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1. Introduction

Gluck and Ziller have used the theory of calibrations to prove that the minimal
volume unit vector fields defined on the 3-dimensional sphere are the Hopf
vector fields, [10]. Inspired by this celebrated result we try to parallel its main
ideas on the setting of an oriented Riemannian 2-manifold.

In [10] an appropriate calibration 3-form ϕ is found on the total space of
the unit tangent sphere bundle π : T 1

S
3 −→ S

3. Sections of this bundle are the
unit vector fields. Applying the theory of calibrations of Harvey and Lawson (
[11]), the corresponding embedded 3-dimensional submanifolds calibrated by
ϕ are precisely the Hopf vector fields. They minimize volume globally in a
unique homology class, namely the canonical class of the base S

3 which lies in
H3(T 1

S
3).

The question of minimality in dimension 2 has been studied before and
there are several important results eg. in [4–7,9,14]. A simple differential equa-
tion characterizing the 2-dimensional variational problem, ie. whose solutions
are precisely the germs of minimal volume vector fields on a Riemannian sur-
face, is partly missing. Such equation must of course have a space of solutions
compatible with the base manifold isometries. Not to mention the topological
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obstructions to the existence of a unit vector field, such as Euler characteristic
zero.

Let M denote a Riemann surface endowed with a unit norm class C2

vector field X. By the original definition in [10], or [9], we have

vol(X) = vol(M,X∗gS) =
∫

M

√
1 + ‖∇e0X‖2 + ‖∇e1X‖2 volM (1)

where gS is the Sasaki metric on T 1M and e0, e1 is any local orthonormal
frame on M . Indeed, ‖∇e0X‖2 + ‖∇e1X‖2 is a frame invariant quantity.

We denote by π : T 1M −→ M the unit tangent sphere bundle of M ,
perhaps with boundary. T 1M is a Riemannian submanifold of TM of metric
contact type with contact 1-form e0, this is, a contact manifold with the metric
gS and contact structure induced from the geodesic spray. N.B.: the present
e0 is a 1-form on the manifold T 1M .

For M oriented, there exists a natural differential system of 1-forms
e0, e1, e2 globally defined on T 1M—the well-known Cartan structural equa-
tions, which we like to see as the simplest case of a fundamental differential
system introduced in [2].

It is clear how to find the global frame e0, e1, e2 at each point u ∈ T 1M
such that π(u) = x ∈ M . The global vector field e0 is the tautologial horizontal
vector field, ie. the horizontal lift of u ∈ TxM to Tu(T 1M), also known as
geodesic spray vector field. Then e1 is such that e0, e1 is a well-defined direct
orthonormal basis of horizontal vector fields. Finally e2 is the vertical dual of
e1, tangent to the S1 fibres. Let us remark the dual of e0 is the tautologial
vertical vector field ξ, which gives T (T 1M) = ξ⊥ ⊂ TTM .

In this article we study the 2-forms ϕ = b2 e0∧e1+b1 e2∧e0+b0 e1∧e2 on
T 1M which define a calibration, ie. a comass 1 and closed 2-form, seemingly
appropriate for the study of unit vector fields on M .

Next, we endeavour to identify the existence of ϕ with that of a minimal
vector field X. Since M is not required to satisfy any further condition, our
main theorem becomes a local result; we deduce an equation of a minimal
volume vector field in any bounded domain: letting A denote the C-valued
function given essentially by the components of ∇·X, we must have, on a
conformal chart z of M ,

∂

∂z

A√
1 + |A|2 = 0. (2)

The function A is indeed globally defined.
In another article, [3], we have shown that the imaginary part of this

Cauchy-Riemann equation is indeed the necessary condition for minimal vol-
ume, deduced by Gil-Medrano and Llinares-Fuster in [8] to coincide with the
critical points of the functional (1). Our equation is a sufficient condition for
minimality arising from a certain type of calibrations.
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A second main result is the solution of (2) on a manifold of constant
negative sectional curvature K < 0.

Let us further remark that the existence of a parallel vector field, clearly
an absolute minima for the volume functional, starts as a local metric issue.
More precisely, the Riemann curvature tensor applied to X would imply flat-
ness. On the other end, the theory of calibrations applies to manifolds with
boundary and thus there is a path through geometry and topology to pursue.

