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1. Introduction

A Cantorval is a subset of the real line which shares properties of the Can-
tor set as well as of an interval. Its construction reminds that of Cantor set,
but it is regularly closed, that means it is the closure of its interior. To con-
struct a Cantorval one mimics the construction of the ternary Cantor set. The
difference is that in odd steps one removes middle intervals, while in even
steps remains them. This is the way to produce a symmetric Cantorval of an
M-Cantorval, which we call briefly a Cantorval.

Cantorvals appear naturally when one consider arithmetic sum of two
Cantor sets, see [1,19,21]. It turns out that the range of a purely atomic finite
measure, or equivalently a set of subsums of an absolutely convergent series,
can be a Cantorval. In this paper we study the sets of uniqueness of Cantorvals
in their measure or series representation. It is worth to mention that not every
Cantorval has such representation, [4]. Having a purely atomic probabilistic
measure μ, a real number t ∈ [0, 1] is unique, if there is exactly one event
A with μ(A) = t. Set of uniqueness of rng(μ) ⊆ [0, 1] consists of all unique
numbers.

We show that the set of uniqueness has an empty interior. The main
result is that the celebrated Guthrie–Nymann’s Cantorval has comeager set of
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uniqueness. In the opposite to unique values are those which appear continuum
many times, called c-points. We observe that any Cantorval can be enlarged
to a Cantorval with c-points. We study minimal Cantorvals, that is Cantorvals
which cannot be essentially shrunk. Finally, we characterize achievement sets
generated by semi-fast convergent sequence which are slim. An achievement
set is slim if it has a representation without c-points.

2. Preliminaries

By E(xn) we denote the set of all subsums of series
∑∞

n=1 xn, that is

E(xn) =

{ ∞∑

n=1

εnxn : (εn) ∈ {0, 1}N
}

=

{
∑

n∈A

xn : A ⊂ N

}

.

Jones in [16] called E(xn) as achievement set of the series
∑∞

n=1 xn. In a special
interest will be the set U(xn) ⊂ E(xn) of all of that points which has unique
representation, that is x ∈ U(xn) if there is only one sequence (εn) ∈ {0, 1}N
(respectively only one set A ⊂ N) such that x =

∑∞
n=1 εnxn (x =

∑
n∈A xn).

We will also call any element x ∈ U(xn) as unique. Let
∑∞

n=1 xn be absolutely
summable. The function μ : {0, 1}N � (εn) �→ ∑∞

n=1 εnxn is a continuous map
from the Cantor space {0, 1}N to the real line. Therefore μ−1(t) is a closed
subset of a Polish space {0, 1}N, so the cardinality |μ−1(t)| belongs to the
set {0, 1, 2, . . . , ω, c} where ω stands for the first infinite cardinal while c for
the continuum. In the whole paper when we count number of representations
for some point x we will often write shortly that x is 1 - point(respectively
2, 3, . . . , ω, c) instead of writing that x has 1(respectively 2, 3, . . . , ω, c) repre-
sentation. In the paper [14] the authors called f : E(xn) → {1, 2, 3, . . . , ω, c}
defined as f(t) = |{A :

∑
n∈A xn = t}| as the cardinal function. We will also

say that f is cardinal function for the sequence (xn), for the series
∑∞

n=1 xn or
for the achievement set E(xn). The preimage of the cardinal function f−1(1)
(respectively 2, 3, . . . , ω, c) are equal to the set of all 1-points (respectively
2, 3, . . . , ω, c). Since E(|xn|) = E(xn) +

∑∞
n=1 x−

n and f(x − ∑∞
n=1 x−

n ) = g(x)
for each x ∈ E(|xn|), where f and g are the cardinal functions for

∑∞
n=1 xn

and
∑∞

n=1 |xn| respectively, we may consider only positive terms. A simple
observation shows that for an absolutely convergent series by rearranging its
terms we do not affect the set E(xn) neither the cardinal function. Hence in
the whole paper we will assume that (xn) is nonincreasing. First paper, where
achievement set was considered is that of Kakeya, see [17]. The author proved
the following

Theorem 2.1. If
∑∞

n=1 xn is absolutely convergent with infinite many nonzero
terms, then
(1) E(xn) is a finite union of closed intervals iff xk ≤ rk =

∑∞
n=k+1 xn for

all but finitely many natural k
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(2) E(xn) is homeomorphic to a Cantor set, if xk > rk =
∑∞

n=k+1 xn for all
k ∈ N

Moran in [20] called series, for which xk > rk for all k ∈ N as quickly
convergent. Not only is a quick convergence a sufficient condition for E(xn)
to be homeomorphic to the Cantor set, but it also sufficies to E(xn) = U(xn).
However both conditions E(xn) being homeomorphic to the Cantor set and
what is much more surpring equality E(xn) = U(xn) may hold even when
x2n+1 < r2n+1 for all n ∈ N, see [14].

On the other hand xk ≤ rk for all k ∈ N if and only if E(xn) is an interval.
Such series are called slowly convergent and the sequence of terms (xn) is called
interval filling. There are many papers dedicated to interval filling sequences,
see [9–11]. In particular in [9] the authors considered series for which U(xn)
is the smallest as possible, that is U(xn) = {0,

∑∞
n=1 xn} and gave a nice and

easily verified, sufficient condition for that. Namely the sequence (xn) should
remain interval filling after removing any one of its terms, that is xk ≤ rk+1 for
all k ∈ N. Such sequences were called in [9] as lockers. It is worth to mention
that there is another paper on particular kind of slowly convergent series.
In [12] the authors considered geometric series with ratio 1 > q > 1

2 . They
were mostly interested in the problem how the number of subseries which sum
equals 1 depends on q.

Back to the beginning Kakeya claimed that for an absolutely convergent
with infinite many nonzero terms the set E(xn) is either a finite union of closed
intervals or a set homeomorphic to a Cantor set. It appears that he was wrong
and due to Guthrie and Nymann we know that there is one more possible
form.

Theorem 2.2. For an absolutely convergent series
∑∞

n=1 xn with infinite many
nonzero terms, the set E(xn) is one of the following: a finite union of closed
intervals, homeomorphic to a Cantor set or a Cantorval, that is a set homeo-
morphic to E(yn) for y2n−1 = 3

4n , y2n = 2
4n for all n ∈ N.

Theorem 2.2 was first published in [15], but the correct proof was giv-
en in [24]. The set E(yn) is called the Guthrie Nymann Cantorval. It is ob-
tained for a series belonging to a multigeometric class, that is of the for-
m (xn) = (c1, c2, . . . , cm; q) = (c1q, c2q, . . . , ckq, c1q

2, c2q
2, . . . , ckq2, c1q

3, . . .).
Using that notion the Guthrie and Nymann’s Cantorval can be described as
E(3, 2; 1

4 ). In special interest we will have a set Σ = E(c1, . . . , cm), that is
Σ = {∑m

n=1 εncn : (εn) ∈ {0, 1}m}. Then E(c1, c2, . . . , cm; q) = {∑∞
n=1 ynqn :

(yn) ∈ Σ∞}. Multigeometric series were studied in [2], [3] and [7].
Note that the negative answer for Kakeya’s hypothesis was obtained be-

fore Guthrie and Nymann’s paper. First counterexample was given without
proof by Weinstein and Shapiro in [26]. In [13] Ferens constructed a purely
atomic finite measure μ, and proved that its range is a Cantorval. The theory
of achievement sets and purely atomic finite measure coincide. Indeed we may
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assume that μ is defined on N. Then rng(μ) = {μ(A) : A ⊂ N} = E(xn),
where the terms of our series are the values of measure on singletons, that
is xn = μ({n}) for all n ∈ N. Hence we may say that Ferens observed that
E(7, 6, 5, 4, 3; 2

27 ) is a Cantorval.
Note that by a condition given in [9] we may construct plenty of various

Examples of series
∑∞

n=1 xn for which E(xn) is a closed interval and U(xn)
contains only two points. On the other hand we will show that if E(xn) is a
Cantorval, then U(xn) is infinite. We use the following Lemmas, see [5].

