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Abstract. We identify an incorrect estimate in the proof of one of princi-
pal theorems from Marchwicki and Miska (Results Math, 2021. https://
doi.org/10.1007/s00025-021-01479-2) and demonstrate that the original
construction of a special series with unique subsums remains valid when
using a weaker estimate that we prove to be true. Additionally, we present
a weaker version—without the uniqueness of subsums—of the Thm. 2.1
from Marchwicki and Miska (2021), but with a very simple proof based
on the concept of semi-fast convergent series.
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The main goal of this short note is to expose an incorrect estimate in the
intricate proof of one of the principal theorems of the recently published paper
[2]. The proof is based on a very delicate and complicated construction of a
special convergent series and we have decided to write this note as an extension
of the forementioned paper, assuming in particular that the reader will be
familiar with all preliminaries and notation used in the paper [2] which allows
us to use identical notation and definitions without adding any preliminaries
to this note. The theorem whose proof requires an amendment is the following
[2, Thm. 2.1].

Theorem 1. Let C = {n1 < n2 < n3 < · · · } be an infinite subset of N. Then
there exists a non-increasing sequence (xn) of positive real numbers such that
the series

∑∞
n=1 xn is convergent, {n ∈ N : xn > rn } = C, {n ∈ N : xn <

rn } = Cc and A(xn) = U(xn). In particular, A(xn) is a Cantor set.
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The first part of the original proof [2, pp. 4–6] is devoted to the definition
an auxiliary sequence (yn), the main sequence (xn) and to some crucial prop-
erties of these sequences. The second part of the proof [2, pp. 6–7] deals with
uniqueness of subsums which is then used to conclude that the achievement
set A(xn) necessarily is a Cantor set. However, it came to our attention that
one estimate in the second part is incorrect. Namely, in the second line from
the top on the seventh page of the article the Authors claim that
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could fail in the case (1) when nk+1 − nk > 5.
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Fortunately, the original proof can be rescued by observing that the equal-
ity (2) yields—in the discussed subcase—the following estimate
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and hence (see [2], lines 6–9 from the top of the page 7)
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and the last inequality is exactly(!) the inequality 2nk−1−nkyk > rnk+1 + yk+1

(with k replaced by k + 1) that was proved on page 5 of [2].
We conclude this note with a weak version of the Thm. 2.1 from [2] that,

firstly, preserves the crucial part of the thesis of the theorem and, secondly,
admits a rather simple proof based on the omission of the argument of A(xn) =
U(xn) and on the use of the concept of semi-fast convergent series instead.

A series
∑

xn with monotonic and positive terms convergent to 0 is called
semi-fast convergent [1] if it satisfies the condition

xn >
∑

k: xk<xn

xk.

If
∑

xn is a semi-fast convergent series, then there exist two uniquely deter-
mined sequences, (αk) of positive numbers decreasing to 0 and (Nk) of positive
integers such that
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where we put N0 := 0. The numbers αk are the values of the terms of the
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∑
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Below is the weaker version of the Thm. 2.1 from [2] that can be proven
by means of semi-fast convergent series.

Theorem 2. Let C = {n1 < n2 < n3 < . . .} be an infinite subset of N. Then
there is a non-increasing sequence (xn) of positive real numbers such that the
series

∑∞
n=1 xn converges, {n ∈ N : xn > rn } = C, {n ∈ N : xn < rn } = Cc

and A(xn) is a Cantor set.

Proof. Define n0 := 0 and choose any x0 > 0. Further, let Ik := {nk−1 +
1, nk−1 + 2, . . . , nk } for k ∈ N. Then we define by induction a sequence
(xi)i∈N such that
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The following estimate holds for the nk-th remainder of the series
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Thus (xi)i∈N = (αk, Nk)k∈N with αk = xnk
and Nk = nk − nk−1, that is,∑∞

i=1 xi is a semi-fast convergent series and hence A(xi) is a Cantor set by the
Thm. 16 from [1].

Clearly, the equalities {n ∈ N : xn > rn } = C, {n ∈ N : xn < rn } = Cc

hold for the series. �
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