2. Minimal Volume Over a Surface

We start by recalling some general ideas in any dimension.
Let (M, 〈 〉) be an oriented Riemannian manifold of dimension n + 1.

Recall the well-known metric and contact structure e0 on the total space of
π : T 1M −→ M . As usual, we let e0 denote the geodesic spray, i.e. the unit
norm horizontal vector field such that dπu(e0) = u ∈ Tπ(u)M, ∀u ∈ T 1 M .
Using duality of the Sasaki metric yields that, for any v ∈ Tu(T 1 M), we have
e0(v) = 〈e0, v〉 = 〈u,dπ(v)〉. It is thus easy to prove that e0 is the restriction of
the Liouville form pulled back from T ∗M to TM (we use musical isomorphism
notation throughout; eg. e0 = e0

�).
Let ϕ be a degree n + 1 calibration defined on the manifold T 1M .
Let X ∈ XM be a class C2 unit norm vector field on M and let us

fix the Hn+1(T 1M,R) homology class of X(M). Since ϕ ≤ volX , the min-
imal volume unit vector fields, within the same homology class, are those
for which ϕ = volX , ie. restricted to the Riemannian submanifold X(M)
the calibration coincides with the submanifold Riemannian volume. In other
words, recalling volX from [9,10], such unit vector fields are those for which
X∗ϕ = volX ; corresponding to the so-called ϕ-submanifolds which are sections
of π : T 1M −→ M . Then the fundamental relation from [11] follows: for any
unit X ′ ∈ XM , ∫

M

volX =
∫

X(M)

ϕ =
∫

X′(M)

ϕ ≤
∫

M

volX′ . (3)

The theory of calibrations holds for submanifolds-with-boundary of the
calibrated manifold. So we may well focus on a fixed open subset, a domain
Ω ⊂ M perhaps with non-empty boundary, and seek an immersion X : Ω →
T 1M giving a ϕ-submanifold. We remark that prescribing boundary values for
X on a compact ∂Ω implies that certain moment conditions are satisfied, cf.
[11, Eq. 6.9].

Recalling a useful notation π∗, π� for the horizontal, respectively verti-
cal, canonical lift, cf. [1], we have the ‘horizontal plus vertical’ decomposition
dX(Y ) = π∗Y + π�(∇Y X) in TTM . Also, we may find local adapted frames
e0, e1, . . . , en, e1+n, . . . , e2n, indeed local oriented orthonormal moving frames
on T 1M with the ei+n the vertical mirror of the horizontal ei, i = 1, . . . , n.

π∗X is the horizontal lift of X and thus π∗X = e0 restricted to the
submanifold X(M) ⊂ T 1M . The horizontal ei project through dπ to a frame
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ei ∈ TM (we use the same notation). Hence, we may write

dX(ei) = ei +
n∑

j=1

Aijej+n (4)

for i = 0, 1 . . . , n, where Aij = 〈∇ei
X, ej〉. Since ‖X‖ = 1, Ai0 = 0. This

implies that X∗e0 = X�.
We now suppose M is a Riemann surface and π : T 1M −→ M is the unit

circle tangent bundle. Let us search for the calibration ϕ.
As it is well-known, T 1M is parallelizable: we have the global direct

orthonormal frame e0, e1, e2, with e2 the vertical mirror of e1. In particular
π∗volM = e0 ∧ e1.

The following formulas are well-known, cf. [2] and the references therein:

de0 = e2 ∧ e1, de1 = e0 ∧ e2, de2 = K e1 ∧ e0 (5)

where K = 〈R(e0, e1)e1, e0〉 is the Gauss curvature. Notice K is the pullback
of a function on M and it is not necessarily a constant.

Let us assume the abbreviation b = π∗b for any given real function b on
M ; this gives a function on T 1M of course constant along the fibres.

Given b0, b1, b2 ∈ C1
M (R), we have a 2-form on T 1M :

ϕ = b2 e0 ∧ e1 + b1 e2 ∧ e0 + b0 e1 ∧ e2. (6)

This is a 2-calibration if it has comass 1 and dϕ = 0. Recall from [11] that
comass 1 is defined by

sup{‖ϕ‖∗
u : u ∈ T 1M} = 1 (7)

where

‖ϕ‖∗
u = sup

{〈ϕu, ζ〉 : ζ is a unit simple 2-vector at u
}
. (8)

Proposition 1. The 2-form ϕ on T 1M has comass 1 if and only if

sup
{
b0

2 + b1
2 + b2

2 : x ∈ M
}

= 1. (9)

The form ϕ is closed if and only if the function b1 +
√−1b0 is holomorphic.