Lemma 2.3 [Second Gap Lemma]. Assume that (a, b) be a gap in E(xn). Let
Fm := {∑m

n=1 εnan : εn = 0, 1} and let {fm
1 < fm

2 < · · · < fk
t(m)} be an

increasing enumeration of Fm. Let k := max{n : an ≥ b − a}. Then b ∈ Fk.
Moreover, if b = f

(k)
j , then a = f

(k)
j−1 + rk.

Lemma 2.4 [Third Gap Lemma]. Suppose that (a, b) is a gap in E(xn) such
that for any gap (a1, b1) with b1 < a we have b − a > b1 − a1 (in other words
(a, b) is the longest gap from the left). Then for some k ∈ N we have b = xk

and a = rk.

There are several consequences of Lemma 2.4.

Corollary 2.5. If U(xn) = {0,
∑∞

n=1 xn}, then E(xn) is an interval.

Corollary 2.6. If E(xn) is a Cantorval, then U(xn) is infinite.

Note that the role of non-unique element in (0,
∑∞

n=1 xn) is played by a
from Lemma 2.4. Indeed since b = xk > rk = a it is clear there is only one
tail-representation of a. On the other hand it may happen that b = xk = xk+1,
so b can not be considered as unique element.

Proposition 2.7. Let F : {0, 1}N → E(xn) be defined as F ((εn)) =
∑∞

n=1 εnxn.

(1) If
∑∞

n=1 xn is absolutely convergent, then F is continuous.
(2) Moreover if F is 1 − 1, then F is homeomorphism.

Proof. (1). It is a folklore.
(2). It is well known that continuous injection on a compact set is homeomor-
phism. �

By Proposition 2.7 (2) we know that the property of unique representa-
tions of all points, that is E(xn) = U(xn) is reserved for Cantor sets.

In [14] the authors showed that if E(xn) is a finite union of closed in-
tervals, then U(xn) has an empty interior. Corollary 2.6 may suggest that if
E(xn) is a Cantorval, then U(xn) is large. In this paper we will show that it
is not true and U(xn) has an empty interior in case E(xn) is a Cantorval as
well.
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3. U(xn) has Empty Interior

We will use the following simple observation.

Proposition 3.1. Let k ∈ N. Then E(xn) is a finite union of closed intervals (a
Cantor set, a Cantorval) if and only if E((xn)n>k) is a finite union of closed
intervals (a Cantor set, a Cantorval, respectively).

The above proposition can be read as follows: removing or adding finitely
many terms to our series does not change the type of its achievement set. In
[14] the authors asked in Problem 3.14 if it is possible to construct a sequence
(xn) for which U(xn) contains an interval. They also gave a negative answer
for the case when E(xn) is a finite union of closed intervals. Theorem 3.2
completes the answer.

Theorem 3.2. Assume that E = E(xn) contains an interval (E is either a
Cantorval or finite union of closed intervals). Then U = U(xn) has an empty
interior.

Proof. Suppose that every point of [a, b] ⊂ E is unique. Firstly we will show
that it implies that there exists ε > 0 such that every point in the set E ∩ [0, ε]
is unique.

Suppose that for each ε > 0 the set E ∩ [0, ε] contains a non-unique
point. Since a set of finite sums {∑k

n=1 εnxn : (εn) ∈ {0, 1}k, k ∈ N} is dense
in E one can find a finite set A ⊂ {1, . . . , m} such that

∑
n∈A xn ∈ (a, b).

Denote δ = b − x. Let α be any positive number smaller than both xm and
δ, that is α < min{xm, δ}. One can find a non-unique y ∈ E ∩ [0, α]. Hence
y =

∑
n∈B xn =

∑
n∈C xn for B �= C. Since y < xm, we get A ∩ B = ∅ =

A ∩ C. Thus x + y =
∑

n∈A∪B xn =
∑

n∈A∪C xn, so x + y is non-unique. But
a < x < x+ y < x+α < x+ δ = x+ b−x = b, which means that x+ y ∈ [a, b]
and contradicts with uniqueness of points in [a, b]. Hence we are done with the
first part of the proof.

We get that U ⊃ E ∩ [0, ε] for some ε > 0. Note that
∑∞

n=k+1 xn < ε for
large enough k. Hence by removing first k terms, we get that E((xn)n>k) ⊂
[0, ε]. But then by Proposition 3.1 we know that E((xn)n>k) is a Cantorval
either a finite union of closed intervals, which contains only unique points. By
Proposition 2.7 it is not possible. �

4. Guthrie–Nymann’s Cantorval Revisited

In the most of the papers, dedicated to counting numbers of representations,
the authors considered E(xn) being an interval, see [23] or [12]. The first pa-
per, where the number of digital representations of each point was calculated
for Cantorval is [8]. The authors considered the Guthrie–Nymann’s Cantorval
E(xn) = E(3, 2; 1

4 ) and showed that each point may have 1 either 2 repre-
sentations. Clearly E(3, 2; 1

4 ) = {∑∞
n=1

bn
4n : (bn) ∈ Σ∞} for Σ = {0, 2, 3, 5}.
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Note that the elements of Σ are bijectively generated as subsums of 3 and
2. Hence the equality

∑∞
n=1

bn
4n =

∑∞
n=1 εnxn reads as follows: bn = 5 iff

ε2n−1 = ε2n = 1; bn = 3 iff ε2n−1 = 1 and ε2n = 0; bn = 2 iff ε2n−1 = 0
and ε2n = 1; bn = 0 iff ε2n−1 = ε2n = 0. It gives a straightforward conversion
between the two ways for writing a subsum, one uses the sequences (bn) and
the second, which uses the terms (xn).

The authors of [8] proved that a point has two digital representations∑∞
n=1

an

4n =
∑∞

n=1
bn
4n iff there exists the finite or infinite sequence n0 < n1 <

. . . such that
(1) ak = bk for k < n0;
(2) an0 = 2 and bn0 = 3;
(3) ank

= 5 and bnk
= 0 for odd k;

(4) ank
= 0 and bnk

= 5 for even k > 0;
(5) ai ∈ {3, 5} and ai − bi = 3, as far as n2k < i < n2k+1;
(6) ai ∈ {0, 2} and bi − ai = 3, as far as n2k+1 < i < n2k+2.

Otherwise a point has a unique digital representation. The above conditions
should be interpretated as follows: By (1) we see it does not matter what
appears in the begining of digital representation. Since the set of all sums of
finite subseries is dense in E, we obtain that the set E2 of all 2 - points is
dense in Cantorval. Moreover the authors mentioned in [8] that in particular
if an = 2 and an+1 = 3 for infinite many n’s, then the representation

∑∞
n=1

an

4n

is unique. Again, since that condition does not depend on the first finitely
many terms, we get that the set U = E1 of all 1 - points is dense in Cantorval.
Condition (2) is a consequence of the fact that

∑∞
n=k

5
4n = 5

3 · 1
4k−1 < 2 · 1

4k−1 .
It precisely means that if there are two digital representations, their partial
sums should be close to each other, namely |∑k

n=1
an

4n − ∑k
n=1

bn
4n | ≤ 1

4k for
all k ∈ N, because both

∑k
n=1

an

4n and
∑k

n=1
bn
4n can be written as fraction

with denominator 4k. If this distance is positive for the first time for k = n0,
since 1

4k =
∑∞

n=k+1
3
4n and 5

4k+1 − 1
4k = 1

4k+1 , it has to remain positive for any
k > n0 and the last inequality changes into equality. Hence we get conditions
(3), (4), (5) and (6) as the only possible ways to keep the distance between
partial sums.

