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1. Introduction

In the last twenty years there has been an intense research activity on m-
isometries. In this paper, we focus our attention on characterizing m-isometries
that have an invertible extension that is also m-isometry.

The notion of m-isometric operator on a Hilbert space was introduced
by J. Agler [2] and studied in detail shortly after by J. Agler and M. Stankus
in three papers [4–6]. These publications can be considered the first ones to
initiate this topic of study.

An operator T ∈ L(H), the algebra of all bounded linear operators acting
on a Hilbert space H, is called an m-isometry, for some positive integer m, if

m∑

k=0

(
m

k

)
(−1)kT ∗kT k = 0,

where T ∗ denotes the adjoint operator of T . When m = 1, we obtain an
isometry. It is said that T is a strict m-isometry if either m = 1 or T is an
m-isometry with m > 1 but it is not (m − 1)-isometry.

As one should expect, m-isometries share many important properties with
isometries. For example, the following dichotomy property: the spectrum of an
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m-isometry is the closed unit disc if it is not invertible or a closed subset of the
unit circle if it is invertible [4]. Also, if T is an m-isometry, then T is bounded
below; that is, there exists M > 0 such that ‖Tx‖ ≥ M‖x‖ for every x ∈ H.

Given an m-isometry T ∈ L(H), we are interested in research conditions
which guarantee the existence of a Hilbert space K and an operator S ∈ L(K),
which is an extension of T , such that S is an invertible m-isometry. To say that
S ∈ L(K) is an extension of T ∈ L(H) means that K contains an isometric
subspace to H, which we denote also by H, and the restriction S|H from H to
H coincides with T .

Problem 1.1. Characterize those m-isometric operators which have an invert-
ible m-isometrical extension.

In 1969 Douglas [13] obtained that any isometry in a Banach space has
an invertible isometric extension, also valid in a Hilbert space context. So, the
case m = 1 holds. For m ≥ 2, first immediate consideration is that m must be
odd, since every invertible m-isometry with even m is an (m − 1)-isometry by
[4, Proposition 1.23].

Our problem is similar to others that arise naturally in Operator Theory
and can be formulated in very general terms as follows. Given a class C of
operators, for example defined on Hilbert spaces, and given a property P
relative to those operators, we wish to characterize the operators that have an
extension in the class C with property P .

Let T ∈ L(H) and S ∈ L(K) with H a closed subspace of K. Denote by
PH the orthogonal projection of K onto H and by J the inclusion of H into
K. It is said that

• S is a lifting of T if PHS = TPH .
• S is a dilation of T if Tn = PHSnJ , for every n ∈ N.

Many authors have studied, for a given bounded linear operator T ∈ L(H),
some additional properties of extension, lifting, or dilation of the operator T .
The following results are known and respond to these problems:

• Every contraction has an extension which in turn has a unitary lifting.
Thus, every contraction has a unitary dilation. Also, a contraction has a
lifting which is an isometry. See [16].

• Every isometry has a unitary extension. See [13].
• Every operator T such that the norms of its powers grow polynomially

has an m-isometric lifting for some integer m ≥ 1. This lifting can be
also extended to an invertible m-isometry. See [9].
Notice that the norms of the powers of an m-isometry have a polynomial

behaviour (see part (1) of Proposition 2.1). However, there are operators such
that those norms have a polynomial behaviour that are not m-isometries. In [9],
the authors study lifting and dilations which are m-isometries. In particular,
they obtain that if T is an m-isometry, then T has an (m+3)-isometric lifting
with other additional properties.
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A special class of m-isometric operators is the �-Jordan isometries; that
is, operators which are the sum of an isometry and an �-nilpotent operator
which commute. It is known that every �-Jordan isometry is a strict (2� − 1)-
isometry, but the converse is not valid. However, every strict m-isometry on
a finite dimensional Hilbert space is an (m+1)

2 -Jordan isometry operator. See
[3,12,17] for more details.

Another natural and important examples of m-isometries are certain
weighted shift operators. In [1,11], the authors obtained a characterization
of weighted shift which are m-isometric.

We summarize the contents of the paper. In Sect. 2, we define a bilateral
sequence of operators associated to an m-isometry that allow us to transfer
important information of the m-isometry to the bilateral sequence, that it will
be an important tool in the paper. In Sect. 3, we present some necessary con-
ditions to obtain an invertible m-isometrical extension. The main results are
given in Sect. 4 where we obtain characterizations for an m-isometry to have
an invertible m-isometrical extension. Finally, in Sect. 5, we present particular
classes of m-isometries for which one can obtain nice results. In particular, we
give a useful characterization for a general m-isometrical unilateral weighted
shift and for �-Jordan isometries. In particular, every �-Jordan isometry oper-
ator has an invertible (2� − 1)-isometrical extension.

2. Some Previous Results

In this section, we define a bilateral sequence of operators associated to an m-
isometry, that allow us to transfer important information of the m-isometry to
the bilateral sequence that it will be relevant for obtaining necessary conditions
for having an invertible m-isometrical extension.

Any polynomial of degree less or equal to m−1 is uniquely determined by
its values at m distinct points. If a0, a1, . . . , am−1 are given real (or complex)
numbers, then the unique polynomial p of degree less or equal to m−1 satisfy-
ing p(k) = ak for all k ∈ {0, 1, . . . ,m − 1} is giving by Lagrange interpolating
polynomial

p(z) =
m−1∑

k=0

ak

∏

0≤j≤m−1
j �=k

z − j

k − j
.

Note that

p(n) =
m−1∑

k=0

akbk(n)
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with

bk(n) :=
∏

0≤j≤m−1
j �=k

n − j

k − j
= (−1)m−k−1n(n − 1) . . . ̂(n − k) · · · (n − m + 1)

k!(m − k − 1)!

