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Abstract. In this paper, a couple of q-supercongruences for truncated
basic hypergeometric series are proved, most of them modulo the cube
of a cyclotomic polynomial. One of these results is a new q-analogue
of the (E.2) supercongruence by Van Hamme, another one is a new q-
analogue of a supercongruence by Swisher, while the other results are
closely related q-supercongruences. The proofs make use of special cases
of a very-well-poised 6φ5 summation. In addition, the proofs utilize the
method of creative microscoping (which is a method recently introduced
by the first author in collaboration with Wadim Zudilin), and the Chinese
remainder theorem for coprime polynomials.

Mathematics Subject Classification. Primary 33D15, Secondary 11A07.

Keywords. Basic hypergeometric series, supercongruences, q-congruences,
cyclotomic polynomial, 6φ5 summation.

1. Introduction

In 1997, Van Hamme [24] presented 13 remarkable supercongruences corre-
sponding to Ramanujan’s or to Ramanujan-like formulas for 1/π. For instance,
the two infinite series expansions
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correspond to the following two supercongruences for truncated hypergeomet-
ric series:

(p−1)/2∑

k=0

(−1)k(4k + 1)
( 12 )3k
k!3

≡ (−1)(p−1)/2p (mod p3), (1.1)

(p−1)/3∑

k=0

(−1)k(6k + 1)
( 13 )3k
k!3

≡ p (mod p3), for p ≡ 1 (mod 3), (1.2)

where p is an odd prime, and (a)n = a(a + 1) · · · (a + n − 1) denotes the
Pochhammer symbol. The supercongruence (1.1) was first proved by Morten-
son [18] using a technical evaluation of gamma functions, and later reproved by
Zudilin [28] and Long [16]. Swisher [23] employed Long’s method to prove four
supercongruences of Van Hamme, including (1.2) (i.e., the (E.2) supercongru-
ence in [24]). He [11] also gave a generalization of (1.2). In 2016, Osburn and
Zudilin [21] confirmed the last supercongruence conjecture of Van Hamme.

During the past few years, q-analogues of supercongruences have been
investigated by many authors (see, for example, [3–10,12–15,19,20,22,25–27,
29]). In particular, the first author [3,4] gave q-analogues of (1.1) and (1.2) as
follows: for any odd integer n,
(n−1)/2∑

k=0

(−1)k[4k + 1]
(q; q2)3k
(q2; q2)3k

qk2 ≡ (−1)(n−1)/2q(n−1)2/4[n] (mod [n]Φn(q)2),

and for any positive integer n with n ≡ 1 (mod 3),
(n−1)/3∑

k=0

(−1)k[6k + 1]
(q; q3)3k
(q3; q3)3k

q(3k2+k)/2 ≡(−1)(n−1)/3q(n−1)(n−2)/6[n]

(mod [n]Φn(q)2).

Here and in what follows, (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) is the q-shifted
factorial, [n] = [n]q = (1 − qn)/(1 − q) is the q-integer, and Φn(q) denotes the
n-th cyclotomic polynomial in q, i.e.,

Φn(q) =
∏

1�k�n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. The first author and Zudilin [10,
Theorem 3.5 with r = 1] also gave another q-analogue of (1.2): for any positive
integer n with n ≡ 1 (mod 6),
(n−1)/3∑

k=0

(−1)k[6k + 1]q2
(q2; q6)3k(−q3; q6)k

(q6; q6)3k(−q5; q6)k
qk ≡ q1−n[n]q2 (mod [n]Φn(q)2).

(1.3)
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One of the aims of this paper is to establish the following new q-analogue
of (1.2).

Theorem 1.1. Let n ≡ 1 (mod 6) be a positive integer. Then
M∑

k=0

(−1)k[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ q2(1−n)/3[n]
(−q3; q3)(n−1)/3

(−q2; q3)(n−1)/3
(mod [n]Φn(q)2),

(1.4)

where M = (n − 1)/3 or M = n − 1.

We shall also give the following similar result.

Theorem 1.2. Let n ≡ 1 (mod 3) be a positive integer. Then
M∑

k=0

[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ q2(1−n)/3[n]
(q3; q3)(n−1)/3

(q2; q3)(n−1)/3
(mod Φn(q)3), (1.5)

where M = (n − 1)/3 or M = n − 1.

Note that the supercongruence (1.5) does not hold modulo [n]Φn(q)2 in
general, even for n ≡ 1 (mod 6). We take this opportunity to point out that
Theorems 1 and 2 in [8] only hold modulo Φn(q)3 and Φn(q)2, respectively,
but do not hold modulo [n], since Lemma 3 in [8] is not true (it only holds for
even integers d).