Now we consider Cantorvals for which E = E1 ∪ E2 and both sets E1

and E2 are dense. Our method of calculation and argumentation is analogous
to that used by authors in [8]. All of the considered Cantorvals belongs to a
class of Guthrie-Nymann-Jones’ Cantorvals, i. e. E(3, 2, 2, . . . , 2

︸ ︷︷ ︸
m− times

; q). We ponder

the ratio q = 1
2m+2 . Note that in [7] the authors showed that for the taken

parameters the set E is a Cantorval. Moreover we should guarantee uniqueness
in Σ, so it has to have 2p elements, when Σ is generated by p elements. This
problem of the uniqueness representation in Σ in GNJ-Cantorvals we solve by
taking particular numbers of 2, that is m = 2r − 1 and combining consecutive
2w elements 2 into one 2w+1. That is instead of E = E(3, 2, 2, 2; 1

8 ) we consider
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the same set but obtained for another sequence E = E(4, 3, 2; 1
8 ), instead of

E(3, 2, 2, 2, 2, 2, 2, 2; 1
16 ) its counterpart E = E(8, 4, 3, 2; 1

16 ) and so on.

Theorem 4.1. Assume that x ∈ E(4, 3, 2; 1
8 ) has more than one digital repre-

sentation. There exists the finite or infinite sequence of positive natural num-
bers n0 < n1 < . . . and exactly two digital representations x =

∑∞
n=1

an

8n =
∑∞

n=1
bn
8n of x such that

(1) ak = bk for k < n0;
(2) an0 = 2 + j and bn0 = 3 + j for some j ∈ {0, 1, 2, 3, 4};
(3) ank

= 9 and bnk
= 0 for odd k;

(4) ank
= 0 and bnk

= 9 for even k > 0;
(5) ai ∈ {7, 9} and ai − bi = 7, as far as n2k < i < n2k+1;
(6) ai ∈ {0, 2} and bi − ai = 7, as far as n2k+1 < i < n2k+2.

Proof. Assume that x =
∑∞

n=1
an

8n =
∑∞

n=1
bn
8n for two different digital rep-

resentations (an) and (bn) in {0, 2, 3, 4, 5, 6, 7, 9}N. Let n0 be the minimal
index, where (an) and (bn) differs. That is condition (1) holds and an0 �=
bn0 . Since

∑∞
n=n0+1

9
8n = 9

7 · 1
8n0 , we get 0 < |an0 − bn0 | ≤ 1. We may

assume that bn0 is larger than an0 and thus obtain condition (2). Hence∑n0
n=1

bn
8n − ∑n0

n=1
an

8n = 1
8n0 . Since we do not have 8 ∈ Σ and need to hold the

inequality |∑n0+1
n=1

bn
8n − ∑n0+1

n=1
an

8n | ≤ 1
8n0+1 , we have two possibilities. First

of them appears if the equality
∑n0+1

n=1
bn
8n − ∑n0+1

n=1
an

8n = 1
8n0+1 holds. Then it

means that an0+1 − bn0+1 = 7, which is described by (5) condition. Otherwise
if we have

∑n0+1
n=1

bn
8n − ∑n0+1

n=1
an

8n = − 1
8n0+1 , then this case is described by the

(3) condition. We continue by induction. �
In analogous way we prove the following general result.

Corollary 4.2. Assume that x ∈ E(2r, 2r−1, . . . , 4, 3, 2; 1
2r+1 ) has more than one

digital representation. There exists the finite or infinite sequence of positive
natural numbers n0 < n1 < . . . and exactly two digital representations x =∑∞

n=1
an

2n(r+1) =
∑∞

n=1
bn

2n(r+1) of x such that
• ak = bk for k < n0;
• an0 = 2 + j and bn0 = 3 + j for some j ∈ {0, 1, 2, . . . , 2r+1 − 4};
• ank

= 2r+1 + 1 and bnk
= 0 for odd k;

• ank
= 0 and bnk

= 2r+1 + 1 for even k > 0;
• ai ∈ {2r+1−1, 2r+1+1} and ai−bi = 2r+1−1, as far as n2k < i < n2k+1;
• ai ∈ {0, 2} and bi − ai = 2r+1 − 1, as far as n2k+1 < i < n2k+2.

Corollary 4.3. By using similar argumentation to that in [8] for any Cantorval
E constructed in Corollary 4.2, it is clear that both E1 and E2 are dense.

5. Topological Size of the Uniqueness Set

In this section we will focus on topological size of the set U(xn). We show
that it has the Baire property and we give sufficient condition for U(xn) to
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be comeager in E(xn) when E(xn) is a Cantorval. Some topological results of
presented here can be proved in more general setting and they are very likely a
mathematical folklore. We presented their proofs for the sake of completeness
and for the reader convenience.

We say that a function f : {0, 1}N → R is semi-open if f(U) has non-
empty interior in R for every non-empty open set U in {0, 1}N.

Proposition 5.1. Let f : {0, 1}N → R be a continuous semi-open function.
Then f−1(A) is nowhere dense in {0, 1}N for any nowhere dense subset A of
R.

Proof. Let U be a non-empty open subset of {0, 1}N. Since f is semi-open,
there is a non-empty open set V in R such that V ⊆ f(U). The set A is
nowhere dense, so one can find a non-empty open W ⊆ R with W ⊆ V \ A.
By the continuity of f , the pre-image f−1(W ) is open as well. Moreover,
f−1(W ) ⊂ U \ f−1(A), which shows that the set f−1(A) is nowhere dense
in {0, 1}N. �

We have already noted that the function (εn) �→ ∑∞
n=1 εnxn is a contin-

uous mapping from {0, 1}N to R. Now, we will show that it is also, in the case
we are interested in here, a semi-open function.

Proposition 5.2. Let (xn) be a summable sequence of reals and let f : {0, 1}N →
R be given by f((εn)∞

n=1) =
∑∞

n=1 εnxn. If E(xn) has a non-empty interior,
then f is semi-open.

Proof. If E(xn) has a non-empty interior in R, then E(xn) is either Cantorval
or finite union of compact intervals. Let U be a non-empty open subset of
{0, 1}N. Then U contains a basic set, that is the set of the form B(d1,...,dk) =
{(εn) ∈ {0, 1}N : εi = di for i ≤ k} where di = 0, 1 are fixed 0–1 digits. Note
that

f(B(d1,...,dk)) =
k∑

i=1

dixi + E((xn)n≥k)

By Proposition 3.1 the set E((xn)n≥k) has a non-empty interior, so does f(U).
�

A subset A of {0, 1}N is called Fin-invariant if

(ε1, ε2, . . . ) ∈ A ⇐⇒ (d1, . . . , dk, εk+1, εk+2, . . . ) ∈ A

for all d1, . . . , dk ∈ {0, 1}. Note that a Fin-invariant set is invariant on changing
finitely many coordinates. Recall that a set A in a topological space has the
Baire property if there are an open set U and a meager set M with A =
U � M , where � stands for the symmetric difference operator; in particular
A is comeager in U .

Proposition 5.3. Assume that A has the Baire property and is Fin-invariant.
Then A is either meager or comeager subset of {0, 1}N.
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Proof. Assume that A is not meager. Since A has the Baire property, there is
basic open set B(d̄1,...,d̄k) such that A is comeager in it. Note that

{0, 1}N =
⋃

(d1,...,dk)∈{0,1}k

B(d1,...,dk).

Thus by the Fin-invariance, A is comeager in {0, 1}N. �

A subset B of E(xn) is called Fin-invariant if
∞∑

i=1

εixi ∈ B ⇐⇒
k∑

i=1

dixi +
∞∑

i=k+1

εixi ∈ B

for all d1, . . . , dk ∈ {0, 1}.

