (the argument is analogous for the other combinations of endpoints); it
might happen that w1 = w2. Let {w1, r1, . . . r2k−1−1, b1, r2k−1 , . . . r2k−2, z1}
be the sequence of vertices in ek

1 ordered from the leftmost to the right-
most vertex, where b1 ∈ B and ri ∈ Rk, and let {w2, s1, . . . s2k−1−1, b2, s2k−1 ,
. . . s2k−2, z2} be the analogous sequence of vertices in ek

2 . Refer to Fig. 12a. We
have:

d(ri, sj) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(b1, b2) − (2k−1 − i)
|e1|
2k

−(2k−1 − j) |e2|
2k if 1 ≤ i, j ≤ 2k−1 − 1

d(b1, b2) + (i − 2k−1 + 1)
|e1|
2k

+(j − 2k−1 + 1) |e2|
2k if 2k−1 ≤ i, j ≤ 2k − 2

d(b1, b2) − (2k−1 − i)
|e1|
2k

+(j − 2k−1 + 1) |e2|
2k if 1 ≤ i ≤ 2k−1 − 1, 2k−1 ≤ j ≤ 2k − 2

d(b1, b2) + (i − 2k−1 + 1)
|e1|
2k

−(2k−1 − j) |e2|
2k if 1 ≤ j ≤ 2k−1 − 1, 2k−1 ≤ i ≤ 2k − 2

Hence, W (ek
1∩Rk, ek

2∩Rk) =
∑

ri∈ek
1∩Rk,sj∈ek

2∩Rk d(ri, sj) = (2k−2)2d(b1, b2),

since all the expressions depending on |e1|
2k and |e2|

2k cancel each other out (they
cancel out in pairs, for example, the expressions in d(r1, s1) cancel out with
the ones in d(r2k−2, s2k−2)). The result then follows by summing over all pairs
of distinct edges e1 and e2. �

As explained before, by Eq. (11), and Lemmas 6.1 and 6.2, we obtain an
upper bound on W (Rk) for the k-th subdivision of any weighted graph (with
at least two edges):

W (Rk) ≤ (2k − 2)2W (B) + |E|
(

22k−1

3
− 3 · 2k−2 +

5
6

)
. (16)

An upper bound on W (Rk;V ) is obtained by using similar arguments as
in Lemma 6.2. Here we assume that for every edge e = wz of G, all shortest
paths connecting any vertex on ek with any vertex in V \{w, z} go through
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w1
r1 r2
r3 b1
r4 r5
r6

z1

w2
s1

s2
s3

b2
s4

s5
s6

z2

(a) (b) (c)

e1 e2
e1 e2

Figure 12. a Subdivisions e31 and e32: the shortest path be-
tween any two vertices (black, red, or blue) located on, respec-
tively, each subdivision, goes through the orange path. b The
orange paths are shortest paths connecting the blue points
(midpoints of e1 and e2). c The shortest path between any
point on the sub-edge of e1 in purple uses the orange path,
i.e., the same endpoints of e1 and e2; this is the condition used
in Lemma 6.2 that increases the value of the sum of distances
between vertices, respectively, on ek

1 and ek
2 (color figure on-

line)

the same endpoint w of e. The only difference with the proof of Lemma 6.2
is that we compute d(ri, v) for v ∈ V \{w, z} instead of d(ri, sj), obtaining
analogous expressions but distinguishing only the cases 1 ≤ i ≤ 2k−1 − 1 and
2k−1 ≤ i ≤ 2k − 2. The same type of expression is obtained for the endpoints
of the edge e. For example, d(ri, w) is given by:

d(ri, w) =

⎧
⎪⎨

⎪⎩

d(b, w) − (2k−1 − i)
|e|
2k

if 1 ≤ i ≤ 2k−1 − 1

d(b, w) + (i − 2k−1 + 1)
|e|
2k

if 2k−1 ≤ i ≤ 2k − 2

where b ∈ ek ∩ B. Thus, for a fixed v ∈ V it follows that
∑

ri∈ek∩Rk d(ri, v) =
(2k − 2)d(b, v) (all the expressions depending on |e|

2k again cancel each other
out). Therefore,

W (Rk;V ) =
∑

ri∈Rk,v∈V

d(ri, v) ≤ (2k − 2)W (B;V ). (17)

and the bound is attained when the condition on the shortest paths stated
above holds.