Swisher [23] also proved that, for any prime p ≡ 2 (mod 3),
(2p−1)/3∑

k=0

(−1)k(6k + 1)
( 13 )3k
k!3

≡ −2p (mod p3). (1.6)

A q-analogue of (1.6) was given by the first author [4, Theorem 1.5 with
(d, r) = (3, 1)]: for any positive integer n ≡ 2 (mod 3),

(2n−1)/3∑

k=0

(−1)kq(3k2+k)/2[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ −[2n]q(n−1)(2n−1)/3

(mod [n]Φn(q)2).

In this paper, we shall give a new q-analogue of (1.6).

Theorem 1.3. Let n ≡ 5 (mod 6) be a positive integer. Then
M∑

k=0

(−1)k[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ −q2(1−2n)/3[2n]
(−q3; q3)(2n−1)/3

(−q2; q3)(2n−1)/3
(mod [n]Φn(q)2),

(1.7)

where M = (2n − 1)/3 or M = n − 1.

Similarly, we have the following result.
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Theorem 1.4. Let n ≡ 2 (mod 3) be a positive integer. Then
M∑

k=0

[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ q2(1−2n)/3[2n]
(q3; q3)(2n−1)/3

(q2; q3)(2n−1)/3
(mod Φn(q)2), (1.8)

where M = (2n − 1)/3 or M = n − 1.

Note that the q-supercongruence (1.8) does not hold modulo Φn(q)3 for
n > 2. We shall prove Theorems 1.1, 1.2, and 1.3 modulo Φn(q)3 and Theorem
1.4 by using a summation for a very-well-poised 6φ5 series and the ‘creative
microscoping’ method introduced by the first author in collaboration with
Zudilin [9]. The proof of Theorems 1.1 and 1.3 also requires the use of a lemma
previously given by the present authors.

From Theorems 1.2 and 1.4, we can deduce the following supercongru-
ences.

Corollary 1.5. Let p ≡ 1 (mod 3) be a prime. Then
(p−1)/3∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ pΓp( 23 )3 (mod p3), (1.9)

where Γp(x) denotes the p-adic Gamma function.

Corollary 1.6. Let p ≡ 2 (mod 3) be an odd prime. Then
(2p−1)/3∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ −6Γp( 23 )3 (mod p2).

2. Proof of Theorem 1.1

We first give the following result, which is due to the present authors [6, Lemma
2.1].

Lemma 2.1. Let d, m and n be positive integers with m � n − 1. Let r be an
integer satisfying dm ≡ −r (mod n). Then, for 0 � k � m and any indeter-
minate a, we have

(aqr; qd)m−k

(qd/a; qd)m−k
≡ (−a)m−2k (aqr; qd)k

(qd/a; qd)k
qm(dm−d+2r)/2+(d−r)k (mod Φn(q)).

If gcd(d, n) = 1, then the above q-congruence also holds for a = 1.

We also need the following result to prove the truth of (1.4) modulo [n].

Lemma 2.2. Let n be a positive integer coprime with 6, and let a be an inde-
terminate. Then

m∑

k=0

(−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ 0 (mod [n]), (2.1)
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n−1∑

k=0

(−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ 0 (mod [n]), (2.2)

where m = (n− 1)/3 if n ≡ 1 (mod 6), and m = (2n− 1)/3 if n ≡ 5 (mod 6).

Proof. Clearly, Lemma 2.2 is true for n = 1. We now assume that n > 1. By
Lemma 2.1, we can easily deduce that the k-th and (m − k)-th terms on the
left-hand side of (2.1) cancel each other modulo Φn(q), i.e.,

(−1)m−k [6(m − k) + 1](aq; q3)m−k(q/a; q3)m−k(q; q3)m−k

(aq3; q3)m−k(q3/a; q3)m−k(q3; q3)m−k

≡ −(−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
(mod Φn(q)).

Thus, we have proved that the q-congruence (2.1) holds modulo Φn(q). Since
the numerator contains the factor (q; q3)k, it is easy to see that the k-th sum-
mand in (2.2) is congruent to 0 modulo Φn(q) for m < k � n − 1. This proves
the q-congruence (2.2) modulo Φn(q).

Now we can prove (2.1) and (2.2) modulo [n]. Let ζ �= 1 be an n-th root
of unity, not necessarily primitive. In other words, ζ is a primitive root of unity
of degree s satisfying s | n and s > 1. Let cq(k) stand for the k-th term on the
left-hand side of (2.2), i.e.,

cq(k) = (−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
.