Proposition 5.4. The set U(xn) is a co-analytic subset of R. In particular it
has the Baire property.

Proof. Let f : {0, 1}N → R be given by f((εn)∞
n=1) =

∑∞
n=1 εnxn. Since f is

continuous, its graph is closed subset of {0, 1}N × R. Note that

U(xn) = {y ∈ R : ∃!(εn) ((εn), y) ∈ graph(f)}
where ∃! stands for ’exists exactly one’. Therefore by Lusin Theorem [18,
Theorem 18.11] the set U(xn) is co-analytic. By Lusin-Sierpiński Theorem
[18, Theorem 21.6] every analytic sets have the Baire property, which implies
that co-analytic sets have the Baire property as well. �

Theorem 5.5. Assume that E(xn) has non-empty interior and B ⊆ E(xn) is
Fin-invariant. Then either B is meager or E(xn) \ B is meager on R.

Proof. Let f : {0, 1}N → R be given by f((εn)∞
n=1) =

∑∞
n=1 εnxn. Let A =

f−1(B) and d1, . . . , dk ∈ {0, 1}. Then

(εn) ∈ A ⇐⇒ f(εn) ∈ B ⇐⇒
∞∑

n=1

εnxn ∈ B

and by the Fin-invariance of B
∞∑

n=1

εnxn ∈ B ⇐⇒
∑

i≤k

dixi +
∑

i>k

εixi ∈ B

⇐⇒ f(d1, . . . , dk, εk+1, εk+2, . . . ) ∈ B ⇐⇒
⇐⇒ (d1, . . . , dk, εk+1, εk+2, . . . ) ∈ A.

Thus A is Fin-invariant. Since A is a continuous pre-image of a co-analytic
set, it is co-analytic as well, and consequently it has the Baire property. By
Proposition 5.3 the set A is either meager or comeager.

Suppose that neither B is meager nor E(xn) \ B. Then there are two
nonempty disjoint open sets U, V ⊂ E(xn) such that B is comeager in U and
E(xn)\B is comeager in V . By Proposition 5.1 and Proposition 5.2 f−1(B) is
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meager in f−1(V ) and f−1(E(xn) \ B) is meager in f−1(U). This shows that
A is neither meager nor comeager, which yields a contradiction. �

Note that the assertion of Theorem 5.5 holds also without assumption
that E(xn) has non-empty interior, but in this case it is trivial.

For a topological space X, by MX we denote the family of all meager
sets in X. By MX � E we denote the of all restriction of meager sets to E,
that is

MX � E = {A ⊂ X : A ⊂ E and A ∈ MX}.

Proposition 5.6. Let E ⊆ R be a compact set. Then ME = MR � E if and
only if

every open set in E contains an open interval. (1)

Proof. Every meager subset of subspace E is also a meager in the whole space
R. Thus ME ⊆ MR � E holds no matter what E is. We need to show that
the condition

every nowhere dense subset of R contained in E is nowhere dense in E (2)

is equivalent to condition (1).
Assume ¬(1). Then there is a set V open in E which does not contain

open interval. Since E is closed, then clR(V ) ⊂ E. Since clR(V ) = clE(V ),
then IntE(clR(V )) = V , which implies that clR(V ) does not contain any open
interval, and consequently it is nowhere dense in R. So is V and we obtain
¬(2).

Now, let us assume ¬(2). Then there is a set A nowhere dense in R which
contains a non-empty set V open in E. Since V is nowhere dense in R, it does
not contain any open interval, and we obtain ¬(1). �
Corollary 5.7. Assume that E = E(xn) contains an open interval. Then ME =
MR � E.

Proof. By Proposition 5.6 it is enough to show that any open set in E contains
an interval. Since E is the achievement set containing open interval, it is either
a finite union of compact intervals or a Cantorval. If E is a finite union of
compact intervals, the assertion is clear. If E is Cantorval, then any its point x
is a limit of E-intervals, that is any neighbourhood of x contains a connected
component of E which is an interval [5]. �

Using Corollary 5.7 we can restate Theorem 5.5 as follows

Corollary 5.8. Assume that E(xn) is a Cantorval or a finite union of com-
pact intervals and B ⊆ E(xn) is Fin-invariant. Then B is either meager or
comeager in E(xn).

Proposition 5.9. Let f : {0, 1}N → R be a continuous semi-open function.
Assume that the set B := {x ∈ {0, 1}N : {x} = f−1(f(x))} is nowhere dense
in {0, 1}N. Then f(B) is nowhere dense in R.
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Proof. Let U be a non-empty subset of R. Since B is nowhere dense in {0, 1}N,
there is non-empty open subset V of open set f−1(U) with V ∩B = ∅. Since f
is semi-open, there is a non-empty open set W contained in f(V ). Note that
f(V )∩f(B) = ∅; otherwise there would be x ∈ B and z ∈ U with f(x) = f(z),
and {x} �= {x, z} ⊆ f−1(f(x)) which yields a contradiction with the definition
of B. Since W ⊂ U\f(B), then f(B) is nowhere dense. �

Corollary 5.10. Assume that E(xn) has a non-empty interior. Let f((εn)∞
n=1) =∑∞

n=1 εnxn. If f−1(U(xn)) is nowhere dense, so is U(xn).

Let (k0, k1, . . . , km; q) be a multigeometric series. By Σ we denote all
subsums of {k0, . . . , km}, that is

Σ = {
m∑

i=0

εiki : εi = 0, 1}.

Then E(k0, k1, . . . , km; q) = {∑∞
n=0 anqn : (an) ∈ ΣN}. By U(Σ) we denote

those points in Σ which have unique representations.

Proposition 5.11. Assume that E(k0, k1, . . . , km; q) has a non-empty interior.
If U(Σ) �= Σ, then the set of uniqueness U(k0, k1, . . . , km; q) is nowhere dense.

Proof. Let (xn) = (k0, k1, . . . , km; q) and f((εn)∞
n=1) =

∑∞
n=1 εnxn. Let σ ∈

Σ \ U(Σ). Then there are two distinct tuples (ε′
0, . . . , ε

′
m) and (ε′′

0 , . . . , ε′′
m) in

{0, 1}m+1 such that σ =
∑m

i=0 ε′
iki =

∑m
i=0 ε′′

i ki. Consider a set X given by

{(εi) ∈ {0, 1}N : (εp(m+1), εp(m+1)+1, . . . , εp(m+1)+m)

�= (ε′
p(m+1), ε

′
p(m+1)+1, . . . , ε

′
p(m+1)+m) for every p ∈ N}.

Note that X is closed with an empty interior. Thus X is nowhere dense. Note
also that f−1(U(xn)) ⊆ X. Thus by Corollary 5.10 the set of uniqueness is
nowhere dense. �

Using a similar argument one can prove the following extension of Propo-
sition 5.11.

Theorem 5.12. Assume that E(k0, k1, . . . , km; q) has a non-empty interior. If
U(Σ + Σq + . . . Σqk) �= Σ + Σq + . . . Σqk, then U(k0, k1, . . . , km; q) is nowhere
dense.

Now let us present a similar fact in more general settings.

Theorem 5.13. Let E(xn) have a non-empty interior. Assume that there exists
a sequence (Ii

k)k∈N,i∈{0,1} of pairwise disjoint subsets of N such that

• I0
k is finite for every k;

• ∑
n∈I0

k
xn =

∑
n∈I1

k
xn for every k.

Then U(xn) is nowhere dense in E(xn).
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Proof. Let f((εn)∞
n=1) =

∑∞
n=1 εnxn. Consider the following set

X := {(εn) ∈ {0, 1}N : ∀k∃n ∈ I0
k (εn �= 1)}.