(2.1)

where ̂(n − k) means that the factor (n − k) is omitted.
Given T ∈ L(H), define the bilateral sequence by

Dn :=
m−1∑

k=0

bk(n)T ∗kT k, (2.2)

for every n ∈ Z. Clearly Dn ∈ L(H) and it is self adjoint operator for every
n ∈ Z.

Denote px(k) := 〈Dkx, x〉 for every x ∈ H and k ∈ Z.
Given T ∈ L(H), denote T > 0 if 〈Tx, x〉 > 0 for every x ∈ H \ {0} and

we call it strictly positive operator .
We concentrate now on the family (Dn)n∈Z of operators which arise from

a fixed m-isometry. Indeed, the bilateral sequence (Dn)n∈Z has some interest-
ing properties that will be important tools to solve Problem 1.1.

Proposition 2.1. Let T ∈ L(H) be an m-isometry and (Dn)n∈Z be operators
defined by (2.2). Then
(1) [11, Theorem 2.1] & [4] Dn = T ∗nTn and px(n) = 〈Dnx, x〉 = ‖Tnx‖2 >

0 for every x ∈ H\{0} and n ∈ N ∪ {0}. Henceforth, there exists the
square root D

1/2
n of Dn, for every n ∈ N ∪ {0}.

(2) Dn is invertible for every n ∈ N ∪ {0}.
(3) T ∗kDnT k = Dn+k for every n ∈ Z and k ∈ N.
(4) Let y ∈ R(T k) for some k ∈ N. Then py(−k) = ‖x‖2, where y = T kx.
(5) If D−n > 0 and invertible, then D−k > 0 and invertible for every k ∈

{1, 2, · · · , n − 1}.
Proof. (2) Let n ∈ N. By [[14] Theorem 2.3] & [[10], Theorem 3.1] any power
of T , Tn is an m-isometry, so, Tn is bounded below. Hence

‖Dnx‖‖x‖ ≥ |〈Dnx, x〉| = 〈Dnx, x〉 = ‖Tnx‖2 ≥ M(n)2‖x‖2,
where M(n) > 0. That is, Dn is bounded below. Then trivially Dn is invertible
since Dn is self adjoint operator. (3) It is enough to prove the required equality
for k = 1. Observe that

pTx(n) = ‖TnTx‖2 = ‖Tn+1x‖2 = px(n + 1),

for every n ∈ N and

〈Dn+1x, x〉 = px(n + 1) = pTx(n) = 〈DnTx, Tx〉 = 〈T ∗DnTx, x〉
for every n ∈ Z. (4) Let y = T kx for some k ∈ N and x ∈ H. Then

py(n) = pTkx(n) = px(k + n),
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for every n ∈ N. Therefore py(n) = px(k + n) for every n ∈ Z. (5) Let k ∈
{1, 2, · · · , n − 1} and x ∈ H\{0}. If D−n > 0, then by part (3),

〈D−kx, x〉 = 〈T ∗n−kD−nTn−kx, x〉 = 〈D−nTn−kx, Tn−kx〉 > 0. (2.3)

Since Tn−k is bounded below and by (2.3), we have that

‖D
1/2
−k x‖2 = ‖D

1/2
−n Tn−kx‖2 ≥ M‖x‖2.

So, the result is obtained since D−k is a self adjoint operator. �

We close this section by studying the bilateral sequence (Dn)n∈Z associ-
ated to unilateral weighted shift which are m-isometries.

Let H be a Hilbert space with an orthonormal basis (en)n∈N. Recall that
the unilateral weighted shift given by Swen = wnen+1 on H, where wn =√

p(n + 1)
p(n)

with p a polynomial of degree m − 1, is a non invertible strict

m-isometry, [1]. Also

pej
(n) = ‖Sn

wej‖2 = |wjwj+1 · · · wn+j−1|2 =
p(j + n)

p(j)
. (2.4)

The following proposition gives an explicit expression of the operator Dn,
when T is an m-isometrical unilateral weighted shift operator.

Proposition 2.2. Let H be a Hilbert space with orthonormal basis (en)n∈N and
let Sw ∈ L(H) be an m-isometrical unilateral weighted shift with weight se-
quence w = (wn)n∈N. Then
(1) Dn is a diagonal operator for every n ∈ Z, with diagonal

λn(j) :=
m−1∑

k=0

bk(n)
j+k−1∏

�=j

|w�|2,

where bk(n) is giving by (2.1).
(2) Let n ∈ Z. The following conditions are equivalent

(a) Dn is invertible.
(b) Dn > 0.
(c) λn(j) > 0 for every j ∈ N.

Proof. (1) By [1], there exists a polynomial p of degree m − 1, such that the

weights are given by wn =
√

p(n+1)
p(n) . So,

Dnej =
m−1∑

k=0

bk(n)S∗k
w Sk

wej =
m−1∑

k=0

bk(n)
j+k−1∏

�=j

|w�|2ej

=
m−1∑

k=0

bk(n)
p(j + k)

p(j)
ej = λn(j)ej , (2.5)
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where

λn(j) =
m−1∑

k=0

bk(n)
p(j + k)

p(j)
. (2.6)

(2) It is immediate by (1). �

In general, the converse of part (5) of Proposition 2.1 is not valid. A
suitable choose of the weight sequence gives an example such that D−q > 0
and D−(q+1) is not positive for some q ∈ N.

