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Abstract. In the paper we study properties of a lower porosity of a set in
a normed space (X, ‖ ‖). Two topologies p(X, ‖ ‖) and s(X, ‖ ‖) on X
generated by the lower porosity are defined. Relationships between these
topologies and, previously defined by V. Kelar and L. Zaj́ıček, topolo-
gies p(X, ‖ ‖) and s(X, ‖ ‖) are studied. Applying topologies p(X, ‖ ‖)

and s(X, ‖ ‖) we characterize maximal additive class of lower porous-
continuous functions. Some relevant properties of defined topologies are
considered.
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1. Preliminaries

Porosity of a set, defined in [4], is the notion of smallness more restrictive than
nowhere density and meagerness. It can be defined in arbitrary metric space.
The main idea is that we modify the ”ball” definition of nowhere density by
the request that the sizes of holes should be estimated. Usually, the notion
of the (upper) porosity of sets is used in many aspects, see for example [4–
6,10,12,13]. We deal with the lower porosity, which also be considered in some
papers, [11,12]. It is known that there are big differences between the lower and
the upper porosities. In [12,13] some properties of the lower porosity in metric
spaces are presented, whereas in [11] some properties of the lower porosity on
R

2 and of lower porouscontinuous functions f : R
2 → R are studied.

Let N and R denote the set of all positive integers and the set of all
real numbers, respectively. For f : X → Y and Z ⊂ X, by f�Z we mean the
restriction of f to Z. For the whole paper (X, ‖ ‖) denotes a normed space.
The symbols clT Z, intT Z and bdT Z denote the closure, the interior and the
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boundary of Z ⊂ X with respect to a topology T in X. The open ball in
(X, ‖ ‖) with the center x ∈ X and the radius � > 0 is denoted by B(x, �).
Similarly, by S(x, �) and B(x, �) we denote the sphere and the closed ball with
the center x and the radius �, respectively. By 0X we denote the zero element
of X.

We will also consider spaces (Rn, ‖ ‖n), (Rn, ‖ ‖max) for n ≥ 1 and
(l∞, ‖ ‖sup), where ‖ ‖n is the natural norm in R

n, ‖ ‖max is a norm in R
n

defined by ‖(x1, . . . , xn)‖max = max{|xi| : i = 1, . . . , n}, l∞ is the space of all
bounded real sequences and ‖ ‖sup is a norm in l∞ defined by ‖(x1, . . . , xn)‖sup =
sup{|xi| : i ≥ 1}. Spaces (Rn, ‖ ‖max) and (l∞, ‖ ‖sup) play important role in
our paper and we will need some their properties.

For each n ≥ 1 and ζ ∈ {−1, 1}n, ζ = (ζ1, . . . , ζn), we define

Hζ = {x = (x1, . . . , xn) ∈ R
n : ∀i ≤ n (xi ≤ 0 if ζi = −1 and xi ≥ 0 if ζi = 1)} .

For each ζ ∈ {−1, 1}ω, ζ = (ζ1, ζ2, . . .), we define

Hζ = {x = (x1, x2, . . .) ∈ l∞ : ∀i ≥ 1 (xi ≤ 0 if ζi = −1 and xi ≥ 0 if ζi = 1)} .

Lemma 1.1. Let (X, ‖ ‖) be (Rn, ‖ ‖max) or (l∞, ‖ ‖sup). For each R > 0 and
for each ball B(x, η) ⊂ B(0X , R) such that η ∈

(
R
4 , R

2

)
there exist y ∈ X and

ζ ∈ {−1, 1}n or ζ ∈ {−1, 1}ω such that

B(y, η − R
4 ) ⊂ B(x, η) ∩ Hζ ∩ B(0X , R

2 ).

Proof. (See Fig. 1) it is enough to show that for each interval [α, β] ⊂ [−R,R],
where β − α = 2η, there exists (α1, β1) such that β1 − α1 = 2η − R

2 and
(α1, β1) ⊂

(
R
2 , 0

)
∪

(
0, R

2

)
.

If 0 ∈ [α, β] then β ≥ η or α ≤ −η. Therefore as (α1, β1) we take (0, β) or
(α, 0), because η ≥ η+(η− R

2 ) = 2η− R
2 . If 0 
∈ [α, β] then (R−2η, R

2 ) ⊂ (α, β)
or (−R

2 , 2η − R) ⊂ (α, β). Then R
2 − (R − 2η) = 2η − R

2 , which completes the
proof. �

Let (X, ‖ ‖) be a normed space. By T‖ ‖ we denote a topology in X
generated by ‖ ‖. Sometimes we consider another topology T in X. We say
that f : X → R is T -continuous at some x ∈ X if f is continuous as a function
f : (X, T ) → (R, T‖ ‖1).

Now, we recall definitions of the (upper) porosity and the lower porosity
in a normed space. These notions can be defined in an arbitrary metric space
but we present them only for a normed space (X, ‖ ‖), because only such the
case will be considered in the paper. Let U ⊂ X, x ∈ X and R > 0. Then,
according to [4,12], by γ(x,R,U) we denote the supremum of the set of all
� > 0 for which there exists y ∈ X such that B(y, �) ⊂ B(x,R) \ U . The
number p(U, x) = 2 lim supR→0+

γ(x,R,U)
R is called the (upper) porosity of U

at x. Obviously, p(U, x) = p(clT‖ ‖ U, x) for U ⊂ X and x ∈ X.
Similarly, the number p(U, x) = 2 lim infR→0+

γ(x,R,U)
R is called the lower

porosity of U at x. Clearly, p(U, x) = p(clT‖ ‖ U, x) and p(U, x) ≤ p(U, x) for
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Figure 1. Construction in (R2, ‖ ‖max)

U ⊂ X and x ∈ X. Moreover, for U ⊂ V ⊂ X we have p(V, x) ≤ p(U, x),
p(U, x) ∈ [0, 2] and p(U, x) ∈ [0, 1] if x ∈ clT‖ ‖ U . We say that U ⊂ X is
(upper) porous (lower porous) at x ∈ X if p(U, x) > 0 (p(U, x) > 0). Similarly,
we say that A ⊂ X is (upper) strongly porous (lower strongly porous) at x ∈ X
if p(U, x) = 1 (p(U, x) = 1).

Theorem 1.2. Let (X, ‖ ‖) be a normed space, A ⊂ X, x ∈ X and p(A, x) > 0.
Then there exists a sequence of closed balls

(
B(xn, �n)

)
n≥1

, not necessary pair-
wise disjoint, such that limn→∞ xn = x, �n ≤ 1

n for n ≥ 1,
⋃∞

n=1 B(xn, �n) ∩
A = ∅ and

p(A, x) = p

(

X \
∞⋃

n=1

B(xn, �n), x

)

= lim inf
n→∞

2n�n.

Proof. For every n ≥ 1 put γn = sup
{
� : ∃y∈X

(
B(y, �) ⊂ B(x, 1

n ) \ A
)}

and
choose a closed ball B(xn, �n) ⊂ B(x, 1

n ) \ A such that �n > γn

(
1 − 1

n2

)
.

Denote B = X \
⋃∞

n=1 B(xn, �n). Since A ⊂ B, we get p(B, x) ≤ p(A, x). Fix

n > 1 and choose any R ∈
(

1
n+1 , 1

n

]
. Then

2γ(x,R,A)
R

≤ 2γn
1

n+1

<
2�n(

1 − 1
n2

)
1

n+1

=
2�nn2

n − 1
.

On the other hand,

γ(x,R,B) ≥ γ(x, 1
n+1 , B) ≥ �n − 1

2 ( 1
n − 1

n+1 ) = �n − 1
2n(n + 1)
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and

2γ(x,R,B)
R

≥
2�n − 1

n(n+1)

1
n

= 2n�n − 1
n + 1

.