Taking n = s in the q-congruences (2.1) and (2.2) modulo Φn(q), we get

s1∑

k=0

cζ(k) =
s−1∑

k=0

cζ(k) = 0,

where s1 = (s − 1)/3 if s ≡ 1 (mod 6), and s1 = (2s − 1)/3 if s ≡ 5 (mod 6).
It is not difficult to see that

lim
q→ζ

cq(�s + k)
cq(�s)

=
cζ(�s + k)

cζ(�s)
= cζ(k).

Therefore,

n−1∑

k=0

cζ(k) =
n/s−1∑

�=0

s−1∑

k=0

cζ(�s + k) =
n/s−1∑

�=0

cζ(�s)
s−1∑

k=0

cζ(k) = 0, (2.3)

and

m∑

k=0

cζ(k) =
(m−s1)/s−1∑

�=0

cζ(�s)
s−1∑

k=0

cζ(k) + cζ(m − s1)
s1∑

k=0

cζ(k) = 0.
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This proves that both of the sums
∑n−1

k=0 cq(k) and
∑m

k=0 cq(k) are divisible
by Φs(q) for any divisor s > 1 of n. Since

∏

s|n, s>1

Φs(q) = [n],

we complete the proof of (2.1) and (2.2). �

Like most of the q-supercongruences in [9], we have the following para-
metric generalization of Theorem 1.1.

Theorem 2.3. Let n ≡ 1 (mod 6) be a positive integer. Then, modulo [n](1 −
aqn)(a − qn),

M∑

k=0

(−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ q2(n−1)/3[n]

(−q3; q3)(n−1)/3

(−q2; q3)(n−1)/3
,

(2.4)

where M = (n − 1)/3 or M = n − 1.

Proof. We start with the following summation for a very-well-poised 6φ5 series
(see [2, Appendix (II.20)]):

∞∑

k=0

(1 − aq2k)(a; q)k(b; q)k(c; q)k(d; q)k

(1 − a)(q; q)k(aq/b; q)k(aq/c; q)k(aq/d; q)k

(
aq

bcd

)k

=
(aq; q)∞(aq/bc; q)∞(aq/bd; q)∞(aq/cd; q)∞
(aq/b; q)∞(aq/c; q)∞(aq/d; q)∞(aq/bcd; q)∞

. (2.5)

(The infinite series in (2.5) converges for |q| < 1 and |aq/bcd| < 1.) Specializing
(2.5) by letting q �→ q3, a = q, b = q1−n, c = q1+n, and d = −q2, we have

(n−1)/3∑

k=0

(−1)k[6k + 1]
(q1−n; q3)k(q1+n; q3)k(q; q3)k

(q3−n; q3)k(q3+n; q3)k(q3; q3)k

=
(q4; q3)(n−1)/3(−q1−n; q3)(n−1)/3

(q3−n; q3)(n−1)/3(−q2; q3)(n−1)/3

= q2(1−n)/3[n]
(−q3; q3)(n−1)/3

(−q2; q3)(n−1)/3
.

This shows that both sides of (2.4) are equal for a = q−n and a = qn. This
means that the congruence (2.4) holds modulo 1 − aqn and a − qn.

Moreover, by Lemma 2.2, the left-hand side of (2.4) is congruent to 0
modulo [n]. Since 1 − qn (n is odd) is relatively prime to 1 + qk, we see that
the right-hand side of (2.4) is also congruent to 0 modulo [n]. Noticing that
1 − aqn, a − qn, and [n] are pairwise coprime polynomials in q, we finish the
proof of the theorem. �
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Proof of Theorem 1.1. Since (1−qn)2 contains the factor Φn(q)2 and (q3; q3)M

is coprime with Φn(q), letting a = 1 in (2.4), we conclude that (1.4) is true
modulo Φn(q)3. Note that Lemma 2.2 also holds for a = 1. Namely, the q-
congruence (1.4) is true modulo [n] and is therefore also true modulo [n]Φn(q)2.
This completes the proof. �

3. Proof of Theorem 1.2

We first give the following parametric generalization of Theorem 1.2: for n ≡ 1
(mod 3), modulo Φn(q)(1 − aqn)(a − qn),

M∑

k=0

[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ q2(n−1)/3[n]

(q3; q3)(n−1)/3

(q2; q3)(n−1)/3
,

(3.1)

where M = (n − 1)/3 or M = n − 1. The proof of (3.1) is analogous to that of
(2.4). This time, we make the substitutions q �→ q3, a = q, b = q1−n, c = q1+n,
and d = q2 in (2.5) to obtain

(n−1)/3∑

k=0

[6k + 1]
(q1−n; q3)k(q1+n; q3)k(q; q3)k

(q3−n; q3)k(q3+n; q3)k(q3; q3)k

=
(q4; q3)(n−1)/3(q1−n; q3)(n−1)/3

(q3−n; q3)(n−1)/3(q2; q3)(n−1)/3

= q2(1−n)/3[n]
(q3; q3)(n−1)/3

(q2; q3)(n−1)/3
.