Example 2.3. Let q ∈ N and define pq(n) := (n + q)(n + q + 1). Then Sw

with weight wn =
√

pq(n+1)
pq(n)

is a 3-isometry and it satisfies that D−n > 0 and
invertible for n ∈ {1, · · · , q} and D−(q+1) is not. In fact,

λ−n(j) :=
pq(j − n)

pq(j)
=

(j + q − n)(j + q − n + 1)
(j + q)(j + q + 1)

,

for n ∈ N. If n ∈ {1, · · · , q}, then we have that −q − 1 + n < −q + n < 0.
Hence, λ−n(j) > 0, for every j ∈ N. If n = q + 1,

λ−(q+1)(j) =
j(j − 1)

(j + q)(j + q + 1)
.

Hence λ−(q+1)(1) = 0 and consequently 〈D−(q+1)e1, e1〉 = 0.

3. Necessary Conditions of Having an Invertible m-isometrical
Extension

In an attempt towards solution of finding necessary conditions to obtain an
invertible m-isometrical extension, we draw upon an interesting connection
between D−1 > 0 and the invertibility of D−1 with the existence of a particular
m-isometrical extension. Notice that in the following theorem we do not obtain
an invertible m-isometrical extension.

Theorem 3.1. Let T ∈ L(H) be an m-isometry. The following statements are
equivalent:
(i) There exist a Hilbert space K ⊃ H and an m-isometry S ∈ L(K) such

that S|H = T and R(S) = H.
(ii) D−1 > 0 and D−1 is invertible.

Proof. (i) ⇒ (ii): Let x ∈ H and y = S−1x ∈ K. For n ∈ Z, denote

D̃n :=
m−1∑

k=0

bk(n)S∗kSk, Dn :=
m−1∑

k=0

bk(n)T ∗kT k

and for n ∈ N

p̃x(n) := ‖Snx‖2, px(n) := ‖Tnx‖2,
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where bk(n) is given by (2.1). Then

〈D̃−1x, x〉 = 〈D̃−1Sy, Sy〉 = 〈S∗D̃−1Sy, y〉 = 〈D̃0y, y〉 = ‖y‖2

=
m−1∑

k=0

bk(−1)〈S∗kSkx, x〉 =
m−1∑

k=0

bk(−1)〈T kx, T kx〉

= 〈D−1x, x〉.

Then 〈D̃−1x, x〉 = ‖y‖2 = 〈D−1x, x〉 ≥ 0 for all x ∈ H. Also

‖D−1x‖‖x‖ ≥ 〈D−1x, x〉 = ‖y‖2 ≥ ‖Sy‖2
‖S‖2 =

‖x‖2
‖S‖2 .

So, D−1 > 0 and bounded below. Hence D−1 is invertible since D−1 is self
adjoint operator.

(ii) ⇒ (i): Consider the vector space H × H with a new seminorm

|||(h, h′)||| := ‖D
1/2
−1 (Th + h′)‖

and the subspace

N := {(h, h′) ∈ H × H : |||(h, h′)||| = 0}.

Let K := (H × H)/N with the quotient norm

|||(h, h′) + N ||| := ‖D
1/2
−1 (Th + h′)‖.

Then K is a normed space. Let us prove that ||| · ||| satisfies the parallelogram
law. For u = (h, h′) + N and v = (g, g′) + N in K we have

|||u + v|||2 + |||u − v|||2 = 〈D−1(Th + h′ + Tg + g′), Th + h′ + Tg + g′〉
+ 〈D−1(Th + h′ − Tg − g′), Th + h′ − Tg − g′〉

= 2〈D−1(Th + h′), Th + h′〉 + 2〈D−1(Tg + g′), T g + g′〉
= 2|||u|||2 + 2|||v|||2.

Henceforth, K is a pre-Hilbert space. The linear mapping φ : K −→ H defined
by φ((h, h′) + N) = Th + h′ is an isomorphism. Indeed, φ is bounded since
D−1 is an invertible operator. It is clear that φ is onto and bounded below
since the square root of D−1 is a bounded operator. Hence K is complete and
so it is a Hilbert space. Moreover,

|||(h, 0) + N |||2 = ‖D
1/2
−1 (Th)‖2 = 〈D−1Th, Th〉 = 〈T ∗D−1Th, h〉

= ‖D0h‖2 = ‖h‖2.
So K contains H as a subspace and we identify h ∈ H with (h, 0) + N ∈ K.
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Define S on K by
(
(h, h′) + N

)
:= (Th + h′, 0) + N . The operator S is

well defined and bounded:

|||S(
(h, h′) + N

)|||2 = |||(Th + h′, 0) + N |||2 = ‖D
1/2
−1 (T (Th + h′))‖2

= 〈D−1(T (Th + h′)), T (Th + h′)〉 = 〈D0(Th + h′), Th + h′〉
= ‖Th + h′‖2 ≤ ‖D

−1/2
−1 ‖2‖D

1/2
−1 (Th + h′)‖2

= ‖D
−1/2
−1 ‖2|||(h, h′) + N |||2.

Clearly S is an extension of T . Let h ∈ H. We have identified h with (h, 0)+N ∈
K and S((h, 0) + N) = (Th, 0) + N . Also SK = H.

Let us prove that S is an m-isometry. Let u = (h, h′) + N ∈ K and write
y := Th + h′ ∈ H. We have that Su = (y, 0) + N , Sku = (T k−1y, 0) + N and
|||Sku|||2 = ‖D

1/2
−1 (T ky)‖2 = ‖T k−1y‖2 for k ∈ N. So

m∑

k=0

(−1)k

(
m

k

)
|||Sku|||2 = |||u|||2 +

m∑

k=1

(−1)k

(
m

k

)
|||Sku|||2

= 〈D−1y, y〉 +
m∑

k=1

(−1)k

(
m

k

)
‖T k−1y‖2

=
m∑

k=0

(−1)k

(
m

k

)
py(k − 1) = 0,

since py has degree less or equal to m − 1. Hence S is an m-isometry. �

The following result gives necessary conditions of having an invertible
m-isometrical extension.