Proof. For the first part, first, it is easy to deduce ϕ(u, v) = 〈b0e0 + b1e1 +
b2e2, u × v〉, for any u, v tangent to T 1M . We then recall that ‖u × v‖ =
‖u ∧ v‖. The definition of comass 1 together with Cauchy inequality yields
|(b0, b1, b2)| ≤ 1 and the requirement that the above supremum is 1. For the
second part of the theorem, we note that dbi(e2) = 0,∀i = 0, 1, 2, by construc-
tion. And therefore dϕ = 0 is equivalent to the condition db1(e1)+db0(e0) = 0.
As the frame varies along a single fibre we find Cauchy-Riemann equations.
Hence the result. �

Remark. There seems to be no advantage, later on, in considering general
functions on T 1M ; even if the equation db2(e2) + db1(e1) + db0(e0) = 0 looks
quite charmful. It is interesting to observe, by the way, that any two functions
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f, g on M , such that sup{f2 + |∇g|2} = 1, define a calibration 2-form by
f e0 ∧ e1 + dg ∧ e2.

Let us now seek for a calibration ϕ on T 1M , intended for the new study
on M .

Again let X ∈ XM have unit norm and be defined over (a domain con-
tained in) M . We then have a unique vector field Y on the same domain such
that X,Y is a direct orthonormal frame.

The differential of the map X is given by the identities dX(e0) = e0 +
A01e2, dX(e1) = e1 + A11e2, with usual notation Aij = 〈∇ei

X, ej〉. In other
words, abbreviating Ai1 = Ai,

X∗e0 = e0, X∗e1 = e1, X∗e2 = A0e
0 + A1e

1. (10)

Recalling definition (1), we find

volX = ‖dX(e0) ∧ dX(e1)‖ e0 ∧ e1

= ‖e0 ∧ e1 + A1e0 ∧ e2 + A0e2 ∧ e1‖ e0 ∧ e1

=
√

1 + A1
2 + A0

2 e0 ∧ e1.

(11)

On the other hand,

X∗ϕ = (−b0A0 − b1A1 + b2) e0 ∧ e1. (12)

Theorem 1. Suppose there exists a unit vector field X on M such that the
C-valued function A = A1 +

√−1A0 satisfies the following equation, on a
conformal chart z of M :

2(1 + |A|2)∂A

∂z
− A

∂|A|2
∂z

= 0, (13)

corresponding to A/
√

1 + |A|2 being holomorphic. Then there exists a calibra-
tion ϕ on the total space of T 1M for which X is a ϕ-submanifold. In particular,
X is a unit vector field on M of minimal volume.

Proof. By Proposition 1, we search for a map �b = (b0, b1, b2) from M into the
Euclidean ball of radius 1 and having a limit value in the S

2 boundary. Let us
also denote �A = (−A0,−A1, 1).

Now, by (11) and (12), condition X∗ϕ ≤ volX is equivalent to

〈�b, �A〉 ≤ | �A|.
Since we wish equality and since |�b| ≤ 1 ≤ | �A|, there is a unique solution:

�b =
�A

| �A| .

The corresponding ϕ is globally defined, with the same domain as X. Finally,
one must have ϕ closed. Hence the function A/

√
1 + |A|2 must be holomorphic;

and a straightforward computation leads to (13). �
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Remark. Seeing A as ∇X, one certainly finds inspiration for (13) from the
minimal surface u = u(x, y) graph equation in R

3, due to Lagrange, cf. [13,
Eq. 1]:

div

(
∇u√

1 + |∇u|2

)
= 0.

Corollary 1. Suppose X is a solution of (13) such that the function |A| is
constant. Then A is constant and the Riemann surface has constant sectional
curvature K = −|A|2 ≤ 0. In particular,

vol(X) =
√

1 − K vol(M). (14)

Proof. Let us use the notation e0 = X, e1 = Y on M , as before. In general
context, we have ∇0e0 = A0e1, ∇1e0 = A1e1 and so ∇0e1 = −A0e0, ∇1e1 =
−A1e0. Hence [e0, e1] = −A0e0 − A1e1 and then

R(e0, e1)e1 = ∇e0∇e1e1 − ∇e1∇e0e1 − ∇[e0,e1]e1

= −∇0(A1e0) + ∇1(A0e0) + A0∇0e1 + A1∇1e1

= −dA1(e0)e0 − A1A0e1 + dA0(e1)e0 + A0A1e1 − A0
2e0 − A1

2e0

= dA0(e1)e0 − dA1(e0)e0 − A0
2e0 − A1

2e0.