Note that Uk := {(εn) ∈ {0, 1}N : ∃n ∈ I0
k (εn �= 1)} is clopen subset

of {0, 1}N. Since X is an intersection of all Uk’s, X is closed. Moreover X
has an empty interior, and therefore it is nowhere dense. Finally note that
f−1(U(xn)) ⊆ X. The assertion follows from Corollary 5.10. �

Now, let us consider the uniqueness set of Guthrie–Nymann’s Cantorval.

Theorem 5.14. Let (an) ∈ {0, 2, 3, 5}N. The following conditions are equivalent
(1) there is (bn) ∈ {0, 2, 3, 5}N such that (an) �= (bn) and

∞∑

n=1

an

4n
=

∞∑

n=1

bn

4n
.

(2)
{

n ∈ N : (an, an+1) ∈ {(2, 3), (3, 2), (3, 0), (2, 5)}
}

is a finite non-empty
set.

Proof. “⇒”. By [8] there exists n0 < n1 < n2 < . . . such that
• n0 = min{n : an �= bn} and an0 = 2, bn0 = 3 (either vice-versa and the

notations of (an) and (bn) change with each other in the next points)
• ank

= 5, bnk
= 0 for odd k

• ank
= 0, bnk

= 5 for even k > 0
• ai ∈ {3, 5}, ai − bi = 3 for every n2k < i < n2k+1

• ai ∈ {0, 2}, bi − ai = 3 for each n2k+1 < i < n2k+2

(an) 2 5 5 ... 5
3 3 ... 3 5 2 2 ... 2

0 0 ... 0 0 5 5 ... 5
3 3 ... 3 5 . . .

(bn) 3 2 2 ... 2
0 0 ... 0 0 5 5 ... 5

3 3 ... 3 5 2 2 ... 2
0 0 ... 0 0 . . .

Suppose that am = 2 for some m > n0. Then there exists k such that
n2k+1 < m < n2k+2. If m + 1 < n2k+2, then am+1 = 0 either am+1 = 2.
Otherwise m + 1 = n2k+2 and we have am+1 = 0. It means that

{
n ∈ N :

(an, an+1) ∈ {(2, 3), (2, 5)}
}

∩ (n0,∞) = ∅. In a very similar way we obtain

that
{

n ∈ N : (an, an+1) ∈ {(3, 2), (3, 0)}
}

∩ (n0,∞) = ∅. Hence we have

already shown that the set
{

n ∈ N : (an, an+1) ∈ {(2, 3), (3, 2), (3, 0), (2, 5)}
}

is finite. Now we prove that it is non-empty.
If an0 = 2 we have two possibilities. If n0 +1 < n1, then an0+1 = 3 either

an0+1 = 5. On the other hand, when n0 + 1 = n1, we get an0+1 = 5. Thus
(an0 , an0+1) ∈ {(2, 3), (2, 5)}.

Now, assume that an0 = 3. Then in a similar way we obtain that an0+1

is equal to 0 either 2. Finally we get that
{

n ∈ N : (an, an+1) ∈ {(2, 3), (3, 2),
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(3, 0), (2, 5)}
}

contains n0, that is the first index which differs the sequences
(an) and (bn).

“⇐”. Let n0 = max{n ∈ N : (an, an+1) ∈ {(2, 3), (3, 2), (3, 0), (2, 5)}}.
Let B ⊂ N be defined as B = {n > n0 : (an, an+1) ∈ {(5, 0), (5, 2), (0, 3), (0, 5)}}
= {n1 < n2 < . . .}, which may be finite or infinite. It is clear that ank

= 5 or
ank

= 0 for any k.
If ank

= 5 then ank+1 = 0 and ai ∈ {0, 2} for every nk < i < nk+1. Indeed,
let us consider the case when ank

= 5. Then either ank+1 = 2 or ank+1 = 0. If
ai = 2 for some i > n0, then by the assumption ai+1 = 0 or ai+1 = 2. If ai = 0
for some i > n0 and ai+1 = 0 or ai+1 = 2 we get i /∈ B, while if ai+1 = 3 or
ai+1 = 5 we obtain i ∈ B and we are done. In the similar way we prove that
if ank

= 0 then ank+1 = 5 and ai ∈ {3, 5} for every nk < i < nk+1.
Without loss of generality we may assume that an1 = 5. Then an2k−1 = 5

and an2k = 0 for each k. Furthermore ai ∈ {0, 2} for every n2k−1 < i < n2k

and ai ∈ {3, 5} for every n2k < i < n2k+1. Define bi = ai for each i ≤ n0,
bn2k−1 = 0 and bn2k = 5 for every k ∈ N. Moreover let ai − bi = 3 for every
n2k < i < n2k+1 and bi − ai = 3 for each n2k−1 < i < n2k. Thus we have∑∞

n=1
an

4n =
∑∞

n=1
bn
4n . �

The values in the following diagram are the possibilities for an for n > n0.
The arrows shows what number can be the next term an+1. There are lack
of four arrows describing (2, 3), (3, 2), (3, 0), (2, 5) as the possible values for
(an, an+1). The (nk) indexes are the moments when we move from the left
part of the diagram to the right and vice-versa.

2

0 5

3

Theorem 5.15. U(3, 2; 1
4 ) is comeager in E(3, 2; 1

4 ).

Proof. Recall that the elements of E(3, 2; 1
4 ) can be represented either as

∑∞
n=1 εnxn, where εn = 0, 1, x2n−1 = 2

4n−1 and x2n = 3
4n−1 , or as

∑∞
n=1

an

4n ,
where an = 0, 2, 3, 5. Note that the set

B(2,3) = {(εn) ∈ {0, 1}N : ε2n−1 = 0, ε2n = 1, ε2n+1 = 1, ε2n+2

= 0 for infinitely many n’s}
represents the same elements as the set of all sequences (an) with (an, an+1) =
(2, 3) for infinitely many n’s. Using this observation we define the following
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sets

B(3,2) = {(εn) ∈ {0, 1}N : ε2n−1 = 1, ε2n = 0, ε2n+1 = 0, ε2n+2

= 1 for infinitely many n’s}
B(3,0) = {(εn) ∈ {0, 1}N : ε2n−1 = 1, ε2n = 0, ε2n+1 = 0, ε2n+2

= 0 for infinitely many n’s}
B(2,5) = {(εn) ∈ {0, 1}N : ε2n−1 = 0, ε2n = 1, ε2n+1 = 1, ε2n+2

= 1 for infinitely many n’s}.

By B we denote the union of those four sets B(2,3), B(3,2), B(3,0) and B(2,5).
Note that each of those sets is comeager and Fin-invariant, and so is B. Note
that f(B) is Fin-invariant as well, where f((εn)∞

n=1) =
∑∞

n=1 εnxn as usual.
By Theorem 5.14 we obtain that f(B) ⊂ U(3, 2; 1

4 ). Since f(B) is analytic,
it has the Baire Property. By Corollary 5.8 the set f(B) is either meager or
comeager. Since B ⊂ f−1(f(B)), then by Proposition 5.1 and Proposition 5.2,
f(B) is not meager. Thus U as a superset of comeager set f(B) is comeager
as well. �

The Guthrie–Nymann’s Cantorval is an achievement set given by E(2, 3; 1
4 ).

So Σ = {2, 3} and q = 1
4 . By Theorem 5.12 and Theorem 5.15 we obtain that

U(Σ + Σq + . . . Σqk) = Σ + Σq + · · · Σqk for every k ∈ N.

6. Cantorvals with Continuum Points

It is not hard to construct E(xn) with point which has c - many expansions.
One method was described in [14]: we start with any interval filling sequence
(yn) and simply repeat two times any of its terms, that is x2n−1 = x2n = yn.
It is both a universal method of transforming any interval filling sequence into
a locker and a construction of E(xn), which is an interval with all interiors
points obtained for c - many representations.