Proposition 3.2. Let T ∈ L(H) be a strict m-isometry.

(1) If T is invertible, then px(n) = ‖Tnx‖2 > 0 for every x ∈ H \ {0} and
n ∈ Z.

(2) If T has an invertible m-isometrical extension S, then px(−k):=‖S−kx‖2
> 0 for every x ∈ H\{0} and k ∈ N, where px(n) := ‖Tnx‖2 for n ∈ N.
In particular, the degree of px is even for every x ∈ H \ {0}.

(3) If there exists an invertible m-isometrical extension of T , then Dn > 0
and invertible operator for every n ∈ Z.

Proof. (1) Part (3) of Proposition 2.1 yields that T ∗nD−nTn = D0 = I for
n ∈ N. So, for every x ∈ H\{0} and n ∈ N,

px(−n) = 〈D−nx, x〉 = 〈T ∗−nT−nx, x〉 = ‖T−nx‖2 > 0,

since T−1 is an m-isometry.
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(2) Let x ∈ H and n ∈ N. Denote by

px(n) : = 〈Dnx, x〉 :=
m−1∑

k=0

bk(n)‖T kx‖2

p̃x(n) : = 〈D̃nx, x〉 :=
m−1∑

k=0

bk(n)‖Skx‖2,

where S is an invertible m-isometrical extension of T . Clearly, px(n) = p̃x(n) is
a polynomial of degree less or equal to m−1. Observe that px(−n) = p̃x(−n) =
‖S−nx‖2 for every n ∈ N. �

Remark 3.3. (1) Observe that part (2) of the above Proposition implies that
the degree of px is even if px(n) > 0 for every n ∈ Z. Indeed, this is a
different way to prove that there are no invertible strict m-isometries for
even m. See also [4, Proposition 1.23].

(2) The conditions Dn > 0 and invertible operator for every n ∈ Z are not
sufficient to define an invertible m-isometrical extension of T . Indeed,
invertibility of Dn would suffice to construct an unbounded m-isometrical
extension of T with dense range.

Proposition 3.2 allow us to obtain that some m-isometries have not an
invertible m-isometrical extension.

Remark 3.4. Let T ∈ L(H) be a strict m-isometry. Denote px(n) := ‖Tnx‖2,
for n ∈ N and x ∈ H \ {0}. Then
(1) If m = 1, then px(n) > 0 for every x ∈ H\{0} and n ∈ Z.
(2) If m is even, then there exist x0 ∈ H and n0 ∈ Z with n0 < 0 such that

px0(n0) ≤ 0.
(3) If m is odd, then it is possible that px(n) > 0 for every x ∈ H \ {0}

and n ∈ Z or there exist x0 ∈ H and n0 ∈ Z with n0 < 0 such that
px0(n0) ≤ 0.

In the following examples we present different behaviours of px(n) with
negative integer n for unilateral weighted shift.

Example 3.5. Let p(n) = nm−1 with odd m. It is clear that pej
(n) := ‖Sn

wej‖2 =(
j + n

j

)m−1

and pej
(−j) = 0. So, Sw can not have an invertible m-isometrical

extension.

Example 3.6. Let p(n) :=
∏m−1

i=1 (mn + i) with odd m. It is clear that

pej
(n) := ‖Sn

wej‖2 =

∏m−1

i=1
(m(j + n) + i)

∏m−1
i=1 (mj + i)

.
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If j ≥ n, then pej
(−n) > 0. In other case, pej

(−n) > 0 since m − 1 is even.
As we will see later, Sw has an invertible m-isometrical extension by Theorem
5.1.

4. Characterization of Having an Invertible m-isometrical
Extension

The main result of this paper is to obtain, for a fixed m-isometry, characteri-
zations of having an invertible m-isometrical extension. In Proposition 3.2, we
proved that a necessary condition is that the bilateral sequence of operators
(Dn)n∈Z must be strictly positive and invertible.

Now, we are in position to prove the main result.

Theorem 4.1. Let T ∈ L(H) be an m-isometry and let (Dn)n∈Z be the bilateral
sequence defined by (2.2). Denote px(n) := 〈Dnx, x〉 for every x ∈ H\{0} and
n ∈ Z. The following statements are equivalent:
(i) There exist a Hilbert space K ⊃ H and an invertible m-isometrical oper-

ator S ∈ L(K) such that S|H = T .
(ii) px(j) > 0 for every x ∈ H\{0}, and j ∈ Z and

sup
{

px(j + 1)
px(j)

: x ∈ H \ {0}, j ∈ Z

}
< ∞. (4.7)

(iii) Dn > 0 and invertible for every n ∈ Z, and

sup
{ 〈D−n+1x, x〉

〈D−nx, x〉 : x ∈ H, ‖x‖ = 1, n ∈ N

}
< ∞. (4.8)

Proof. (i) ⇒ (ii): Let x ∈ H \ {0}. Then

‖Sj+1x‖2 = ‖T j+1x‖2 = px(j + 1) > 0

for j ∈ Z and

px(j + 1)
px(j)

=
‖Sj+1x‖2
‖Sjx‖2 ≤ ‖S‖2.