By distinguishing again between vertices that are on the same edge or on
distinct edges, and proceeding as above, we reach the following upper bound
on W (Rk;B). For the sake of brevity, we omit the details as the arguments
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are the same.

W (Rk;B) ≤ 2(2k − 2)W (B) + |E|
(

2k−2 − 1
2

)
. (18)

The preceding bound is attained when, for every edge e of G, all shortest
paths connecting any vertex on ek with any vertex in B \ {b} (where b ∈ ek)
go through the same endpoint of e.

By Eq. (10), and the bounds given in (16), (17), and (18), we can con-
clude that W (Gk) ≤ Ωk(G,G1); the upper bound in Theorem 6.1 then follows
by Equation (9). This bound is attained by all weighted graphs satisfying
the conditions on shortest paths that lead to the equality in Eqs. (16–18), in
particular all trees.

6.2. Proof of the Lower Bound in Theorem 6.1

The minimum value of μd(Gk) would be obtained by a graph G satisfying
that every pair of edges e1, e2 have the same length, and their midpoints are
connected by shortest paths going through any pair of endpoints of e1 and
e2 (see Fig. 12b). Indeed, as we explained for the upper bound, the sum of
distances between vertices on the subdivisions of the edges (black, red, or
blue) decreases when the combinations of endpoints to enter and get out of
the edges increase, so the minimum is given when all possible combinations of
endpoints can be used. In addition, the graph should be uniform, as otherwise
there would be a pair of edges in the situation described in Fig. 12c, which
would give a larger value for the sum of distances.

Clearly, there cannot exist a graph satisfying the previous condition on
the shortest paths connecting the midpoints of any pair of edges (simply con-
sider the midpoints of two incident edges), but, in order to make the com-
putations necessary to obtain a lower bound on μd(Gk), we shall assume in
Lemma 6.3 below that all edges of the graph G have the same length α, and
that any pair of its edges satisfies the condition on the midpoints.

By Eq. (10), it suffices to compute lower bounds on W (Rk),W (Rk;V ),
and W (Rk;B) in order to lower-bound the Wiener index of Gk. Again, we
begin with W (Rk).

Lemma 6.3. Let G be an α-uniform graph with m ≥ 2 edges. If the midpoints
of every pair e1, e2 of distinct edges of G are connected by shortest paths going
through any pair of endpoints of e1 and e2, then:

∑

{e1,e2}∈E,e1 �=e2

W (ek
1 ∩ Rk, ek

2 ∩ Rk) = (2k − 2)2W (B) − 2α
(m

2

) (
2k−2 − 1

2

)
.

Proof. Let e1 = w1z1 and e2 = w2z2, and let b1, b2 ∈ B be their correspond-
ing midpoints. We follow the same notation as in the proof of Lemma 6.2 where
{w1, r1, . . . r2k−1−1, b1, r2k−1 , . . . r2k−2, z1} and {w2, s1, . . . s2k−1−1, b2, s2k−1 ,
. . . s2k−2, z2} are the ordered sequence of vertices in, respectively, ek

1 and ek
2 .

Thus,
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d(ri, sj) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(b1, b2) − (2k−1 − i)
α

2k

−(2k−1 − j) α
2k if 1 ≤ i, j ≤ 2k−1 − 1

d(b1, b2) − (
i − 2k−1 + 1

) α

2k

−(j − 2k−1 + 1) α
2k if 2k−1 ≤ i, j ≤ 2k − 2

d(b1, b2) − (2k−1 − i)
α

2k

−(j − 2k−1 + 1) α
2k if 1 ≤ i ≤ 2k−1 − 1, 2k−1 ≤ j ≤ 2k − 2

d(b1, b2) − (
i − 2k−1 + 1

) α

2k

−(2k−1 − j) α
2k if 1 ≤ j ≤ 2k−1 − 1, 2k−1 ≤ i ≤ 2k − 2

Hence, we obtain:

W (ek
1 ∩ Rk, ek

2 ∩ Rk) = (2k − 2)2d(b1, b2)

−
(
W (ek

1 ∩ Rk, ek
1 ∩ B) + W (ek

2 ∩ Rk, ek
2 ∩ B)

)
,

which by Eq. (15) equals (2k −2)2d(b1, b2)−2α(2k−2−1/2). When considering
all pairs of distinct edges, the desired formula is obtained. �

As it was explained before, there is no graph satisfying the conditions
of Lemma 6.3, but it yields, together with Eq. (11) and Lemma 6.1, a lower
bound on W (Rk) by considering ρ = max{|e| : e ∈ E}.

W (Rk) ≥ (2k − 2)2W (B) − 2ρ

(
m

2

)(
2k−2 − 1

2

)

+ |E|
(

22k−1

3
− 3 · 2k−2 +

5
6

)
. (19)

We apply similar arguments to bound W (Rk;V ) and W (Rk;B). In both
cases we distinguish whether the vertices are on the same edge or on distinct
edges. For all pairs of distinct edges e1 and e2 (all edges of the same length
α), we also assume that their midpoints are connected by shortest paths going
through any pair of endpoints of e1 and e2. For W (Rk;V ) we have:

∑

ri∈ek
1∩Rk

d(ri, v) = (2k − 2)d(b1, v) − 2
α

2k
(1 + 2 + 3 + · · · + (2k−1 − 1))

= (2k − 2)d(b, v) − α(2k−2 − 1/2)

where v ∈ ek
2 ∩ V and b1 ∈ ek

1 ∩ B. Further, W (ek
1 ∩ Rk; ek

1 ∩ V ) = α(2k − 2).
By considering again ρ = max{|e| : e ∈ E} as done for Eq. (19), we obtain:

W (Rk; V ) ≥ (2k − 2)(W (B; V ) − mρ) − ρm(n − 2)

(
2k−2 − 1

2

)
+ mρ(2k − 2).

(20)

An analogous process gives W (ek
1 ∩ Rk, ek

2 ∩ B) = (2k − 2)d(b1, b2) −
α(2k−2 − 1/2), and together with Eq. (15) leads to:

W (Rk;B) ≥ 2(2k − 2)W (B) +
[
|E| − ρ

(
m

2

)] (
2k−2 − 1

2

)
. (21)
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Equation (10), and the bounds in (19), (20), and (21) imply:

W (Gk) ≥ Ωk(G,G1) − ρ

(
3
(

m

2

)
+ m(n − 2)

) (
2k−2 − 1

2

)
.

The lower bound in Theorem 6.1 again follows from Eq. (9).

7. Conclusions and Future Work

In this work we have presented the first thorough study of the continuous mean
distance, a natural graph parameter that has received little attention until
now. From a computational perspective, we presented two different methods
to compute the mean distance of a weighted graph in roughly quadratic time
in the number of edges. In addition, we obtained several structural results
that provide a deeper understanding of this parameter, and can also be used
to compute the mean distance faster for several graph classes. Finally, we
studied the relation between the discrete mean distance and the continuous
counterpart, in order to understand how the iterative subdivision of edges
makes the discrete mean distance converge to the continuous one.

We are left with many intriguing questions for future research. The com-
putational complexity of the continuous mean distance is far from settled. An
important question is for what other graph classes the continuous mean dis-
tance can be computed in subquadratic time. In the case of the discrete mean
distance, this was recently shown to be possible for planar graphs [4], so it is
worth studying if similar techniques could be applied to the continuous setting.
If that is not possible, one can still resort to approximation algorithms. For
this, it can be useful to understand further the relation between the discrete
and the continuous mean distance, since for instance, proving a constant factor
relation between them would lead to subquadratic approximation algorithms
for planar graphs.
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