Now, if |A| is constant, then from (13) it follows that A is holomorphic. Hence-
forth A is constant. And thus K = 〈R(e0, e1)e1, e0〉 = −|A|2. �

Here follows a non-trivial complete example to which Corollary 1 applies.
It is the Lie group of affine transformations M = Aff(R) with left invariant
metric, together with any unit left invariant vector field X. It is easy to prove
that A is a constant.

Aff(R) is indeed a constant curvature hyperbolic surface, it is the 2-
dimensional case of Special Example 1.7 from [12], which is deduced there to
be hyperbolic. Moreover, we know there are no other Lie groups of dimension
2 with the same constant curvature K < 0 up to isometry.

Equation (13) proves quite hard to solve, be it for constant K < 0 or > 0.
In the hyperbolic case, we cannot be sure about uniqueness of the solutions
given by invariant theory.

3. On a Conformal Chart

We seek further general understanding of (13). Let us recall that a complex
chart z = x+ iy corresponds with isothermal coordinates, ie. a chart such that
the metric is given by λ|dz|2 for some function λ > 0.

A real vector field X is given by X = a∂x + b∂y = f∂z + f∂z where
f = a + ib. If Z = h∂z + h∂z is another vector field, then

〈X,Z〉 = (fh + fh)
λ

2
(15)
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so that ‖X‖2 = ffλ. We have Y = if∂z − if∂z = Y .

Recall the Levi-Civita connection, a real operator, is given by ∇z∂z = Γ∂z

where Γ = 1
λ

∂λ
∂z , ∇z∂z = ∇z∂z = 0, ∇z∂z = 1

λ
∂λ
∂z ∂z. In particular we have

R(∂z, ∂z)∂z = −∂Γ
∂z ∂z and hence

K =
〈R(∂z, ∂z)∂z, ∂z〉

〈∂z, ∂z〉2 = − 2
λ

∂Γ
∂z

= − 2
λ

∂2 log λ

∂z∂z
. (16)

Therefore ∇XX = ε0∂z + ε0∂z and ∇Y X = iε1∂z − iε1∂z where

ε0 = ff ′
z +

f2

λ
λ′

z + ff ′
z and ε1 = ff ′

z +
f2

λ
λ′

z − ff ′
z. (17)

We have A1 = 〈∇Y X,Y 〉 = (ε1f + ε1f)λ
2 and A0 = 〈∇XX,Y 〉 = (−iε0f +

iε0f)λ
2 . Now for a unit vector we have the identity f ′

zfλ+ff
′
zλ+ffλ′

z = 0 and

its conjugate. This yields A0 = iλ(f2f
′
z − f

2
f ′

z) and A1 = −λ(f2f
′
z + f

2
f ′

z),
finally giving a simple and noteworthy result.

Proposition 2. A = −2λf2f
′
z = 2(Γf + f ′

z).

We note that |A| = 2|f ′
z| and that a holomorphic unit vector field is just

a parallel vector field.

It is an interesting exercise to see from the last identities that A is defined
globally, independently of the choice of conformal chart.

Finding f from equation (13) in Theorem 1 together with Proposition 2
proves quite difficult, even for the trivial non-flat metrics.

On the round S
2 punctured at two antipodal points, it is stated and

proved in [5] that a minimum of vol(X) is attained: a solution X0 is given,
for instance, by the directed meridians unit tangent vector field, invariant by
parallel transport between poles. However, this solution does not solve our
equation—which is not surprising, for we have found vector fields with even
less volume than X0 in a smaller open region of S

2. Indeed, the integrand
function is smaller in the region. Such result is shown in a proper article, [3].
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Portugal
e-mail: rpa@uevora.pt

Received: September 10, 2022.

Accepted: March 4, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	Calibrations for the Volume of Unit Vector Fields in Dimension 2
	Abstract
	1. Introduction
	2. Minimal Volume Over a Surface
	3. On a Conformal Chart
	References