So, we get (4.7).
(ii) ⇒ (iii): By parts (1) and (2) of Proposition 2.1 we have that Dn > 0

and invertible for n ∈ N. By hypothesis, Dj > 0 for j ∈ Z since px(j) =
〈Djx, x〉. Let us prove that D−n are bounded below for every n ∈ N. The
condition (4.7) yields that there exists M > 0 such that

px(−n) ≥ px(−n + 1)
M

≥ px(0)
Mn

=
‖x‖2
Mn

hence

‖D
1/2
−n x‖2 ≥ ‖x‖2

Mn
,
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for every x ∈ H \ {0} and n ∈ N. Therefore D−n is bounded below for n ∈ N

and hence invertible.
It is remained to prove (4.8). Indeed, (4.8) is an immediate consequence

of (4.7) using the identification px(j) = 〈Djx, x〉 for every x ∈ H\{0} and
j ∈ Z.

(iii) ⇒ (i): Let V be the vector space of all sequences (h1, h2, . . . ) of
elements of H with finite support, that is, there exists n ∈ N such that hj = 0
for j > n. Define a new seminorm on V by

|||(h1, h2, . . . )|||2 := 〈D−ny, y〉,
where n ∈ N is any integer satisfying hj = 0 for j > n and y :=

∑n
j=1 Tn−jhj .

The seminorm ||| · ||| does not depend on the choice of n. Indeed, if hj = 0
for j > n, r = n + n0 with n0 ∈ N, and y =

∑n
j=0 Tn−jhj , then

〈
D−r

r∑

j=1

T r−jhj ,
r∑

i=1

T r−ihi

〉

=

〈
D−(n+n0)T

n0

⎛

⎝
n+n0∑

j=1

Tn−jhj

⎞

⎠ , Tn0

(
n+n0∑

i=1

Tn−ihi

)〉

=

〈
T ∗n0D−(n+n0)T

n0

⎛

⎝
n∑

j=1

Tn−jhj

⎞

⎠ ,

n∑

i=1

Tn−ihi

〉
= 〈D−ny, y〉

where the last equality is by part (3) of Proposition 2.1.
Let N := {(h1, h2, . . . ) ∈ V : |||(h1, h2, . . . )||| = 0} and let K be the

completion of V/N .
Let us prove that K is a pre-Hilbert space. For that, it is enough to prove

that ||| · ||| satisfies the parallelogram law. Let u := (h1, h2, · · · ) + N, v :=
(g1, g2, · · · ) + N ∈ V/N , n ∈ N such that hj = 0 = gj for j > n and x :=∑n

j=1 Tn−jhj , y :=
∑n

j=1 Tn−jgj . Then

|||u + v|||2 + |||u − v|||2 = 〈D−n(x + y), x + y〉 + 〈D−n(x − y), x − y〉
= 2(|||u|||2 + |||v|||2).

For each h ∈ H we have |||(h, 0, 0, . . . )+N |||2 = 〈D−1Th, Th〉 = 〈D0h, h〉
= ‖h‖2.

Let L be the closed subspace generated by (h, 0, · · · ) + N with h ∈ H
and define φ on H taking values on L by φ(h) := (h, 0, · · · )+N . Then ‖h‖2 =
|||φ(h)|||2 and R(φ) = L. For each h ∈ H we can identify h with (h, 0, . . . )+N ∈
K. So, K contains H as a subspace.

Define S on V/N by S((h1, h2, · · · ) + N) := (Th1 + h2, h3, · · · ) + N ∈
V/N . Then the definition of S is correct and S is bounded. Indeed, let u :=
(h1, h2, · · · ) + N ∈ V/N , n ∈ N such that hj = 0 for j > n and y :=
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∑n
j=1 Tn−jhj . Denote (h̃1, h̃2, · · · ) := (Th1 + h2, h3, · · · ). Then

|||Su|||2 = |||(Th1 + h2, h3, · · · ) + N |||2 = 〈D−(n−1)ỹ, ỹ〉
where

ỹ :=
n−1∑

j=1

Tn−1−j h̃j = Tn−1(Th1 + h2) +
n−1∑

j=2

Tn−1−j h̃j = y .

Then |||Su|||2 = 〈D−(n−1)y, y〉 = py(−n + 1). Repeating the process we have
that

|||Sku|||2 = py(−n + k),

for k = 0, . . . m. Therefore
m∑

k=0

(−1)k

(
m

k

)
|||Sku|||2 =

m∑

k=0

(−1)k

(
m

k

)
py(−n + k) = 0,

since py has degree less or equal to m − 1. By continuity, S is an m-isometry.
It is easy to see that R(S) ⊃ V + N . So the range of S is dense, and

consequently S is an invertible m-isometry. �

Moreover, the invertible extension S ∈ L(K) is defined uniquely (up to
the unitary equivalence) if we assume that S is minimal, i.e., K =

∨
k≥0 S−kH.

We will prove that the converse of part (3) of Proposition 3.2 is not true
in general, that is, if Dn > 0 and invertible for n ∈ Z are not sufficient to
have an invertible m-isometrical extension of an m-isometry. Firstly, we need
a previous result on m-isometries.

Proposition 4.2. Let (Tn)n∈N ⊂ L(H) be a uniformly bounded sequence of m-
isometries. Then T = T1 ⊕ T2 ⊕ · · · is an m-isometry on �2(H).

Proof. Since (Tn)n∈N is a uniformly bounded, then T = T1 ⊕ T2 ⊕ · · · is well-
defined on �2(H).