We have showed that for each n > 1 and for each R ∈
(

1
n+1 , 1

n

]
the following

inequalities
2γ(x,R,A)

R
< 2�nn

n

n − 1
and

2γ(x,R,B)
R

≥ 2n�n − 1
n + 1

are true. Hence

p(A, x) ≤ lim inf
n→∞

2n�nn
n

n − 1
= lim inf

n→∞
2n�n · lim

n→∞

n

n − 1
= lim inf

n→∞
2n�n

and

p(B, x) = lim inf
R→0

2γ(x,R,B)
R

≥ lim inf
n→∞

(
2n�n − 1

n + 1

)
= lim inf

n→∞
2n�n.

Finally, p(A, x) = p(B, x) = lim infn→∞ 2n�n. �

In [13] and [7] L. Zaj́ıček and V. Kelar introduce two topologies using the
notion of (upper) porosity and (upper) strong porosity.

Definition 1.3 [13]. Let A ⊂ X and x ∈ X. We say that A is (upper) super-
porous at x if A ∪ B is (upper) porous at x whenever B is (upper) porous at
x. A set A is said to be p-open (porosity open) if X \A is (upper) superporous
at any point of A.

Definition 1.4 [7]. Let A ⊂ X and x ∈ X. We say that A is (upper) strongly
superporous at x if A∪B is (upper) porous at x whenever B is (upper) strongly
porous at x. A set A is said to be s-open (strongly porosity open) if X \ A is
(upper) strongly superporous at any point of A.

The system of all p-open sets in (X, ‖ ‖) forms a topology p(X, ‖ ‖), which
will also be called the p-topology or the porosity topology, [13]. The system
of all s-open sets forms a topology s(X, ‖ ‖), which will be called s-topology
or the strong porosity topology, [7]. Obviously p(X, ‖ ‖) and s(X, ‖ ‖) are
finer than the initial topology. On a non-trivial normed space neither s(X, ‖ ‖)
is finer than p(X, ‖ ‖) nor p(X, ‖ ‖) is finer than s(X, ‖ ‖), [7]. The both
topologies are completely regular, [7].

The aim of our paper is to describe the properties of topologies s(X, ‖ ‖)
and p(X, ‖ ‖) which are generated by the lower porosity in a similar way as
s(X, ‖ ‖) and p(X, ‖ ‖) were generated by the standard (upper) porosity. Sec-
tion 2 describes relationships between topologies s(X, ‖ ‖), p(X, ‖ ‖), s(X, ‖ ‖),
p(X, ‖ ‖) and T‖ ‖, which are quite interesting. First of all, we show that
T‖ ‖ ⊂ s(X, ‖ ‖). We give examples of spaces in which this inclusion is proper
and examples of spaces in which we have equality. The more, we prove that
there are two equivalent norms in R

n such that in the first we have a proper
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inclusion and in the second we have equality. Namely, T‖ ‖n
= s(Rn, ‖ ‖n) and

T‖ ‖max � s(Rn, ‖ ‖max). In particular, s(Rn, ‖ ‖n) 
= s(Rn, ‖ ‖max) although
T‖ ‖max = T‖ ‖n

. Then we show that the inclusion p(X, ‖ ‖) ⊂ p(X, ‖ ‖) holds
in every normed space. Next, we define two geometrical conditions (A) and
(B) such that the condition (B) implies the condition (A) and every con-
sidered by the authors normed space satisfies the condition (A). We prove
that the inclusion s(X, ‖ ‖) ⊂ p(X, ‖ ‖) holds under the condition (A) and
s(X, ‖ ‖) ⊂ s(X, ‖ ‖) holds under the condition (B). It turns out that the
condition (B) is not necessary. There is no other general relationships between
considered topologies. Some other examples and properties are presented. Cru-
cial keys in presented examples play spaces (Rn, ‖ ‖max) and (l∞, ‖ ‖sup).

The last section presents some applications of topologies s(X, ‖ ‖) and
p(X, ‖ ‖). Namely, we define lower porouscontinuous functions, following ideas
of J. Borśık and J. Holos from [1], and we describe maximal additive classes
for some types of lower porouscontinuity in terms of topologies s(X, ‖ ‖) and
p(X, ‖ ‖).

At the end of the section we prove a useful technical lemma.

Lemma 1.5. Let β > 0 and δ ∈
(
0, β

4

)
. Then for every α > 0 we have

sup
{

b − a

b
: [a, b] ⊂ [δ, β] \ (α, 2α)

}
≥ 1 −

√
2δ
β .

Proof. Let us consider three cases. First, consider the case where 2α ≥ β.
Then [δ, β

2 ] ∩ (α, 2α) = ∅ and
β
2 −δ

β
2

= 1 − 2δ
β . Similarly, if α ≤ δ then [2α, β] ∩

(α, 2α) = ∅ and β−2α
β ≥ 1 − 2δ

β . Finally, in the case where α ∈ (δ, β
2 ) we have

([δ, α]∪ [2α, β])∩ (α, 2α) = ∅. Consider two functions ϕ,ψ : (δ, β
2 ) → R defined

by ϕ(α) = α−δ
α = 1− δ

α and ψ(α) = β−2α
β = 1− 2α

β . Then ϕ is increasing, ψ is

decreasing and ϕ(α) = ψ(α) if δ
α = 2α

β , i.e. α =
√

δβ
2 . Moreover, ϕ

(√
δβ
2

)
=

ψ

(√
δβ
2

)
= 1 − δ√

δβ
2

= 1 −
√

2δ
β . Since 1 −

√
2δ
β ≤ 1 − 2δ

β , the proof is

completed. �

2. Relationships between topologies generated by porosities

Analogously, as in the case of the standard (upper) porosity we can define
lower superporosity, lower strong superporosity and topologies p(X, ‖ ‖) and
s(X, ‖ ‖).

Definition 2.1. Let A ⊂ X and x ∈ X. We say that A is lower superporous at
x if A ∪ B is lower porous at x whenever B is lower porous at x. A set A is
said to be p-lower open (lower porosity open) if X \ A is lower superporous at
any point of A.
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Definition 2.2. Let A ⊂ X and x ∈ X. We say that A is lower strongly super-
porous at x if A ∪ B is lower porous at x whenever B is lower strongly porous
at x. A set A is said to be s-lower open (lower strongly porosity open) if X \A
is lower strongly superporous at any point of A.

A simple check shows that the system of all p-lower open sets in (X, ‖ ‖)
forms a topology p(X, ‖ ‖), which will also be called the p-topology or the
lower porosity topology. The system of all s-lower open sets forms a topology
s(X, ‖ ‖), which will be called s-topology or the lower strong porosity topology.

Remark 2.3. Let (X, ‖ ‖) be a normed space. For every E ⊂ [0,∞) let AE =
{x ∈ X : ‖x‖ ∈ E}. Then p(AE , 0X) = p(E ∪ −E, 0) and p(AE , 0X) = p(E ∪
−E, 0).

Example 2.4. Let (X, ‖ ‖) be a normed space and E = [0,∞) \
⋃∞

n=1

{
1
2n

}
.

We claim that AE ∈ (p(X, ‖ ‖) ∩ p(X, ‖ ‖)) \ (s(X, ‖ ‖) ∪ s(X, ‖ ‖) ∪ T‖ ‖).
Clearly, p(X \ AE , 0X) = 1

2 and p(X \ AE , 0X) < 1
2 . The more, X \ AE is

neither strongly superporous nor lower strongly superporous at 0X . Hence,
AE /∈ s(X, ‖ ‖) ∪ s(X, ‖ ‖). Obviously, AE /∈ T‖ ‖.