There exist many Cantorvals with c-points. To see it let us consider a
multigeometric series E(k1, . . . , km; q) such that there exists x ∈ Σ with at
least two representations x =

∑
i∈A ki =

∑
i∈B ki for A,B ⊂ {1, . . . ,m},

A �= B. Thus y = x
1−q =

∑
n∈C xn, where C can be any element of the family

{⋃
n∈N0

Cn : Cn = A + m · n or Cn = B + m · n for all n ∈ N0}, i.e. y is a c

- point. Moreover, note that we can find more c - points: if z =
∑

n∈D xn, for
some D ∈ D = {⋃

n∈N0
Dn : Dn = A + m · n or Dn = B + m · n or Dn =

∅ for all n ∈ N0 and |{n ∈ N0 : Dn �= ∅}| = ∞}, then it has c - many more
expansions in D, so there are c many c - points. Note that in [14] the authors
proved that if there exists c - point, then the set of all such points is dense in
E(xn).
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Example 6.1. Let us consider a Guthrie-Nymann-Jones sequence E(3, 2, 2, 2; q).
By [2] we know that it is a Cantorval for any q ∈ (1

6 , 2
11 ). Then Σ = {0, 2, 3, 4, 5,

6, 7, 9} and 2 has three representations in Σ. Hence 2
1−q is c - point.

The problem can be considered in another way. For an achievement set
E(yn) to construct its superset E(xn) in the way (xn) ⊃ (yn) and E(xn)
contains an c - point. Moreover we want E(xn) to be homeomorphic to E(yn).
If E(yn) is an interval we do not have to worry about its interval-structure.
The problem appears when E(yn) is a Cantroval. Namely when we add too
much terms, we may lose the gaps and obtain an interval filling sequence (xn).
It is illustrated in the following Example.

Example 6.2. Let E(yn) be a Guthrie–Nymann’s Cantorval, that is y2n−1 =
3
4n , y2n = 2

4n for n ∈ N. Let us consider the sequence x2n−1 = x2n = yn for
each n ∈ N. Thus (xn) is interval filling, so E(xn) = [0, 10

3 ].

Let us now improve the above construction.

Example 6.3. Let E(yn) be a Guthrie–Nymann’s Cantorval, that is y2n−1 =
3
4n , y2n = 2

4n for n ∈ N. Let us consider the sequence x5n−4 = y4n−3, x5n−3 =
x5n−2 = y4n−2, x5n−1 = y4n−1, x5n = y4n for each n ∈ N, that is we repeats
two times the elements y4n−2 for all n. Note that

x5n−2 = y4n−2 =
2

4 · 16n−1
>

5
12 · 16n−1

+
1

30 · 16n−1

=
∑

k>4n−2

yk +
∞∑

k=n

y4k+2 =
∑

k>5n−2

xk

Hence (
∑

k>5m−2 xk, x5m−2) is a gap in E(xn) for every m ∈ N. By inclusion
E(xn) ⊃ E(yn), we obtain that E(xn) is a Cantorval. Finally, note that the
sum of any infinite subseries of the series

∑∞
k=1 x5k−2 is a c - point. In fact,

there are c many c - points.

Now let us apply the idea staying behind Example 6.3 for any Cantorval.

Theorem 6.4. Let E(yn) be a Cantorval. Then there exists a sequence (xn)
such that the Cantorval E(xn) contains E(yn) and E(xn) has c-point.

Proof. Let (an, bn) be the sequence of the longest gaps from the left in E(yn),
where (bn) is decreasing. Note that by the Third Gap Lemma (bn) ⊂ (yn).
Let n1 be a natural number such that

∑
n=n1

bn < b1 − a1. We continue the
construction by induction and obtain a sequence (nk) such that

∑∞
n=nk+1

bn <

bnk
− ank

for every k ∈ N. Let (xn) = (yn) ∪ (bnk
). Hence E(xn) has still the

gaps with the end bnk
for each k ∈ N, so it is a Cantorval. Note that for each

k ∈ N the term bnk
appears at least twice in the sequence (xn). Hence we

obtain that sum of any infinite subseries of
∑∞

k=1 bnk
is c - point. �
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On the other hand there exists Cantorval E(yn) with c points with the
property that for every (xn) ⊂ (yn) such that E(xn) has no c-points, E(xn) is
not a Cantorval.

Example 6.5. Let E(yn) = E(3, 2, 2; 1
6 ). Let (xn) ⊂ (yn) be such that E(xn)

has no c points. Then almost all of the terms ( 2
6n ) are in (yn) \ (xn). Since

E(3, 2; 1
6 ) is a Cantor set, by Proposition 3.1 we obtain that E(xn) is also a

Cantor set if (xn) is infinite either it is a finite set.

7. Minimal Representation and Unique Points

As we have proved in Theorem 6.4 by adding terms to the sequence which
achievement set is a Cantorval we may generate c-points while the achievement
set of an enlarged sequence is still a Cantorval. The following shows that adding
new terms to a sequence may result in lessening its set of uniqueness.

Theorem 7.1. Let E(yn) be a Cantorval or a finite union of closed intervals
and B be the union of the set of all left edges of intervals contained in E(yn)
and its trivial components. Let (bn) be any sequence tending to 0. Then U(xn)∩
E(yn) ⊂ B, where (xn) = (yn) ∪ (bn). Moreover each point x ∈ E(yn)\B has
c - many expansions.

Proof. Fix x ∈ E(yn)\B. Then there exists bk such that x−bk ∈ E(yn). Since
x = x − bk + bk, we get another expansion of x. To prove the ’moreover’ part
it is enough to observe that instead of a single element bk above, we may take
the tails of the quickly convergent subseries

∑∞
k=1 bnk

of the series
∑∞

n=1 bn.
�

In particular U(xn) is not dense in E(xn). The above result inspires to
introduce the following property of sequence.

Definition 7.2. A sequence (xn) is a minimal representation of a Cantorval
(or finite union of closed intervals) E(xn) iff after removing any its infinite
subsequence the achievement set E(yn) for the remaining sequence (yn) ⊂ (xn)
is not a Cantorval (a finite union of closed intervals, respectively).

Corollary 7.3. If U(xn) is dense in E(xn), then (xn) is minimal representa-
tion.

Corollary 7.4. If E(xn) has no c-points, then (xn) is minimal representation.

Example 7.5. Any sequence (2r, 2r−1, . . . , 4, 3, 2; 1
2r+1 ) for r ∈ N is a minimal

representation of a Cantorval. In particular if r = 1, then the sequence (3, 2; 1
4 )

is a minimal representation of the Guthrie and Nymann’s Cantorval.
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Example 7.6. Let us consider E(3, 2, 2, . . . , 2
︸ ︷︷ ︸
m− times

; q). By [7] we know that E is a

Cantorval for all q ∈ [ 1
2m , 2

2m+5 ]. After removing subsequence ( 2
qn ), we obtain

E(3, 2, 2, . . . , 2
︸ ︷︷ ︸
m−1− times

; q), which is a Cantorval for q ∈ [ 1
2 m−2 , 2

2 m+3 ]. Note that for

m ≥ 5 we have [ 1
2 m , 2

2 m+5 ] ∩ [ 1
2 m−2 , 2

2 m+3 ] = [ 1
2 m−2 , 2

2 m+5 ] �= ∅. Hence for
m ≥ 5 and q ∈ [ 1

2 m−2 , 2
2 m+5 ] a sequence (3, 2, 2, . . . , 2

︸ ︷︷ ︸
m− times

; q) is not a minimal

representation of Cantorval E. In particular U is not dense in E.

The notion of minimal representation can be also applied for E, which is
not a Cantorval.