Let x = (x1, x2, · · · ) ∈ �2(H). Denote pxn
(k) := ‖T k

nxn‖2. Since (Tn)n∈N

is a sequence of m-isometries, then (pxn
(k))n∈N is a sequence of polynomials

of degree less or equal to m − 1. Fixed k ∈ N,

px(k) := ‖T kx‖2 =
∞∑

n=1

‖T k
nxn‖2 =

∞∑

n=1

pxn
(k)

is a polynomial of degree less or equal to m − 1. Hence T is an
m-isometry. �

It is possible to exhibit an example of m-isometry with odd m such that
Dn > 0 and invertible for every n ∈ Z but not fulfilling the hypothesis of
Theorem 4.1. In order to simplify the presentation we include an example
with a 3-isometry.
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Example 4.3. Let qn(j) := j2 + j(2 − 1
n ) + 1. Let H be a Hilbert space with

an orthonormal basis (en,j)n,j∈N and K := �2(H). Define T ∈ L(K) by

Ten,j :=

√
qn(j + 1)

qn(j)
en,j+1

for any n, j ∈ N. Then
(1) T is a 3-isometry on K.
(2) px(k) > 0 for every x ∈ K\{0} and k ∈ Z, where px(n) := ‖Tnx‖2 for

n ∈ N.
(3) Dn > 0 and invertible for n ∈ Z.
(4) There is no invertible 3-isometrical extension of T .

Proof: It is clear that qn(j) > 0 for n ∈ N and j ∈ Z.
Let x = (x1, x2, · · · ) = (

∑∞
n=1 αn,1en,1,

∑∞
n=1 αn,2en,2, · · · ) ∈ K. Then

T (x1, x2, · · · ) := (0, T1x1, T2, x2, · · · ),
where

Tixi := Ti

( ∞∑

n=1

αn,ien,i

)
=

∞∑

n=1

αn,iwn,ien,i+1

and

wn,i :=

√
qn(i + 1)

qn(i)
.

By Proposition 4.2, the operator T is a 3-isometry, since Tn is a 3-isometry for
every n ∈ N and also (Tn)n∈N is uniformly bounded, that is

sup
n∈N

‖Tn‖ ≤ sup
n,i∈N

√
qn(i + 1)

qn(i)
< M

for some positive constant M .
Let us prove that px(k) > 0 for every x ∈ K\{0} and k ∈ Z. Let x =

(x1, x2, · · · ) = (
∑∞

n=1 αn,1en,1,
∑∞

n=1 αn,2en,2, · · · ) ∈ K\{0} and k ∈ N. Then

px(k) := ‖T kx‖2 = ‖(0, · · · , 0, TkTk−1 · · · T1x1, Tk+1Tk · · · T2x2, · · · ‖2

= ‖[‖ 3](0, · · · , 0,
∞∑

n=1

αn,1

√
qn(k + 1)

qn(1)
en,k+1, · · · )

2

=
∞∑

j=1

‖[‖ 3]
∞∑

n=1

αn,j

√
qn(k + j)

qn(j)
en,k+j

2

=
∞∑

n,j=1

|αn,j |2 qn(k + j)
qn(j)

> 0
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for k ∈ N. Notice that

D−n :=
(n + 1)(n + 2)

2
I − n(n + 2)T ∗T +

n(n + 1)
2

T ∗2T 2,

is a diagonal operator given by D−nem,j = λ−n(k, j)ek,j where

λ−n(k, j) :=
1

2qk(j)
((n + 1)(n + 2)qk(j) − n(n + 2)qk(j + 1) + n(n + 1)qk(j + 2))

=
1

2qk(j)

(
j2(n2 + 2n + 2) + j

(
−n2

k
+ 4n2 − 2

n

k
+ 4n − 2

k
+ 4

)

−n2

k
+ 6n2 + 4n + 2

)
> 0,

for n, k, j ∈ N. So, it is immediate that D−n is invertible for n ∈ N.
In order to finish the proof, let us prove that there is no invertible 3-

isometrical extension of T . Taking into account that
pen,1(−1)
pen,1(−2)

=
qn(0)

qn(−1)
= n,

we have that

sup
{

px(j + 1)
px(j)

: x ∈ K \ {0}, j ∈ Z

}
= ∞.

�

5. Some Particular Cases

In this section, the goal is to study two different examples of m-isometries,
the �-Jordan isometry and unilateral weighted shift that are m-isometries for
some m.

In the case of unilateral weighted shift we can obtain a nice characteriza-
tion of invertible m-isometrical extensions of an m-isometry, as a consequence
of Theorem 4.1.

Theorem 5.1. Let H be a Hilbert space with orthonormal basis (en)n∈N and
let Sw ∈ L(H) be an m-isometrical unilateral weighted shift associated to the
weight w := (wn)n∈N. Then Sw has an invertible m-isometrical extension if
and only if pe1(n) > 0 for every n ∈ Z, where pe1(n) := ‖Sn

we1‖2 for n ∈ N.

Proof. If Sw has an invertible m-isometrical extension S, then px(n) := ‖Snx‖2
> 0 for every x ∈ H\{0} and n ∈ Z, by Proposition 3.2. Hence pe1(n) > 0 for
n ∈ Z.

Let us prove the sufficient condition. Suppose that pe1(n) > 0 for n ∈ Z.
A first consequence is that m is odd. By equality (2.4), pe1(n) is a polynomial
of degree m − 1. Hence

lim
n→∞

pe1(−n + 1)
pe1(−n)

= 1,
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and

inf
{

pe1(−n + 1)
pe1(−n)

: n ∈ N

}
> 0.

Let K be a Hilbert space with (en)n∈Z an orthonormal basis. Define Tβ ∈ L(K)

by Tβen = βnen+1 where βn =

√
pe1(n)

pe1(n − 1)
for n ∈ Z. By [1, Theorem 19] we

have that Tβ is an m-isometry, since pe1(n) is a polynomial of degree m − 1
by (2.4). Moreover, Tβ is an invertible extension of Sw and the desired result
is proved. �
Remark 5.2. In the above theorem, it is possible to obtain the same infor-
mation with different elements of the orthogonal basis, as a consequence of
equality (2.4). Indeed, in the conditions of Theorem 5.1 the following state-
ments are equivalent:
(1) Sw has an invertible m-isometrical extension.
(2) pe1(n) > 0 for n ∈ Z.
(3) pej

(n) > 0 for n ∈ Z and some j ∈ N.
(4) pej

(n) > 0 for n ∈ Z and j ∈ N.