On the other hand, it is clear that X \ AE is superporous and lower
superporous at every x ∈ AE , x 
= 0X . Moreover, for every B ⊂ X and
B(x, η) ⊂ X \ B we can find y ∈ B(x, η) such that B(y,min{η

2 , 1
4‖y‖}) ⊂

(X \B)∩AE . Therefore, X \AE is superporous and lower superporous at 0X .
Finally, AE ∈ p(X, ‖ ‖) ∩ p(X, ‖ ‖).

Example 2.5. Let (X, ‖ ‖) be a normed space and E = [0,∞) \
⋃∞

n=2[
1
n! ,

2
n! ].

We claim that AE ∈ (s(X, ‖ ‖) ∩ p(X, ‖ ‖)) \ (p(X, ‖ ‖) ∪ s(X, ‖ ‖) ∪ T‖ ‖).
Clearly,

p(X \ AE , 0X) ≤ lim
n→∞

2γ(0X , 2
n! ,X \ AE)
2
n!

≤ 1
2

< 1.

Hence, X\AE is not lower strongly superporous at 0X and AE /∈ s(X, ‖ ‖). Let
B = AE . Then p(B, 0X) = limn→∞

2γ(0X , 2
n! ,B)

2
n!

= 1
2 and p(B∪(X \AE), 0X) =

p(X, 0X) = 0. Thus X \ AE is not superporous at 0X and AE /∈ p(X, ‖ ‖).
Obviously, AE /∈ T‖ ‖.

It is clear that X \ AE is lower superporous and strongly superporous at
every x ∈ AE , x 
= 0X . Take any B ⊂ X satisfying p(B, 0X) = 2c > 0. Choose
n0, k0 ≥ 2 such that 4

k0
< c, k0 < n0 and 2γ(0X ,R,B)

R > c for every R < 1
(n0−1)! .

Take any n > n0 and R ∈ [ 1
n! ,

1
(n−1)! ]. If R ∈ [ 1

n! ,
k0
n! ] then

2γ(0X , R,B ∪ (X \ AE))
R

≥
2γ(0X , 1

n! , B) − 2
(n+1)!

k0
1
n!

>
c

k0
− 2

k0(n + 1)
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and if R ∈ [k0
n! ,

1
(n−1)! ] then

2γ(0X , R,B ∪ (X \ AE))
R

≥
2γ(0X , R,B) − 2

n!

R
> c − 2

k0
>

c

2
.

Therefore, p(B ∪ (X \ AE), 0X) ≥ c
k0

, X \ AE is lower superporous at 0X and
AE ∈ p(X, ‖ ‖).

Take any B ⊂ X satisfying p(B, 0X) = 1 and R ∈ (0, 1). Let R ∈[
1

(n+1)! ,
1
n!

)
. Choose B(xR, ηR) ⊂ X \ (B ∪ {0X}) such that ‖xR‖ + ηR < R,

ηR > γ(0X , R,B) − R
n and ‖xR‖ − ηR > 2

(n+2)! . Since p(B, 0X) = 1, we have

lim supR→0+
2ηR

R = 1, lim supR→0+
2ηR

‖xR‖+ηR
= 1 and lim infR→0+

‖xR‖−ηR

‖xR‖+ηR
=

0. Applying Lemma 1.5 with β = ‖xR‖ + ηR and δ = ‖xR‖ − ηR we obtain
2γ(0X ,‖xR‖+ηR,B∪(X\AE))

‖xR‖+ηR
≥ 1 −

√
2(‖xR‖−ηR)

‖xR‖+ηR
. Therefore

p(B ∪ (X \ AE), 0X) = lim sup
R→0+

2ηR

‖xR‖ + ηR
≥ 1 − lim inf

R→0+

√
2(‖xR‖ − ηR)
‖xR‖ + ηR

= 1.

Hence X \ AE is strongly superporous at 0X and AE ∈ s(X, ‖ ‖).

Theorem 2.6. Let ‖ ‖max be the maximum norm in R
n and TN be the natural

topology in R
n. Then s(Rn, ‖ ‖max) � TN .

Proof. The inclusion s(Rn, ‖ ‖max) ⊃ T‖ ‖max = TN is obvious. Let us take U =
(Rn \ (R × {0n−1}) ∪ {0n}, where 0n = (0, . . . , 0) ∈ R

n. Certainly, U /∈ TN .
We claim that U ∈ s(Rn, ‖ ‖max). It is easy to see that R

n \U is lower strongly
superporous at every x ∈ U \ {0n}. Take any V ⊂ R

n such that V is lower
strongly porous at 0n. For every R > 0 choose B(xR, ηR) ⊂ B(0n, 2R) \ V
such that ηR > γ(0n, 2R, V )− (2R)2. By Lemma 1.1, we can find yR ∈ R

n and
ξ ∈ {−1, 1}n such that

B(yR, ηR − R
2 ) ⊂ B(xR, ηR) ∩ Hξ ∩ B(0n, R).

Therefore γ(0n, R, V ∪ (Rn \ U)) ≥ ηR − R
2 . Hence

p(V ∪ (Rn \ U), 0n) = lim
R→0+

2γ(0n, R, V ∪ (Rn \ U))
R

≥ lim
R→0+

4γ(0n, 2R, V ) − 4(2R)2 − 2R

2R
= 1 − lim

R→0+
8R = 1.

Thus R
n \U is lower strongly superporous at 0n and U ∈ s(Rn, ‖ ‖max), which

completed the proof. �

Remark 2.7. Repeating arguments from the proof of Theorem 1.2 one can
prove that T‖ ‖sup is a proper subset of s(l∞, ‖ ‖sup).

We will show the equality s(Rn, TN ) = TN , but first we need two technical
lemmas.
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Figure 2. B(x, η) in (R2, ‖ ‖2)

Lemma 2.8. Let U = [0,∞) × R
n−1 be a subset of (Rn, ‖ ‖n). Then γ(0n, 3

2 t,

(Rn \ U) ∪ {(t, 0, . . . , 0)}) ≤ 2
3 t for every t ∈ (0,∞).

Proof. Choose any t ∈ (0,∞) and let yt = (t, 0, 0, . . . , 0) ∈ R
n. Suppose to the

contrary that there exists B(x, η) ⊂ U \ {yt} such that η > 2
3 t (see Fig. 2).

Then
(1) x1 > 2

3 t,
(2)

√∑n
i=1 x2

i < 3
2 t − 2

3 t = 5
6 t,

(3) ‖x − yt‖n > 2
3 t,

where x = (x1, x2, . . . , xn). Then x2
1 − (x1 − t)2 > 4

9 t2 − 1
9 t2 = 1

3 t2, by (1).
Therefore, by (1) and (3) we obtain

n∑

i=1

x2
i = x2

1 − (x1 − t)2 + (x1 − t)2 +
n∑

i=2

x2
i > 1

3 t2 + 4
9 t2 = 28

36 t2 >
(
5
6 t

)2
,

which contradicts (2). �

In the sequel we will need the notions of cone and halfspace in R
n. Let

a, b ∈ R
n, a 
= b and ϕ ∈ (0, π

2 ). The cone c(a, b, ϕ) with vertex a, angle ϕ
and axis ab is defined as c(a, b, ϕ) = {x ∈ R

n : |�(ab, ax)| < ϕ}. Moreover, by
h(a, b) we denote the halfspace h(a, b) = {x ∈ R

n : |�(ab, ax)| > π
2 }.
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Lemma 2.9. Let ϕ ∈ (0, π
2 ) satisfy tan ϕ < 1

24 . If (ak)k∈N ⊂ c(0n, (1, 0, . . . , 0), ϕ)
is a sequence in (Rn, ‖ ‖n) converging to 0n then

p
(
(−∞, 0) × R

n−1 ∪
⋃∞

k=1{ak}, 0n

)
< 1.