Thus, the two sides of (3.1) are equal for a = q−n and a = qn. This means
that the congruence (3.1) is true modulo 1 − aqn and a − qn.

Moreover, by Lemma 2.1, for m = (n− 1)/3 we can deduce that the k-th
and (m − k)-th terms on the left-hand side of (3.1) cancel each other modulo
Φn(q), i.e.,

[6(m − k) + 1](aq; q3)m−k(q/a; q3)m−k(q; q3)m−k

(aq3; q3)m−k(q3/a; q3)m−k(q3; q3)m−k

≡ −[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
(mod Φn(q)).

(Note that we have utilized the fact that qn/2 ≡ −1 (mod Φn(q)) for even n.)
This proves (3.1) modulo Φn(q).

Finally, letting a = 1 in (3.1), we arrive at the q-supercongruence (1.5).
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4. Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. We first give a parametric generalization of Theorem 1.4:
for n ≡ 5 (mod 6), modulo [n](1 − aq2n)(a − q2n),

M∑

k=0

(−1)k[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ −q2(1−2n)/3[2n]

(−q3; q3)(2n−1)/3

(−q2; q3)(2n−1)/3
, (4.1)

where M = (2n − 1)/3 or n − 1. The proof of (4.1) is very similar to that of
(2.4). Specializing (2.5) by q �→ q3, a = q, b = q1−2n, c = q1+2n, and d = −q2,
we have

(2n−1)/3∑

k=0

(−1)k[6k + 1]
(q1−2n; q3)k(q1+2n; q3)k(q; q3)k

(q3−2n; q3)k(q3+2n; q3)k(q3; q3)k

=
(q4; q3)(2n−1)/3(−q1−2n; q3)(2n−1)/3

(q3−2n; q3)(2n−1)/3(−q2; q3)(2n−1)/3

= −q2(1−2n)/3[2n]
(−q3; q3)(2n−1)/3

(−q2; q3)(2n−1)/3
.

This proves the congruence (4.1) modulo 1 − aq2n and a − q2n. Moreover, the
proof of (4.1) modulo [n] follows from Lemma 2.2. �

Finally, taking a = 1 in (4.1), we arrive at the desired q-supercongruence
(1.7).

Proof of Theorem 1.4. We have the following congruence with a parameter a:
for n ≡ 5 (mod 6), modulo (1 − aq2n)(a − q2n),

M∑

k=0

[6k + 1]
(aq; q3)k(q/a; q3)k(q; q3)k

(aq3; q3)k(q3/a; q3)k(q3; q3)k
≡ q2(1−2n)/3[2n]

(q3; q3)(2n−1)/3

(q2; q3)(2n−1)/3
,

(4.2)

where M = (2n−1)/3 or M = n−1. The congruence (4.2) is equivalent to say
that both sides are equal for a = q2n and a = q−2n. But this again follows from
(2.5) by performing the parameter substitutions q �→ q3, a = q, b = q1−2n,
c = q1+2n, and d = q2. At last, letting a = 1 in (4.2), we get (1.8). �

5. Proof of Corollaries 1.5 and 1.6

Proof of Corollary 1.5. Letting n = p, where p is a prime congruent to 1
(mod 3), and q → 1 in (1.5), we obtain

(p−1)/3∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ p
(p−1

3 )!
( 23 )(p−1)/3

(mod p3).
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Recall that the p-adic Gamma function has the properties: for any p-adic
integer x,

Γp(x + 1)
Γp(x)

=

{
−x, p � x,

−1, p | x,

Γp(x)Γp(1 − x) = (−1)a0(x),

where a0(x) ∈ {1, 2, . . . , p} satisfies a0(x) ≡ x (mod p). Let Γ(x) be the clas-
sical Gamma function. Then

(p−1
3 )!

( 23 )(p−1)/3

=
Γ(p+2

3 )Γ( 23 )
Γ(1)Γ(p+1

3 )
=

Γp(p+2
3 )Γp( 23 )

Γp(1)Γp(p+1
3 )

= (−1)(2p+1)/3 Γp(p+2
3 )Γp( 2−p

3 )Γp( 23 )
Γp(1)

.