Let us obtain a first approach to �-Jordan isommetries. In the next result
we obtain that any 2-Jordan isometry operator admits an invertible 3-isometric
extension, as a particular case of Theorem 4.1.

Corollary 5.3. Let T ∈ L(H) be a 2-Jordan isometry operator. Then T has an
invertible 2-Jordan isometry extension.

Proof. Let T be a 2-Jordan isometry operator, that is T = A + Q, where A is
an isometry and Q is a 2-nilpotent operator such that AQ = QA. By (2.2) we
obtain that

D−n =
(n + 1)(n + 2)

2
I − n(n + 2)T ∗T +

n(n + 1)
2

T ∗2T 2

= I − n(A∗Q + Q∗A) + n2Q∗Q.

Then

〈D−nx, x〉 = ‖x‖2 − n(〈Qx,Ax〉 + 〈Ax,Qx〉) + n2‖Qx‖2.
Let us prove that 〈D−nx, x〉 > 0 for every x ∈ H such that ‖x‖ = 1 and n ∈ N.
It is enough to prove that

n2‖Qx‖2 + 1 > 2nRe(〈Ax,Qx〉), (5.9)

where Re(z) denotes the real part of z. If Re(〈Ax,Qx〉) ≤ 0, then (5.9) is
clear. Assume that Re(〈Ax,Qx〉) > 0. Then

Re(〈Ax,Qx〉) = |Re(〈Ax,Qx〉)| ≤ |〈Ax,Qx〉| ≤ ‖Ax‖‖Qx‖ ≤ ‖Q‖.

If |〈Ax,Qx〉| = ‖Ax‖‖Qx‖, then the vectors Ax and Qx are linearly de-
pendent, so there exists λ such that Qx = λAx. Then λ = 0, since 0 =
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‖Q2x‖ = |λ|2‖A2x‖ = |λ|2 and therefore ‖Qx‖ = 0, which is an absurd with
Re(〈Ax,Qx〉 > 0. If |〈Ax,Qx〉| < ‖Ax‖‖Qx‖, then

2nRe(〈Ax,Qx〉) < 2n‖Qx‖ ≤ n2‖Qx‖2 + 1.

So, 〈D−nx, x〉 > 0 for every x ∈ H such that ‖x‖ = 1 and all n ∈ N.
In order to get the result, it is enough to prove that (4.8) is bounded. Let

x ∈ H such that ‖x‖ = 1 and n ∈ N. Then

〈D−n+1x, x〉
〈D−nx, x〉 = 1 +

2Re(〈Ax,Qx〉) + (−2n + 1)‖Qx‖2
1 − 2nRe(〈Ax,Qx〉) + n2‖Qx‖2

≤ 1 +
∣∣∣∣
2Re(〈Ax,Qx〉) + (−2n + 1)‖Qx‖2
1 − 2nRe(〈Ax,Qx〉) + n2‖Qx‖2

∣∣∣∣

≤ 1 +
2‖Q‖ + (2n − 1)‖Q‖2
1 − 2n‖Q‖ − n2‖Q‖2

converges to zero as n tends to infinity. Hence

sup
{ 〈D−n+1x, x〉

〈D−nx, x〉 : x ∈ H, ‖x‖ = 1, n ∈ N

}
< ∞.

�

Corollary 5.4. Let T, C ∈ L(H) such that TC = CT .

(1) If T is an isometry, then T̃ :=
(

T C
0 T

)
has an invertible 3-isometric

extension on K ⊃ H ⊕ H.

(2) If λT is an isometry for some λ ∈ C, then λT̃ = λ

(
T C
0 T

)
has an

invertible 3-isometric extension on K ⊃ H ⊕ H.

Proof. (1) It is clear that T̃ =
(

T 0
0 T

)
+

(
0 C
0 0

)
is a 2-Jordan isometry

operator. Therefore the result is consequence of Corollary 5.3.
Applying (1) to the operator λT we obtain (2). �

A similar result of part (1) of Corollary 5.4 was obtained in [8, Corollary
4.4]. That is, if T ∈ L(H) is a contraction and C ∈ L(H) such that TC = CT ,
then T̃ has a 3-isometric lifting on K ⊃ H ⊕ H.

In the next theorem we can improve Corollary 5.3. Indeed, we prove that
every �-Jordan isometry has an invertible �-Jordan isometry extension. The
first part of our proof is based in the construction by Douglas [13], as it is
presented by Laursen and Neumann in the monograph [15, Proposition 1.6,6].

Theorem 5.5. Let T ∈ L(H) be an �-Jordan isometry. Then there exist a
Hilbert space K and S ∈ L(K), such that H is isometrically embedded in
K and S is an invertible �-Jordan isometry extension of T .
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Proof. As T is an �-Jordan isometry, there are an isometry A ∈ L(H) and an
�-nilpotent operator Q ∈ L(H) such that AQ = QA and T = A + Q.