Proof. Let a′
k = (ak

1 , 0, . . . , 0), where ak = (ak
1 , a

k
2 , . . . , a

k
n) for k ≥ 1. Then

‖a′
m−am‖n

‖a′
m‖n

= tan �(0nam, 0na′
m) < tan ϕ < 1

24 and

γ(0n, 3
2‖a′

m‖n,(−∞, 0) × R
n−1 ∪

⋃∞
k=1{ak})

≤ γ(0n, 3
2‖a′

m‖n, (−∞, 0) × R
n−1 ∪ {am})

≤ γ(0n, 3
2‖a′

m‖n, (−∞, 0) × R
n−1 ∪ {a′

m}) + ‖a′
m − am‖n

for every m ≥ 1. By Lemma 2.8,

γ(0n, 3
2
‖a′

m‖n, (−∞, 0) × R
n−1 ∪ ⋃∞

k=1{ak})
3
2
‖a′

m‖n

≤
2
3
‖a′

m‖n + 1
24

‖a′
m‖n

3
2
‖a′

m‖n

=
17
24
3
2

= 17
36

for every m ≥ 1. Hence p
(
(−∞, 0) × R

n−1 ∪
⋃∞

k=1{ak}, 0n

)
≤ 2·17

36 < 1, which
completed the proof. �

Since porosity does not change under any isometry, we obtain the follow-
ing corollary.

Corollary 2.10. Let ϕ ∈ (0, π
2 ) satisfy tan ϕ < 1

24 and a, b ∈ R
n, a 
= b. If

(ak)k∈N ⊂ c(a, b, ϕ) is a sequence converging to a then

p (h(a, b) ∪
⋃∞

k=1{ak}, 0n) < 1.

Theorem 2.11. Let ‖ ‖n and TN be the natural norm and the natural topology
in R

n, respectively. Then s(Rn, ‖ ‖n) = TN .

Proof. Obviously, TN ⊂ s(Rn, ‖ ‖n). Let us take any U /∈ TN . There exist
a0 ∈ U and a sequence (ak)k≥1 ⊂ R

n \ U converging to a0. Then we can find
b ∈ R

n and ϕ ∈ (0, π
2 ) such that a 
= b, tan ϕ < 1

24 and c(a, b, ϕ) contains
infinitely many elements of (ak)k≥1. Let V = h(a, b). Obviously p(V, a) = 1.
But

p
(
V ∪ (Rn \ U), a

)
≤ p

(

h(a, b) ∪
∞⋃

k=1

{ak}, a

)

< 1

by Corollary 2.10. Hence U /∈ s(Rn, TN ), which completed the proof. �

Corollary 2.12. For every n ≥ 2 there exist equivalent norms ‖ ‖1, ‖ ‖2 in R
n

such that s(Rn, ‖ ‖1) = TN and s(Rn, ‖ ‖2) � TN . In particular, s(Rn, ‖ ‖1) �

s(Rn, ‖ ‖2).

Question 2.13. For which norm ‖ ‖ in R
n the equality s(Rn, ‖ ‖) = TN holds?

Question 2.14. For which normed space (X, ‖ ‖) the equality s(X, ‖ ‖) = T‖ ‖
holds?
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Lemma 2.15. Let (X, ‖ ‖) be a normed space. If U ∈ p(X, ‖ ‖)∪ s(X, ‖ ‖) then
p(X \ U, x) > 0 for every x ∈ U .

Proof. Take any U ⊂ X such that p(X \ U, x) = 0 for some x ∈ U . There
exists a sequence (Rn)n≥1 such that limn→∞

2γ(x,Rn,X\U)
Rn

= 0. In particular,
Rn > 4γ(x,Rn,X \ U) for almost all n. Without loss of generality we may
assume that this is true for all n ≥ 1. Take any y ∈ X such that ‖x − y‖ = 1.
Let xn = x + Rn+4γ(x,Rn,X\U)

2 (y − x) and ηn = Rn−4γ(x,Rn,X\U)
2 for n ≥ 1.

Define A = X \
⋃∞

n=1 B
(
x + 3Rn

4 (y − x), Rn

4

)
and B = X \

⋃∞
n=1 B (xn, ηn).

Taking a subsequence if necessary, we may assume that X\A and X\B consist
of pairwise disjoint balls. Then p(A, x) = 1

2 and p(B, x) = 1. We claim that
p(A ∪ (X \ U), x) = 0 and p(B ∪ (X \ U), x) < 1.

Fix n ≥ 1 and R ∈ [Rn+1, Rn]. If R ∈ [Rn

2 , Rn] then

2γ(x,R,A ∪ (X \ U))
R

≤ 2γ(x,Rn, A ∪ (X \ U))
Rn

2

≤ 4γ(x,Rn,X \ U)
Rn

and if R ∈ [Rn+1,
Rn

2 ] then

2γ(x,R,A ∪ (X \ U))
R

≤ 2γ(x,Rn+1, A ∪ (X \ U))
Rn+1

≤ 2γ(x,Rn+1,X \ U)
Rn+1

.

Since limn→∞
2γ(x,Rn,X\U)

Rn
= 0, we obtain p(A ∪ (X \ U), x) = 0.

Again, fix n ≥ 1 and R ∈ [Rn+1, Rn]. If R ∈ [4γ(x,Rn,X \ U), Rn] then

2γ(x,R,B ∪ (X \ U))
R

≤ 2γ(x,Rn, B ∪ (X \ U))
4γ(x,Rn,X \ U)

≤ 2γ(x,Rn,X \ U)
4γ(x,Rn,X \ U)

=
1
2

and if R ∈ [Rn+1, 4γ(x,Rn,X \ U)] then

2γ(x,R,B ∪ (X \ U))
R

≤ 2γ(x,Rn+1, B ∪ (X \ U))
Rn+1

≤ 2γ(x,Rn+1,X \ U)
Rn+1

.

Since limn→∞
2γ(x,Rn,X\U)

Rn
= 0, we obtain p(B ∪ (X \ U), x) ≤ 1

2 < 1. �

Theorem 2.16. Let (X, ‖ ‖) be a normed space. Then p(X, ‖ ‖) � p(X, ‖ ‖).

Proof. Let us take any U /∈ p(X, ‖ ‖). Then X \ U is not lower superporous
at some x0 ∈ U . Hence there is V ⊂ X satisfying p(V, x0) = 2c > 0 and
p(V ∪ (X \U), x0) = 0. If p(X \U, x0) = 0 then, by Lemma 2.15, U /∈ p(X, ‖ ‖)
at once. Therefore we may assume p(X \ U, x0) > 0. Hence x0 ∈ clT‖ ‖(V ).
Moreover, there exist a decreasing sequence of reals (Rn)n≥1 tending to 0 such
that

p(V ∪ (X \ U), x0) = lim
n→∞

2γ(x0, Rn, V ∪ (X \ U))
Rn

= 0.

Since p(V, x0) = c, for every n ≥ 1 we can find an open ball B(xn, ηn) for which
B(xn, ηn) ⊂ B(x0, Rn) \ V and ηn > γ(x0, Rn, V ) − Rn

n . Since x0 ∈ clT‖ ‖(V ),
we obtain ηn ≤ ‖x0 − xn‖.
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Define A = X \
⋃∞

n=1 B(xn, ηn

2 ). Then

p(A, x0) ≥ lim sup
n→∞

ηn

Rn
≥ lim sup

n→∞

γ(x0, Rn, V ) − Rn

n

Rn
≥

p(V, x0)
2

= c.

Without loss of generality we may assume that ηn

Rn
> 2c

3 for every n. Thus
Rn < 3ηn

2c and ηn

2 + ‖xn − x0‖ ≥ 3
2ηn > cRn. On the other hand, V ⊂ A and

lim
n→∞

2γ(x0, Rn, A ∪ (X \ U))
Rn

≤ lim
n→∞

2γ(x0, Rn, V ∪ (X \ U))
Rn

= 0.

