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Dynamics of the Painlevé-Ince Equation
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Abstract. The Painlevé-Ince differential equation y′′ + 3yy′ + y3 = 0 has
been studied from many points of view. Here we complete its study pro-
viding its phase portrait in the Poincaré disc.
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1. Introduction and Statement of the Main Results

The Painlevé-Ince differential equation

d2y

dt2
+ 3y

dy

dt
+ y3 = 0, (1)

has been studied for several authors due to its interesting properties:

(i) It has eight Lie point symmetries with the Lie Algebra sl(2, R) conse-
quently through a point transformation it is linearisable, see [12].

(ii) It has a Riccati hierarchy based on the Riccati differential equation with
the operator d

dy + y, see [5].
(iii) It satisfies the Painlevé property, see [11].
(iv) Its left Painlevé series together with its well known right Painlevé series

have been studied in [6,7,9].
(v) Its mixed Painlevé series together with their geometric interpretations

were studied in [2,8].

Extensions of the Painlevé-Ince differential Eq. (1) can be found in [10].
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It is easy to check that the general solution of the Painlevé-Ince differen-
tial Eq. (1) is

y(t) =
2a(b + t)

3 + ab2 + 2abt + at2
,

where a and b are arbitrary constants. From this general solution we can
determine the constants a and b for each particular solution y(t) such that
y(t0) = y0 and y′(t0) = y′

0. But to know these explicit solutions, it is not
easy to determine the qualitative properties of these solutions, i.e. where they
are born, where they die tells, if they define homoclinic orbits, or heteroclinic
orbits, ...

In order to describe the dynamics of the Painlevé-Ince differential Eq. (1)
we write this second order differential equation as the system of first order

dx

dt
= x′ = −3yx − y3,

dy

dt
= y′ = x.

(2)

This differential system has the first integral

H(x, y) =

(
x + y2

)2

2x + y2
, (3)

as it is easy to verify. But again it is not trivial to describe the dynamics of
the orbits of the Painlevé-Ince differential Eq. (1) using this first integral.

Here we one to complete the studies on the Painlevé-Ince differential
equation describing the dynamics of its differential system (2) in the Poincaré
disc. The Poincaré disc is the closed unit disc centered at the origin of coor-
dinates of R2, where its interior is identified with the whole plane R

2 and its
boundary (the circle S

1) is identified with the infinity of R2. Note that in the
plane R

2 we can go to infinity in as many as directions as points has the circle
S
1. For a detailed introduction of the Poincaré disc see subsect. 2.2.

Our main result is the follwing one.

Theorem 1. The phase portrait of the Painlevé-Ince differential system (2) in
the Poincaré disc is shown in Fig. 1.

Theorem 1 is proved in the next section. From Fig. 1 we can see that the
Painlevé-Ince differential system (2) has exactly five different kind of orbits:

(i) A unique equilibrium point (0, 0).
(ii) A continuum of homoclinic orbits starting and ending at the equilibrium

point (0, 0).
(iii) A continuum of heteroclinic orbits starting at the equilibrium point (0, 0)

and ending at infinity at the equilibrium point localized at the origin of
the local chart V1 (see the proof of Theorem 1 for more details).
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Figure 1. The phase portrait of the differential system (2)
in the Poincaré disc

(iv) A continuum of heteroclinic orbits starting at infinity at the equilibrium
point localized at the origin of the local chart V1 and ending at the
equilibrium point (0, 0).

(v) A continuum of homoclinic orbits starting and ending at the equilibrium
point localized at the origin of the local chart V1.

2. Proof of Theorem 1

2.1. Finite Equilibrium Points

Clearly that the differential system (2) has a unique finite equilibrium, the
origin of coordinates. Since the linear part of this differential system at the
origin has the matrix

(
0 0
1 0

)
,

the origin is a nilpotent equilibrium point. By applying Theorem 3.5 of [4] its
local phase portrait is formed by an elliptic and a hyperbolic sector, separated
by two parabolic sectors. Using the first integral (3) it follows easily that
the boundary of the elliptic sector is the parabola x + y2 = 0, and that the
boundary of the hyperbolic sector is the parabola 2x + y2 = 0. Between these
two parabolas there are the two parabolic sectors. For a picture of the local
phase portrait at this finite equilibrium point see the neighorbood of the origin
in the Poincaré disc of Fig. 1.

2.2. Infinite Equilibrium Points

In this subsection we shall use the Poincaré compactification, done by Poincaré
in [13,14]. This compactification allows to study the dynamics near the infinity
of a polynomial differential system in the plane R

2. See Chapter 5 of [4] or
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the added Data File for additional information on this compactification and
for the expressions in the local charts that we shall use in what follows for
studying the phase portrait of system (2) the Poincaré disc.

We remark that for studying the infinite equilibrium points we only need
to study the infinite equilibrium points of the local chart U1, and to verify if
the origin of U2 is an infinite equilibrium point.

Now we shall use the local charts U1 and U2 for studying the infinite sin-
gular points of the polynomial differential system (2) extended to the Poincaré
disc. Thus the polynomial differential system (2) in the local chart U1 is

u′ = v2 + 3u2v + u4,
v′ = uv(3v + u2). (4)

The unique infinite equilibrium of system (4), i.e. the unique equilibrium point
(u, v) with v = 0, is the origin (0, 0). Since the linear part of system (4) at the
origin is the matrix identically zero, in order to study its local phase portrait
we need to do changes of variables called blow ups, see [1] for more details on
these changes of variables.

We do the blow up (u, v) = (u1, u1v1). Then in the new variables (u1, v1)
the differential system (4) becomes

u′
1 = u2

1(u
2
1 + 3u1v1 + v2

1),
v′
1 = −u1v

3
1 .

(5)

Doing the rescaling of the independent variable t → τ through the change
dτ = u1dt system (5) writes

du1

dτ
= u1(u2

1 + 3u1v1 + v2
1),

dv1
dτ

= −v3
1 .

(6)

The differential system (6) is a polynomial homogeneous differential sys-
tem of degree 3, the phase portraits of such systems have been studied in [3].
Thus system (6) has the following four invariant straight lines through the
origin of coordinates u1v1(u1 + v1)(u1 + 2v1) = 0, studying the motion on
these straight lines we obtain that the local phase portrait at the origin of the
differential system (6) is given in Fig. 2a.

Going back to the differential system (5) we get that the local phase
portrait at the origin of the differential system (5) is given in Fig. 2b. Finally
going back to the differential system (4) we get that the local phase portrait
at the origin of the differential system (4) is given in Fig. 2c.

Now we study if the origin of the local chart U2 is an equilibrium point.
Then the differential system (2) in the local chart U2 writes

u′ = −1 − 3uv − u2v2,
v′ = −uv3.

(7)

Hence the origin of the local chart U2 is not an infinite equilibrium points.
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Figure 2. The local phase portraits of the blow up of the
origin of the local chart U1

In summary the unique infinite equilibrium points are the origins of the
local charts U1 and U2. In the Poincaré disc at the origin of U1 we see the
half phase portrait in v ≥ 0 of Fig. 2c, and at the origin of V1 the half phase
portrait in v ≤ 0 of Fig. 2c. See Fig. 1. This completes the phase portrait in
the Poincaré disc of the differential system (2). Therefore Theorem 1 is proved.
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