Let K0 be the linear space of all the sequences u = (un)n∈N in H such
that there is m ∈ N satisfying um+k = Akum, for k ∈ N. Define, for u, v ∈ K0,

〈u, v〉0 := lim
n→∞〈un, vn〉 ,

being 〈·, ·〉 the inner product on H. Note that there exists m ∈ N such that
〈um, vm〉 = 〈Akum, Akvm〉 = 〈um+k, vm+k〉, so the sequence (〈un, vn〉)n∈N is
eventually constant, that is, there exists k0 ∈ N such that 〈un, vn〉 is constant
for n > k0. It is routine to verify what 〈·, ·〉0 is a semi-inner product on K0.
Therefore K0 is a semi pre-Hilbert space. Moreover,

‖u‖20 := 〈u, u〉0 = lim
n→∞〈un, un〉 = lim

n→∞ ‖un‖2

defines a seminorm ‖ · ‖0 on K0.
Let M := {u ∈ K0 : 〈u, u〉0 = ‖u‖20 = 0}. Then M is a closed subspace

of K0 and we consider the quotient space K0/M . In this space are defined, for
u, v ∈ K0,

〈u + M,v + M〉 := 〈u, v〉0 and
‖u + M‖2 := 〈u + M,u + M〉 = 〈u, u〉0 = ‖u‖20 ,

and we obtain that K0/M is a pre-Hilbert space.
Denote by K the Hilbert space what it is the completion of K0/M . The

operator J ∈ L(H,K), defined by Jx := (Anx)n∈N + M for x ∈ H, satisfies
that

‖Jx‖ = ‖(Anx)n∈N + M‖ = ‖(Anx)n∈N‖0 = lim
n→∞ ‖Anx‖ = ‖Ax‖ = ‖x‖ ,

hence J is an isometry. So K contains an isometric copy of H. It is clear that
J(H) is a closed subspace of K.

In order to define B ∈ L(K), we define an isometry on K0/M by

B((un)n∈N + M) := (Aun)n∈N + M ,

for every (un)n∈N +M ∈ K0/M . Note that B is a linear isometry whose range
contains K0/M ; in fact, given (vn)n∈N +M = (v1, ..., vm, Avm, A2vm, ...)+M ,
we have that
B((0, ..., 0︸ ︷︷ ︸

m

, vm, Avm, A2vm, ...) + M) = (0, ..., 0︸ ︷︷ ︸
m

, Avm, A2vm, A3vm, ...) + M

= (v1, · · · , vm, Avm, A2vm, · · · ) + M.

As K0/M is dense in K, we have that B can be extended to an invertible
isometry defined on K. Moreover, B can be considered as an extension of A
since, for x ∈ H,

BJx = B((Anx)n∈N + M) = (An+1x)n∈N + M = JAx .

That is, BJ = JA.
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Define P ∈ L(K) in the following way

P ((un)n∈N + M) = (Qun)n∈N + M ,

for every (un)n∈N + M ∈ K0/M . It is clear that P is an �-nilpotent. Let us
prove that B and P commute. Taking into account that AQ = QA, we have
that

BP ((un)n∈N + M) = B((Qun)n∈N + M) = (AQun)n∈N + M

= (QAun)n∈N + M = P ((Aun)n∈N + M)

= PB((un)n∈N + M) .

for every (un)n∈N +M ∈ K0/M . Therefore, S := B +P ∈ L(K) is an �-Jordan
isometry that extends T . Moreover, S is an invertible since σ(S) = σ(B) and
B is an invertible isometry. So the proof is finished. �

An operator T ∈ L(H) is a doubly �-Jordan isometry if T = A + Q
is an �-Jordan isometry operator such that the �-nilpotent Q ∈ L(H) which
commutes with A also commutes with A∗. For all scalar λ with |λ| = 1 and an
�-nilpotent operator Q, we have that λI + Q is a doubly �-Jordan isometry.

Corollary 5.6. Let T ∈ L(H) be a doubly �-Jordan isometry. Then there exist a
Hilbert space K, such that H is isometrically embedded in K and an invertible
doubly �-Jordan isometry extension S ∈ L(K) of T .

Remark 5.7. We use the notation of the proof of Theorem 5.5.

(1) It is easy to prove that the orthogonal subspace of J(H), J(H)⊥ is the
closure of the subspace of all classes

(un)n∈N + M = (u1, ..., um, Aum, A2um, ...) + M ∈ K0/M

such that um ∈ R(Am)⊥.
(2) The decomposition K = J(H) ⊕ J(H)⊥ gives rise to the representation

of B as a operator matrix:

B =
(

B1 B2

0 B3

)
(5.10)

being B1 ∈ L(J(H)), B2 ∈ L(J(H)⊥, J(H)) and B3 ∈ L(J(H)⊥). Notice
that J(H) is a closed invariant subspace of B.

(3) The operator P is defined by the following operator matrix, associated
to the decomposition K = J(H) ⊕ J(H)⊥,

P =
(

P1 P2

0 P3

)
(5.11)

being P1 ∈ L(J(H)), P2 ∈ L(J(H)⊥, J(H)) and P3 ∈ L(J(H)⊥). Notice
that J(H) is a closed invariant subspace of P .
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(4) If T is a doubly �-Jordan isometry, then P2 = 0 in (5.11). For this
purpose only it is necessary to prove that if (un)n∈N + M ∈ J(H)⊥,
then P ((un)n∈N + M) ∈ J(H)⊥, and that BP ∗ = P ∗B. In fact, given
u = (u1, ..., um, Aum, A2um, ...) such that um ∈ R(Am)⊥, we have that
Qum ∈ R(Am)⊥ since, for all x ∈ H,

〈Qum, Amx〉 = 〈um, Q∗Amx〉 = 〈um, AmQ∗x〉 = 0 ,

because Q∗A = AQ∗. Therefore P ((un)n∈N + M) = (Qu1, ..., Qum,
AQum, A2Qum, ...) + M ∈ J(H)⊥. Hence P (J(H)⊥) ⊂ J(H)⊥.
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