Therefore

lim sup
n→∞

2γ(x0, ηn
2 +‖xn−x0‖,A∪(X\U))

ηn
2 +‖xn−x0‖ ≤ lim sup

n→∞

2γ(x0,Rn,A∪(X\U))
ηn
2 +‖xn−x0‖ ≤

≤ lim sup
n→∞

2γ(x0,Rn,A∪(X\U))
cRn

= 0.

Fix n ≥ 1 and take any R ∈ [Rn+1, Rn). Then

2γ(x0,R,A∪(X\U))
R = 2γ(x0, ηn

2 +‖xn−x0‖,A∪(X\U))

R ≤ 2γ(x0, ηn
2 +‖xn−x0‖,A∪(X\U))

ηn
2 +‖xn−x0‖

for R ∈ [ηn

2 + ‖xn − x0‖, Rn],

2γ(x0,R,A∪(X\U))
R ≤ 2γ(x0, ηn

2 +‖xn−x0‖,A∪(X\U))

‖xn−x0‖− ηn
2

≤ 2γ(x0, ηn
2 +‖xn−x0‖,A∪(X\U))
1
4 (ηn+‖xn−x0‖)

for R ∈ [‖xn − x0‖ − ηn

2 , ‖xn − x0‖ + ηn

2 ] and

2γ(x0,R,A∪(X\U))
R ≤ 2γ(x0,

ηn+1
2 +‖xn+1−x0‖,A∪(X\U))

‖xn+1−x0‖+ ηn+1
2

for R ∈ [Rn+1, ‖xn − x0‖ − ηn

2 ]. Hence, p(A ∪ (X \ U), x0) = 0 and X \ U is
not superporous at x0. Therefore U /∈ p(X, ‖ ‖). Thus p(X, ‖ ‖) ⊂ p(X, ‖ ‖).
By Example 2.5, p(X, ‖ ‖) 
= p(X, ‖ ‖). �

Lemma 2.17. Let (X, ‖ ‖) be a normed space and x0 ∈ X and let (B(xn, ηn))n≥1

⊂ X \ {x0} be a sequence of balls such that limn→∞ xn = x0, ηn > ηn+1 and
‖xn − x0‖ > ‖xn+1 − x0‖ for every n ≥ 1. Then

(1) if limn→∞
‖xn−x0‖−ηn

‖xn+1−x0‖+ηn+1
= 0 then p (X \

⋃∞
n=1 B(xn, ηn), x0) = 1;

(2) if lim supn→∞
‖xn−x0‖−ηn

‖xn+1−x0‖+ηn+1
< 1 then p (X \

⋃∞
n=1 B(xn, ηn), x0) > 0.

Proof. Let A = X \
⋃∞

n=1 B(xn, ηn), αn = ‖xn−x0‖−ηn and βn = ‖xn−x0‖+
ηn for n ≥ 1. In both cases lim supn→∞

αn

βn+1
< 1, by assumption. Therefore

βn+1 > αn for almost every n and we may assume that this is true for every
n. Fix n ≥ 1 and take any R ∈ [βn+1, βn]. Then γ(x0, βn+1, A) ≥ βn+1−αn

2 and
γ(x0, R,A) ≥ βn+1−αn

2 + R−βn+1
2 . Therefore,

2γ(x0, R,A)
R

≥ βn+1 − αn + R − βn+1

βn+1 + (R − βn+1)
≥ βn+1 − αn

βn+1
.
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Figure 3. Construction of B(yn, δn) in (R2, ‖ ‖2)

(Observe that inequality a+c
b+c ≥ a

b holds for every 0 < a ≤ b and c > 0.) Hence

p(A, x0) = lim inf
R→0+

2γ(x0, R,A)
R

≥ lim inf
n→∞

βn+1 − αn

βn+1
= 1 − lim sup

n→∞

αn

βn+1
,

which completed the proof. �

Lemma 2.18. Let (X, ‖ ‖) be a normed space, x0 ∈ X, β ∈ (0, 1) and let
(B(xn, ηn))n≥1 ⊂ X\{x0} be a sequence of balls such that limn→∞

ηn

‖xn−x0‖ = 1
and β‖xn − x0‖ > ‖xn+1 − x0‖ − ηn+1 for every n ≥ 1. Then we can find
a sequence (B(yn, δn))n≥1 ⊂ X \ {x0} of balls satisfying the following three
conditions:
(1) p (X \

⋃∞
n=1 B(yn, δn), x0) = 1,

(2) ‖yn+1 − x0‖ + δn+1 = β‖xn − x0‖ for every n > 1,
(3) for every n ≥ 1 points x0, xn and yn are collinear and ‖yn − x0‖ − δn =

‖xn − x0‖ − ηn.

Proof. Fix β > 0. Let δ1 = η1 and δn = β‖xn−1−x0‖−‖xn−x0‖+ηn

2 for n > 1. By
assumptions, δn > 0 for every n. Similarly, let y1 = x1 and yn = xn + (δn −
ηn) xn−x0

‖xn−x0‖ for n > 1, (see Fig. 3).
Clearly, x0, xn and yn are collinear, ‖yn −x0‖− δn = ‖xn −x0‖−ηn and

‖yn+1 − x0‖ + δn+1 = ‖xn+1 − x0‖ + 2δn+1 − ηn = β‖xn − x0‖
for every n > 1. Therefore

lim
n→∞

‖yn − x0‖ − δn

‖yn+1 − x0‖ + δn+1
= lim

n→∞

‖xn − x0‖ − ηn

β‖yn − x0‖
= 1.
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Figure 4. Φ(x, y, z, α) in (R2, ‖ ‖2)

Hence p (X \
⋃∞

n=1 B(yn, δn), x0) = 1, by Lemma 2.17, which completed the
proof. �

Definition 2.19. Let α ∈ (0, 1
4 ) and x, y, z be collinear points in a normed space

(X, ‖ ‖) such that y is between x and z. By Φ(x, y, z, α) (see Fig. 4) we denote
a set

Φ(x, y, z, α) =

= {t ∈ X : ‖t − x‖ < ‖x − y‖ + α‖x − y‖ and ‖t − z‖ < ‖z − y‖ + α‖x − y‖} .

Definition 2.20. We say that a normed space (X, ‖ ‖) satisfies condition (A) if
for every ε > 1 there exists α ∈ (0, 1) such that for every collinear x, y, z ∈ X,
where y is between x and z, we have

Φ(x, y, z, α) ⊂ B (y, ε‖x − y‖) .

Remark 2.21. All considered by the authors normed spaces satisfy condition
(A). Is there a normed space that does not satisfy condition (A)?

Theorem 2.22. If a normed space (X, ‖ ‖) satisfies condition (A) then s(X, ‖ ‖)
⊂ p(X, ‖ ‖).

Proof. Let us take any U /∈ p(X, ‖ ‖). Then X \ U is not superporous at some
x0 ∈ U . Hence there is V ⊂ X satisfying p(V, x0) = c > 0 and p(V ∪ (X \
U), x0) = 0. Since p(V, x0) = c, there exist a sequence of pairwise disjoint
open balls (B(xn, ηn))n≥1 such that limn→∞ xn = x0, B(xn, ηn) ∩ V = ∅
and limn→∞

2ηn

‖x0−xn‖+ηn
= p(V, x0) = c and since p(V ∪ (X \ U), x0) = 0,

limn→∞
2γ(x0,‖x0−xn‖+ηn,V ∪(X\U))

‖x0−xn‖+ηn
= 0. Without loss of generality we may
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assume that ηn > 3
8c‖xn − x0‖ and 2γ(x0,‖x0−xn‖+ηn,V ∪(X\U))

‖x0−xn‖+ηn
< c

8 for every
n ≥ 1.