Example 7.7. Let us consider a geometric sequence (qn). In the papers [9] and
[12] the ratio q0 =

√
5−1
2 is on the special interest. Basically for any q ∈ [q0, 1)

the geometric sequence is a locker, which suffices for U = {0, q
1−q }, while for

any q ∈ [12 , q0) the set U has more than two elements.

(1) For q ∈ [ 12 , q0] the sequence (qn) is a minimal representation of the interval
[0, q

1−q ]; Indeed if q ∈ [12 , q0), then by removing any element qk we form
a gap in E which right edge is the smallest not removed element larger
than qk. Hence we obtain infinite many gaps, so E is a Cantorval or even
a Cantor set. For q = q0 the locker condition is satisfied with equality, so
by removing any two elements qk and qm we again obtain a gap in E.

(2) For q ∈ (q0, 1) the sequence (qn) is not a minimal representation of the
interval [0, q

1−q ]; Let us remove qk1 from our series. Then δ = rk1 −
qk1−1 > 0. One can find k2 such that rk2−1 < δ, that is removing elements
with indexes larger or equal k2 from the tail rk1 will not change the
previous inequality. Let us remove qk2 from our series. We continue by
induction and remove the terms (qkn) from the geometric sequence. The
achievement set for the remaining sequence is still an interval.

Let us compare the both notions of locker and minimal sequence by char-
acterizing them in Kakeya-like conditions. We will prove the following.

Theorem 7.8. Let (xn) be such that E(xn) is a finite union of closed intervals.
Then (xn) is not minimal iff xk < rk+1 for infinitely many k’s.

Proof. ⇒ . Let us assume that (xn) is not minimal. It means that there exists
an increasing sequence of natural numbers (ni) such that when we remove from
(xn) consecutive terms with indexes ni +1, ni +2, . . . , ni+1 for each odd i ∈ N,
then for the subsequence (x1, x2, . . . , xn1 , xn2+1, xn2+2, . . . , xn3 , xn4+1, . . .) =
(yn) its achievement set E(yn) is still a finite union of closed intervals. Hence
for every large enough (to satisfy Kakeya condition for achievement set to be
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a union of intervals) odd i we have:

xni
≤

∑

j∈2N,j>i

nj+1∑

k=nj+1

xk <
∑

k≥ni+1

xk ≤
∑

k≥ni+2

xk = rni+1

⇐ . Assume that there exists an increasing sequence of natural numbers
(ni) such that rni+1 > xni

for every i ∈ N. Without losing generality we may
assume that for n ≥ n1 the sequence (xn) is slowly convergent. In the beginning
we remove the term xn1+1. Let k1 be such that rnk1

< rn1+1 −xn1 . We remove
the term xnk1+1. On can find k2 satisfies the inequality min{rn1+1 − xn1 −
xnk1+1, rnk1+1 − xnk1

} > rnk2
. We omit the term xnk2+1. Now let k3 be such

that

min{rn1+1 − xn1 − xnk1+1 − xnk2+1, rnk1+1 − xnk1
− xnk2+1, rnk2+1 − xnk2

} > rnk3

We continue by induction and obtain a subsequence (xnki
) of removed terms

such that the achievement set for the remaining sequence is a finite union of
closed intervals. �
Corollary 7.9. Let (xn) be such that E(xn) is a finite union of closed intervals.
Assume that xk < rk+1 for infinitely many k’s, then U(xn) is not dense in
E(xn) and E(xn) contains c - points.

Corollary 7.10. From Theorem 7.8 we know that a sequence (xn) which achieve-
ment set E(xn) is a finite union of closed intervals is minimal iff xk ≥ rk+1

for almost all k’s. Both of the equivalent conditions have nice geometric inter-
pretation. Note that for interval-like achievement sets its minimality means:
removing any infinite subsequence makes infinite many gaps, while the condi-
tion xk ≥ rk+1 for all but finitely many k’s can be read as follows: removing
any two far enough terms makes a new gap in the remaining set of subsums.

Note also that the minimality for Cantorval-case has a different sense,
namely after deletion of any infinite subsequence the left achievement set loses
all its intervals.

In Example 7.7 we have shown that typical sequence is a non-minimal
locker either minimal but not locker. Although the both conditions being a
locker and not minimal seem to be close to each other, none of them implies
another.

Example 7.11. The geometric sequence (xn) = (qn
0 ) for q0 =

√
5−1
2 is a minimal

locker, which is also a counterexample for reversal the implication in Corollary
7.9. Indeed U(xn) = {0,

∑∞
n=1 xn} is far from being dense in the interval

E(xn). Moreover x =
∑∞

n=1 x3n−2 is its c-point, since x =
∑

n∈⋃
i∈N

Ai
xn for all

sequences of sets of indices (Ai) such that Ai = {3i−2} either Ai = {3i−1, 3i}
for each i ∈ N. Also note that for every k ∈ N the equality xk = rk+1 holds.

In the next Example we construct the last possibility, that is the sequence,
which is not minimal nor locker.
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Example 7.12. Let (xn) = (7, 2, 2, 1, 1, 1
2 , 1

2 , 1
4 , 1

4 , 1
8 , 1

8 , . . .). Then it is not lock-
er, since x1 = 7 > 6 = r2. On the other hand E(xn) = [0, 15] and E(x2n) =
[0, 4] are both intervals, so (xn) is not a minimal representation.

Example 7.12 shows that a locker condition is sensitive to adding single
term, while being minimal is not affected by adding or removing finitely many
terms.

Now let us consider the following two conditions: having a c - point
and U(xn) being not dense in E(xn). Both of them are implied by the non-
minimality of the sequence (xn). However it does not mean that one of them
implies another or even that they are equivalent, although it may be suggested
by the previously constructed Examples.

In the end of this section we give the Example of sequence for which
neither f−1(1) nor f−1(c) is dense in its achievement set.

Example 7.13. Let (xn) = (1
2 , 1

2 , 1
4 , 1

8 , 1
16 , . . .). Hence A(xn) = [0, 3

2 ]. Thus

f−1(1) =
(
([0, 1

2 ] ∪ [1, 3
2 ])\D

)
∪ {0, 3

2}, f−1(2) =
(

D ∩
(
(0, 1

2 ) ∪ (1, 3
2 )

))

∪
(
( 1
2 , 1)\D

)
, f−1(3) = { 1

2 , 1}, f−1(4) = (1
2 , 1) ∩ D. where D is the set of all

dyadic numbers, that is D = { a
2b : a ∈ N0, b ∈ N0}. Thus f−1(c) = ∅ and

f−1(1) is not dense in A(xn).

Problem 7.14. Note that if we repeat more but still finitely many terms as in
the Example 7.13, then we get f−1(c) = ∅ and the length of the gap for f−1(1)
in the middle of the achievement set will increase. Finally when we repeat
infinitely many of the terms, then the c will appear and f−1(1) will be empty.
Hence we may ask is it true that f−1(c) �= ∅ implies that f−1(1) is not dense
in any interval of the achievement set (f−1(1) is a meager set). If the answer
is negative, then we may ask if it is possible to construct a sequence with both
f−1(1) and f−1(c) being dense in E(xn).

Problem 7.15. Define some kind of minimality of representation for Cantor
sets E(yn). Note that it can not be defined in the similar way since after
removing infinite subsequence (xn) ⊂ (yn) we obtain finite set if (yn) \ (xn) is
finite either a Cantor set, when we leave infinite many terms. If asking about
subsets does not work maybe it is better to use supersets, that is (yn) is a
minimal representation of E(yn), which is a Cantor set if after adding any
infinite sequence (xn) for (zn) = (xn) ∪ (yn) we have E(zn) is not a Cantor
set (E(zn) is Cantorval either finite union of compact intervals). However we
think that this definition leads to minimality of each representation and hence
does not work.