By [17, Theorem 14]), for p � 5, we have

Γp(a + mp) ≡ Γp(a) + Γ′
p(a)mp (mod p2), (5.1)

and so Γp(p+2
3 )Γp( 2−p

3 ) ≡ Γp( 23 )2 (mod p2). The proof then follows from the
fact Γp(1) = (−1)(2p+1)/3 = −1. �

Proof of Corollary 1.6. Letting n = p, where p is an odd prime congruent to
2 (mod 3), and q → 1 in (1.8), we obtain

(2p−1)/3∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ 2p
( 2p−1

3 )!
( 23 )(2p−1)/3

(mod p2).

Further,

p(2p−1
3 )!

( 23 )(2p−1)/3

= p
Γ( 2p+2

3 )Γ( 23 )
Γ(1)Γ(2p+1

3 )
= 3

Γp( 2p+2
3 )Γp( 23 )

Γp(1)Γp( 2p+1
3 )

= 3
Γp( 2p+2

3 )Γp( 2−2p
3 )Γp( 23 )

Γp(1)
,

and by (5.1), Γp( 2p+2
3 )Γp( 2−2p

3 ) ≡ Γp( 23 )2 (mod p2). �

6. Some Open Problems

Although the q-supercongruence (1.5) is not true modulo [n] in general, using
the same arguments as in the proof of Theorem 1.1, we can show that, for
n ≡ 1 (mod 3) and n > 1,

M∑

k=0

[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ 0 (mod
∏

j|n, j>1
j≡1 mod 3

Φj(q)), (6.1)
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where M = (n − 1)/3 or M = n − 1. Letting n = pr and q → 1 in the above
q-congruence, we obtain the following result: for any prime p ≡ 1 (mod 3) and
integer r � 1,

(pr−1)/d∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ 0 (mod pr), (6.2)

where d = 1, 3. Inspired by Dwork’s work [1] and Swisher’s conjectures [23,
(A.3)–(L.3)], we propose the following conjecture on Dwork-type supercongru-
ences, which is a uniform generalization of (1.9) and (6.2).

Conjecture 6.1. Let p ≡ 1 (mod 3) be a prime and let r � 1. Then
(pr−1)/d∑

k=0

(6k + 1)
( 13 )3k
k!3

≡ pΓp( 23 )3
(pr−1−1)/d∑

k=0

(6k + 1)
( 13 )3k
k!3

(mod p3r),

where d = 1, 3.

Note that the following Dwork-type supercongruence (see [23, (E.3)] and
[4, Conjecture 5.3]) has been proved by the first author and Zudilin [9, Theorem
3.5] by establishing its q-analogue:

For any prime p ≡ 1 (mod 3) and integer r � 1,
(pr−1)/d∑

k=0

(−1)k(6k + 1)
( 13 )3k
k!3

≡ p

(pr−1−1)/d∑

k=0

(−1)k(6k + 1)
( 13 )3k
k!3

(mod p3r),

(6.3)

where d = 1, 3.
We believe that the following new q-analogue of (6.3), which is also a

generalization of Theorem 1.1, should be true.

Conjecture 6.2. Let n > 1 be an integer with n ≡ 1 (mod 6) and let r � 1.
Then, modulo [nr]

∏r
j=1 Φnj (q)2,

(nr−1)/d∑

k=0

(−1)k[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ q2(1−n)/3[n]
(−q3; q3)(nr−1)/3(−q2n; q3n)(nr−1−1)/3

(−q2; q3)(nr−1)/3(−q3n; q3n)(nr−1−1)/3

×
(nr−1−1)/d∑

k=0

(−1)k[6k + 1]qn
(qn; q3n)3k
(q3n; q3n)3k

,

where d = 1, 3.

Likewise, we conjecture a Dwork-type generalization of Theorem 1.2 as
follows.

Conjecture 6.3. Let n > 1 be an integer with n ≡ 1 (mod 3) and let r � 1.
Then, modulo

∏r
j=1 Φnj (q)3,

(nr−1)/d∑

k=0

[6k + 1]
(q; q3)3k
(q3; q3)3k

≡ q2(1−n)/3[n]
(q3; q3)(nr−1)/3(q2n; q3n)(nr−1−1)/3

(q2; q3)(nr−1)/3(q3n; q3n)(nr−1−1)/3
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×
(nr−1−1)/d∑

k=0

[6k + 1]qn

(qn; q3n)3k
(q3n; q3n)3k

,

where d = 1, 3.
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