Since (X, ‖ ‖) satisfies condition (A), we can find α0 ∈ (0, c
8 ) such that for

every collinear x, y, z ∈ X, where y lies between x and z, we have Φ(x, y, z, α) ⊂
B

(
y, (1 + c

8 )‖x − y‖
)

for every α < α0.
Let η′

n = ‖xn − x0‖(1 − 1
n+1 ). If need be taking a subsequence, we may

assume that

‖xn+1 − x0‖ + η′
n+1 < c

4‖xn − x0‖ for every n. (2.1)

Obviously, p(X \
⋃∞

n=1 B(xn, η′
n), x0) = 1.

By Lemma 2.18, there exists a sequence (B(yn, δn))n≥1 ⊂ X \ {x0} of
balls such that p (X \

⋃∞
n=1 B(yn, δn), x0) = 1, x0, xn, yn are collinear, xn is

between x0 and yn, ‖yn − x0‖ − δn = ‖xn − x0‖ − η′
n and

‖yn+1 − x0‖ + δn+1 = c
4‖xn − x0‖ for every n ≥ 1. (2.2)

Let zn = x0 − (yn−1 − x0)
‖yn−x0‖

‖yn−1−x0‖ for n > 1. Then x0, zn, yn−1 are
collinear, x0 lies between zn and yn−1 and ‖x0 − zn‖ = ‖x0 − yn‖. Let
A = X \

⋃∞
n=1(B(y2n−1, δ2n−1) ∪ B(z2n, δ2n)). Obviously, p(A, x0) = 1. Since

x0, z2n, y2n−1 are collinear and x0 is between y2n−1 and z2n, B(y2n−1, δ2n−1)∩
B(z2n, δ2n) = ∅. Moreover, by (2.1) and (2.2) if any ball is contained in (X \
A)∩B(x0, ‖x2n−1 −x0‖+η′

2n−1) then it is contained either in B(y2n−1, δ2n−1)
or in B(x0,

c
4‖x2n−1 − x0‖).

We claim that p(A∪ (X \U), x0) < 1. Let Rn = ‖xn −x0‖+η′
n for n ≥ 1.

Obviously, limn→∞
Rn

2‖xn−x0‖ = 1. Fix n ≥ 1. Assume that there exists a ball
B(z, �) contained in B(x0, R2n−1), disjoint from A ∪ (X \ U) and such that
� > ‖x2n−1 − x0‖ − α0

2 ‖x2n−1 − x0‖. Then B(z, �) 
⊂ B(x0,
c
4‖x2n−1 − x0‖)

and therefore, B(z, �) ⊂ B(y2n−1, δ2n−1) ⊂ B(y2n−1, ‖y2n−1 − x0‖). Since
� > (1 − α0

2 )‖x2n−1 − x0‖, ‖z − y2n−1‖ < ‖y2n−1 − x2n−1‖ + α0
2 ‖x2n−1 − x0‖.

On the other hand, since B(z, �) ⊂ B(x0, R2n−1) and � > (1−α0
2 )‖x2n−1−

x0‖, we obtain ‖z − x0‖ < (1 + α0
2 )‖x2n−1 − x0‖. Therefore, z ∈ Φ(x0, x2n−1,

y2n−1, α0) ⊂ B(x2n−1, (1+ c
8 )‖x2n−1 −x0‖). It follows that B(z, �)∩B(x2n−1,

η2n−1) contains a ball disjoint from A∪ (X \U) with radius at least c
8‖x2n−1−

x0‖, a contradictions. Therefore any ball contained in B(x0, R2n−1) and dis-
joint from A ∪ (X \ U) has a radius less than (1 − α0

2 )‖x2n−1 − x0‖. Thus

p(A ∪ (X \ U), x0) ≤ lim inf
n→∞

2(1 − α0
2 )‖x2n−1 − x0‖

Rn
= 1 − α0

2 < 1.

Hence, X \ U is not lower strongly superporous at x0 and U /∈ s(X, ‖ ‖). The
proof is completed. �
Definition 2.23. We say that a normed space (X, ‖ ‖) satisfies condition (B) if
for every ε > 0 there exists α ∈ (0, 1) such that for every collinear x, y, z ∈ X,
where y lies between x and z, we have

Φ(x, y, z, α) ⊂ B (y, ε‖x − y‖) .
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Remark 2.24. Obviously, if a normed space (X, ‖ ‖) satisfies condition (B)
then (X, ‖ ‖) satisfies condition (A).

Theorem 2.25. If a normed space (X, ‖ ‖) satisfies condition (B) then s(X, ‖ ‖)
⊂ s(X, ‖ ‖).

Proof. Let us take any U /∈ s(X, ‖ ‖). Then X \ U is not strongly superporous
at some x0 ∈ U . Hence there is V ⊂ X satisfying p(V, x0) = 1 and p(V ∪ (X \
U), x0) = 1 − c < 1. Since p(V, x0) = 1, there exists a sequence of pairwise
disjoint open balls (B(xn, ηn))n≥1 such that limn→∞ xn = x0, B(xn, ηn) ∩
V = ∅ for n ≥ 1 and limn→∞

2ηn

‖x0−xn‖+ηn
= p(V, x0) = 1. Moreover, since

p(V ∪ (X \U), x0) = 1−c < 1, limn→∞
2γ(x0,‖x0−xn‖+ηn,V ∪(X\U))

‖x0−xn‖+ηn
≤ 1−c < 1.

Without loss of generality we may assume that ηn > (1 − c
8 )‖xn − x0‖ and

2γ(x0,‖x0−xn‖+ηn,V ∪(X\U))
‖x0−xn‖+ηn

< 1 − 7
8c for every n ≥ 1.

Since (X, ‖ ‖) satisfies condition (B), we can find α0 ∈ (0, c
8 ) such that for

every collinear x, y, z ∈ X, where y lies between x and z, we have Φ(x, y, z, α) ⊂
B

(
y, c

8‖x − y‖
)

for every α < α0.
If need be taking a subsequence, we may assume that

‖xn+1 − x0‖ + ηn+1 < c
4‖xn − x0‖ for every n. (2.3)

Obviously, p(X \
⋃∞

n=1 B(xn, ηn), x0) = 1.
By Lemma 2.18, there exists a sequence (B(yn, δn))n≥1 ⊂ X \ {x0} of

balls such that p (X \
⋃∞

n=1 B(yn, δn), x0) = 1, x0, xn, yn are collinear, xn lies
between x0 and yn, ‖yn − x0‖ − δn = ‖xn − x0‖ − ηn and

‖yn+1 − x0‖ + δn+1 = c
4‖xn − x0‖ for every n ≥ 1. (2.4)

Let zn = x0 − (yn−1 − x0)
‖yn−x0‖

‖yn−1−x0‖ for n > 1. Then x0, zn, yn−1 are
collinear, x0 lies between zn and yn−1 and ‖x0 − zn‖ = ‖x0 − yn‖. Let
A = X \

⋃∞
n=1(B(y2n−1, δ2n−1) ∪ B(z2n, δ2n)). Obviously, p(A, x0) = 1. Since

x0, z2n, y2n−1 are collinear, B(y2n−1, δ2n−1) ∩ B(z2n, δ2n) = ∅. Moreover, by
(2.3) and (2.4) if any ball is contained in (X \A)∩B(x0, ‖x2n−1−x0‖+η2n−1)
then it is contained either in B(y2n−1, δ2n−1) or in B(x0,

c
4‖x2n−1 − x0‖).