8. Cantors with Continuum Points

It is almost obvious that for a multigeometric series with 1 to 1 representations
in Σ = {σ0 < σ1 < · · · < σk} for q small enough we have U(c1, c2, . . . , cm; q) =
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E(c1, c2, . . . , cm; q). If δ = min{σi − σi−1 : i ∈ {1, . . . , k}}, then for σkq
1−q < δ

(or q ∈ (0, δ
δ+σk

)), (c1, c2, . . . , cm; q) is quickly convergent. Quick convergence
suffices for the equality U(xn) = E(xn). On the other hand it is not hard
to construct a Cantor set with c - point: it has been already done in many
papers. Most of the methods are based on repeating the terms. In [22] the
author shows how to construct a Cantor set, which algebraic sum with itself
remains a Cantor set. The sums of more than two sets were also considered.
Moreover in [3] the authors considered multigeometric series and showed that
if q < 1

|Σ| , then E(c1, c2, . . . , cm; q) = {∑∞
n=1 ynqn : (yn) ∈ Σ∞} is a Cantor

set, no matter if the elements c1, c2, . . . , cm repeat.

Example 8.1. Let E = E(1, 1, . . . , 1
︸ ︷︷ ︸
m− times

; q).

(1) for q < 1
m+1 the multigeometric sequence is quickly convergent, so the

set E is a Cantor set;
(2) for q ≥ 1

m+1 the multigeometric sequence is slowly convergent, so the set
E is an interval

Note that for the multigeometric sequence considered in Example 8.1
we have 1

m+1 = 1
|Σ| = δ

δ+σk
. In general if c1, . . . , cm is a sequence of natural

numbers, then σk ≥ δ · (|Σ| − 1). Hence δ
δ+σk

≤ 1
|Σ| . Moreover the equality

δ
δ+σk

= 1
|Σ| holds iff the sequence c1, . . . , cm is constant.

Theorem 8.2. Let c1, . . . , cm be a non-constant sequence of natural numbers.
Then there exists a sequence (qp) of ratios such that limp→∞ qp = δ

δ+σk
and

E(c1, c2, . . . , cm; qp) contains c - point for every p ∈ N.

Proof. Let δ = σj − σj−1 = min{σi − σi−1 : i ∈ {1, . . . , k}}. Fix p ∈ N.
Let qp satisfies δ = σk(qp + q2

p + · · · + qp
p). Clearly limp→∞ qp = δ

δ+σk
. Let us

consider x = σjqp+σjq
p+2
p +σjq

2p+3
p +· · · = σj

∑∞
n=0 qnp+n+1

p . Each summand
σjq

np+n+1
p can be replaced by σj−1q

np+n+1
p + σk(qnp+n+2

p + qnp+n+3
p + · · · +

q
(n+1)p+n+1
p ). Hence x has c - many expansions. �

9. Slim Representations

We say that (xn) is slim, if E(xn) has no c-points. If there exists a slim sequence
(yn) with E(yn) = E(xn), then we say that E(xn) has a slim representation.

Definition 9.1. A monotonic sequence (xn) with positive terms converging to
zero is called semi-fast convergent if it satisfies the condition

xn >
∑

k:xk<xn

xk for all n ∈ N

where the sum is over all indexes k such that xk < xn



Vol. 78 (2023) Set of Uniqueness Page 21 of 24 9

Properties of semi-fast convergent series were deeply investigated in [6]
and [25]. We are following some ideas found there.

Let
∑

xn be a semi-fast convergent series. Then there are two sequences
(αk)-strictly decreasing tending to zero and (Nk) - sequence of natural numbers
such that

(xn) = (α1, α1, . . . , α1︸ ︷︷ ︸
N1

, α2, α2, . . . , α2︸ ︷︷ ︸
N2

, α3, α3, . . . , α3︸ ︷︷ ︸
N3

, α4, . . . )

and αk >
∑

i>k Niαi for every k ∈ N. We will use the notation (αk, Nk) for
semi-fast sequences (or series).

Theorem 9.2. An achievement set E(αk, Nk) of a semi-fast convergent se-
quence (αk, Nk) has a unique (is slim) representation if and only if there is
a sequence (nk) such that Nk is of the form 2nk −1 every nk ∈ N (for almost all
k).

Proof. Let (xn) = (αk, Nk) and assume that E(ym) = E(αk, Nk), in other
words (ym) is a representation of E(αk, Nk). Note that rN1 =

∑
i>1 Niαi.

Then (rN1 , α1) is the largest gap from the left. Moreover (α1+rN1 , 2α1), (2α1+
rN1 , 3α1), . . . , ((N1 − 1)α1 + rN1 , N1α1) are gaps as well. By the Second Gap
Lemma there is a p1 ∈ N such that

{0, α1, 2α1, 3α1, . . . , N1α1} = {
p1∑

i=1

εiyi : ε ∈ {0, 1}p1}.

Then by the Second Gap Lemma yp1 = α1. Note that yi, for i ≤ p1, are
multipliers of α1. Note that {0, 1}p1 � ε �→ ∑p1

i=1 εiyi is one-to-one if and only
if the set {∑p1

i=1 εiyi : ε ∈ {0, 1}p1} has exactly 2p1 elements, which in turn
is equivalent to N1 = 2p1 − 1. Proceeding inductively we find an increasing
sequence (pk) of indexes such that

{0, αk, 2αk, 3αk, . . . , Nkαk} =

⎧
⎨

⎩

pk∑

i=pk−1+1

εiyi : ε ∈ {0, 1}(pk−1,pk]

⎫
⎬

⎭
,

ypk
= αk and

∞∑

i=pk−1+1

yi < ypk
.

Moreover, {0, 1}pk � ε �→ ∑pk

i=1 εiyi is one-to-one if and only if Nk = 2pk − 1.
If there is k such that Nk �= 2pk −1, then clearly E(αk, Nk) does not have

unique representation. If there is an infinite sequence (kj) with Nkj
�= 2pkj − 1

and (ym) is a representation of E(αk, Nk), then for any j we can find two
distinct εj , ε̄j ∈ {0, 1}(pkj−1,pkj

] such that
pkj∑

i=pkj−1+1

εj
iyi =

pkj∑

i=pkj−1+1

ε̄j
iyi
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Consider a point x =
∑∞

j=1

∑pkj

i=pkj−1+1 εj
iyi. Now, for any set X ⊂ N, we have

x =
∑

j∈X

pkj∑

i=pkj−1+1

εj
iyi +

∑

j /∈X

pkj∑

i=pkj−1+1

ε̄j
iyi.

Thus the point x has continuum many representations in E(ym). Therefore
(ym) is not a slim representation of E(αk, Nk), and consequently E(αk, Nk)
does not have slim representation. �

Using Theorem 9.2 and results from [6] we can extend the list of equiva-
lent conditions.

Corollary 9.3. Let (αk, Nk) be a semi-fast convergent sequence. The following
conditions are equivalent

(i) E(αk, Nk) has a unique representation;
(ii) every Nk is of the form 2nk − 1;
(iii) E(αk, Nk) is a central Cantor set
(iv) E(αk, Nk) has a representation E(yn) where (yn) is fast convergent.

By Theorem 9.2 there is a Cantor set having no slim representation. On
the other hand any finite union of intervals has slim representation, which is
a simple observation. This lead us to the following problem.

Problem 9.4. Is there a Cantorval having no slim representation?

Since the Guthrie–Nymann Cantorval E(3, 2; 1
4 ) has no c-points, it has

slim representation. Moreover, E(3, 2; 1
4 ) is minimal Cantorval in that sense

that E(3, 2; q) is a Cantor set for every q < 1
4 . We would like to know if such

minimality implies slimness.

Problem 9.5. Assume that E(a1, . . . an; q) is a Cantorval such that for any
q′ < q, E(a1, . . . an; q′) is a Cantor set. Does E(a1, . . . an; q) have a slim rep-
resentation?
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