We claim that p(A∪ (X \U), x0) < 1. Let Rn = ‖xn −x0‖+ηn for n ≥ 1.
Obviously, limn→∞

Rn

2‖xn−x0‖ = 1. Fix n ≥ 1. Assume that there exists a ball
B(z, �) contained in B(x0, R2n−1), disjoint from A ∪ (X \ U) and such that
� > ‖x2n−1 − x0‖ − α0

2 ‖x2n−1 − x0‖. Then B(z, �) 
⊂ B(x0,
c
4‖x2n−1 − x0‖)

and therefore, B(z, �) ⊂ B(y2n−1, δ2n−1) ⊂ B(y2n−1, ‖y2n−1 − x0‖). Since � >
(1−α0

2 )‖x2n−1−x0‖, we obtain ‖z−y2n−1‖ < ‖y2n−1−x2n−1‖+α0
2 ‖x2n−1−x0‖.

On the other hand, since B(z, �) ⊂ B(x0, R2n−1) and � > (1−α0
2 )‖x2n−1−

x0‖, we obtain ‖z − x0‖ < (1 + α0
2 )‖x2n−1 − x0‖. Therefore, z ∈ Φ(x0, x2n−1,

y2n−1, α0) ⊂ B(x2n−1,
c
8‖x2n−1−x0‖). It follows that B(z, �)∩B(x2n−1, η2n−1)

contains a ball disjoint from A∪(X\U) with radius at least (1− c
4 )‖x2n−1−x0‖,
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Figure 5. Φ((0, 0), (1, 0), (10, 0), α) in (R2, ‖ ‖max)

a contradictions. Therefore any ball contained in B(x0, R2n−1) and disjoint
from A ∪ (X \ U) has a radius less than (1 − α0

2 )‖x2n−1 − x0‖. Thus

p(A ∪ (X \ U), x0) ≤ lim inf
n→∞

2(1 − α0
2 )‖x2n−1 − x0‖

Rn
= 1 − α0

2 < 1.

Hence, X \ U is not lower strongly superporous at x0 and U /∈ s(X, ‖ ‖). The
proof is completed. �

Example 2.26. Let Tmax be a topology in R
n generated by the norm ‖ ‖max.

Let x = 0n, y = (1, 0, . . . , 0) and z = (10, 0, . . . , 0). Then

Φ(x, y, z, α) = [1 − α, 1 + α] × [−1 − α, 1 + α]n−1

⊃ [1 − α, 1 + α] × [−1, 1]n−1

and B(y, 1
2‖x−y‖max) = B((1, 0, . . . , 0), 1

2 ) = [12 , 3
2 ]×[− 1

2 , 1
2 ]n−1 
⊃ Φ(x, y, z, α)

for any α > 0, (see Fig. 5).
Therefore (Rn, ‖ ‖max) does not satisfies condition (B) (and satisfies con-

dition (A)).

Remark 2.27. Repeating arguments from the proof of Example 2.26 one can
prove that (l∞, ‖ ‖sup) does not satisfies condition (B) and satisfies condition
(A).

Theorem 2.28. Let (X, ‖ ‖) be either (Rn, ‖ ‖max) or (l∞, ‖ ‖sup). Then s(X,
‖ ‖) ⊂ s(X, ‖ ‖), although neither (Rn, ‖ ‖max) nor (l∞, ‖ ‖sup) satisfies con-
dition (B).



Vol. 77 (2022) On Topologies Generated by Lower Porosity Page 17 of 26 220

Proof. Take any U /∈ s(X, ‖ ‖). Then X \ U is not strongly superporous at
some x0 ∈ U . We may assume x0 = 0X . Hence we can find A ⊂ X such
that p(A, 0X) = 1 and p(A ∪ (X \ U), 0X) < 1. Since p(A, 0X) = 1, there
exists a sequence of pairwise disjoint balls (B(xk, ηk))k≥1 such that (ηk)k≥1

and (‖xk − x0‖)k≥1 are decreasing and tend to 0, A ∩
⋃∞

k=1 B(xk, ηk) =
∅ and limk→∞

2ηk

‖xk−x0‖+ηk
= 1. Let Rk = ‖xk − x0‖ + ηk for k ≥ 1. By

Lemma 1.1, there are sequences (yk)k≥1 ⊂ X and (ζk)k≥1 ⊂ {−1, 1}k or
(ζk)k≥1 ⊂ {−1, 1}ω such that

B(yk, ηk − Rk

4 ) ⊂ B(xk, ηk) ∩ B(0X , Rk

2 ) ∩ Hζk

for every k. Let δk = ηk − Rk

4 . Then

lim
k→∞

2δk

δk + ‖yk‖ ≥ lim
k→∞

2ηk − Rk

2
Rk

2

= lim
k→∞

( 4ηk

Rk
− 1) = 1 (2.5)

and p(X \
⋃∞

k=1 B(yk, δk), 0X) = 1. Since

p
(
(X \ U) ∪

(
X \

∞⋃

k=1

B(yk, δk)
)
, 0X

)
≤ p((X \ U) ∪ A, 0X) < 1, (2.6)

lim supk→∞
γ(0X ,‖yk‖+δk,(X\U)∪(X\

⋃∞
k=1 B(yk,δk))

‖yk‖+δk
< 1.

For any ball B(x, ν) let ϕ(B(x, ν)) = (x1 − ν sgn(x1), x2 − ν sgn(x2), . . .).
Observe that if B(x, ν) ⊂ Hζ , then ϕ(B(x, ν)) ∈ Hζ too and a point ϕ(B(x, ν))
minimizes the distance between 0X and B(x, ν). Moreover, for any B(x, ν) ⊂
Hζ and � > 0 there exists a unique y ∈ X such that ϕ(B(x, ν)) = ϕ(B(y, �))
and B(y, �) ⊂ Hζ too (see Fig. 6).

For k > 1 let σk = 1
2 (‖yk−1‖ − (‖yk‖ − δk)) and zk be such that ϕ(B(yk,

δk)) = ϕ(B(zk, σk)). Then B(zk, σk) ⊂ Hζk and ‖zk‖ + σk = 1
2‖yk−1‖. Let

B = X \
⋃∞

k=1 B(zk, σk) and rk = ‖yk‖ + δk for k ≥ 1. By Lemma 2.17,
p(B, 0X) = 1.

On the other hand,

γ(0X , rk, (X \ U) ∪ B) ≤ min
{

1
4‖yk‖, γ(0X , rk,Hζn ∩ ((X \ U) ∪ B))

}

and

γ
(
0X , rk,Hζk∩((X \ U) ∪ B)

)

≤γ(0X , rk, (X \ U) ∪ A) + diam((Hζk ∩ B(0X , rk)) \ B(yk, δk)).

By (2.5) and (2.6), we obtain

lim sup
k→∞

γ(0X , rk,Hζn ∩ ((X \ U) ∪ B))
rk

< 1.

Therefore p((X \ U) ∪ B, 0X) < 1, X \ U is not lower strongly superporous at
0X and U /∈ s(X, ‖ ‖). The proof is completed. �

Theorem 2.29. s(l∞, ‖ ‖sup) 
⊂ p(l∞, ‖ ‖sup).
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Figure 6. ϕ(B(x, ν)) and B(y, �) in (R2, ‖ ‖max)

Proof. Define bn =
(
3
4

)n−1, an = bn

2 = 1
2

(
3
4

)n−1, cn = an+bn

2 =
(
3
4

)n for
n ≥ 1. Let 0∞ ∈ l∞, 0∞ = (0, 0, . . .) and xn ∈ l∞, xn = (−an

2 ,−an

2 , . . . ,−an

2 ,

cn︸︷︷︸
n−th term

,−an

2 , . . .) for n ≥ 1. Finally, let U = l∞ \
⋃∞

n=1 B(xn, an

2 ). Observe

that B(xn, an

2 ) ⊂ Hζn , where ζn = (−1,−1, . . . ,−1, 1︸︷︷︸
n−th term

,−1, . . .).

Since ‖xn‖sup − an

2 = cn − an

2 = 1
2

(
3
4

)n−1 and ‖xn+1‖sup + an+1
2 =

cn+1 + an+1
2 = bn+1 =

(
3
4

)n, we obtain

lim sup
n→∞

‖xn‖sup − an

2

‖xn+1‖sup + an+1
2

= lim sup
n→∞

1
2

(
3
4

)n−1

(
3
4

)n =
2
3

< 1.

Therefore, by Lemma 2.17, p(U, 0∞) > 0. Moreover, p(U ∪ (l∞ \ U), 0∞) =
p(l∞, 0∞) = 0 and U is not lower superporous at 0∞ ∈ E. Therefore, U /∈
p(l∞, ‖ ‖sup).

We claim that U ∈ s(l∞, ‖ ‖sup). Clearly, l∞ \ U is strongly superporous
at every x ∈ U \ {0∞}. Take any A ⊂ l∞ such that p(A, 0∞) = 1. There is
a sequence of pairwise disjoint balls (B(yk, ηk))n≥1 ⊂ l∞ \ (A ∪ {0∞}) such
that limn→∞ yk = 0∞ and limn→∞

2ηk

‖yk‖sup+ηk
= 1. By Lemma 1.1, there exist

sequences (B(zk, μk))k≥1 ⊂ l∞ and (ςk)k≥1 ⊂ {−1, 1}ω such that B(zk, μk) ⊂
B(yk, ηk)∩Hςk ∩B(0∞, 1

2 (‖yk‖sup+ηk)) and μk > ηk − 1
4 (‖yk‖sup+ηk). Then

lim
k→∞

2μk

‖zk‖sup + μk
≥ lim

k→∞

2ηk − 1
2 (‖yk‖sup + ηk)

1
2 (‖yk‖sup + ηk)

= 1
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and A ∩
⋃∞

k=1 B(zk, μk) = ∅.
We construct a new sequence of open balls (B(vk, νk))k≥1 such that

B(vk, νk) ⊂ B(zk, μk) ∩ U and p(l∞ \
⋃∞

k=1 B(vk, νk), 0∞) = 1. Fix k ≥ 1.
If ςk 
= ζn for n ≥ 1, i.e. B(zk, μk) ⊂ U then we take B(vk, νk) = B(zk, μk).
Let us consider the case, where ςk = ζnk

for some nk ≥ 1 (obviously, ςk 
= ζn

for n 
= nk). Let B(zk, μk) = (dk
1 , d

k
1+2μk)×(dk

2 , d
k
2+2μk)×· · · , where dk

nk
≥ 0

and dk
n + 2μk ≤ 0 for n 
= nk. Since

lim
k→∞

2μk

‖zk‖sup + μk
≥ lim

k→∞

2ηk − 1
2 (‖yk‖sup + ηk)

1
2 (‖yk‖sup + ηk)

= 1,

we have limn→∞
sup{|dk

n| : n≥1}
μk

= 0. By Lemma 1.5, we can find (d, e) ⊂

(dk
nk

, dk
nk

+ 2μk) such that (d, e) ∩ [ank
, bnk

] = ∅ and e−d
e > 1 −

√
3|dk

nk
|

|dk
nk

|+2μk
.

Then

(dk
1 , d

k
1 + 2μk) × · · · × (dk

nk−1, d
k
nk−1 + 2μk) × (d, e)

×(dk
nk+1, d

k
nk+1 + 2μk) × · · · ⊂ U

and we can find B(vk, e−d
2 ) ⊂ U , i.e., we have νk = e−d

2 . Since

lim
k→∞

(

1 −
√

sup{3|dk
n| : n ≥ 1}

inf{|dk
n| + 2μk : n ≥ 1}

)

= 1,

we finally obtain p(l∞ \
⋃∞

k=1 B(vk, νk), 0∞) = 1. Therefore l∞ \ U is strongly
superporous at 0∞. Hence, U ∈ s(l∞, ‖ ‖sup), which completed the proof. �

Question 2.30. Does there exist a normed space (X, ‖ ‖) such that s(X, ‖ ‖) ⊂
p(X, ‖ ‖)?

We may present relationships between considered topologies in the fol-
lowing diagram.

T‖ ‖ � s(X, ‖ ‖)
(A)

� p(X, ‖ ‖) � p(X, ‖ ‖)
(B)

�

s(X, ‖ ‖)

Inclusion T‖ ‖ ⊂ s(X, ‖ ‖) is just equality in some normed spaces, inclusion
s(X, ‖ ‖) � p(X, ‖ ‖) holds under condition (A) and inclusion s(X, ‖ ‖) �

s(X, ‖ ‖) holds under condition (B). No other inclusion, in general, holds,
although we know only one example of a normed space in which s(X, ‖ ‖) 
⊂
p(X, ‖ ‖).



220 Page 20 of 26 S. Kowalczyk and M. Turowska Results Math

3. Lower porouscontinuity

In [1] J. Borśık and J. Holos defined families of porouscontinuous functions
f : R → R. Some properties of porouscontinuity can be found in [1,2,10].
Applying their ideas and replacing standard porosity in R by the lower porosity
in X we transfer this concept for real functions defined on (X, ‖ ‖).

Definition 3.1. Let (X, ‖ ‖) be a normed space, f : X → R and x ∈ X.
Let r ∈ [0, 1).The function f will be called:

• Pr-continuous at x if there exists a set U ⊂ X such that x ∈ U , p(X \
U, x) > r and f�U is continuous at x;

• Sr-continuous at x if for each ε > 0 there exists a set U ⊂ X such that
x ∈ U , p(X \ U, x) > r and f(U) ⊂ (f(x) − ε, f(x) + ε);

Let r ∈ (0, 1].The function f will be called:
• Mr-continuous at x if there exists a set U ⊂ X such that x ∈ U , p(X \

U, x) ≥ r and f�U is continuous at x;
• Nr-continuous at x if for each ε > 0 there exists a set U ⊂ X such that

x ∈ U , p(X \ U, x) ≥ r and f(U) ⊂ (f(x) − ε, f(x) + ε);

By Pr(f), Sr(f), Mr(f) and Nr(f) we denote the sets of points at which f
is Pr-continuous, Sr-continuous, Mr-continuous and Nr-continuous, respec-
tively.

Proposition 3.2. Let f : X → R and x ∈ X. Then
(1) x ∈ Sr(f) if and only if p(X \ {t : |f(t) − f(x)| < ε}, x) > r for every

ε > 0;
(2) x ∈ Nr(f) if and only if p(X \ {t : |f(t) − f(x)| < ε}, x) ≥ r for every

ε > 0.
for corresponding r.

Similarly as in [1], we can easily check that f is Mr-continuous at x if
and only if it is Nr-continuous at x.

If f is Pr-continuous, Sr-continuous, Mr-continuous at every point of X
for some corresponding r then we say that f is Pr-continuous, Sr-continuous,
Mr-continuous, respectively. All of these functions are called lower porouscon-
tinuous functions.

Obviously, if f is continuous at some x then f is lower porouscontinuous
(in each sense) at x. We introduce for corresponding r the following notations:

• Mr = Nr = {f : Mr(f) = X};
• Pr = {f : Pr(f) = X};
• Sr = {f : Sr(f) = X}.

In the paper we focus on M1 and S0. In [11] some properties of lower
porouscontinuous functions Pr, Sr, Mr for r ∈ (0, 1) defined on R

2 are pre-
sented.
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Lemma 3.3. Let (X, ‖ ‖) be a normed space. Then

intp(X,‖ ‖) E = {x ∈ X : X \ E is lower superporous at x}
and

ints(X,‖ ‖) E = {x ∈ X : X \ E is lower strongly superporous at x}
for every E ⊂ X.

Proof. Denote V = intp(X,‖ ‖) E. Take x0 ∈ V . Then V ∈ p(X, ‖ ‖) and X \ V

is lower superporous at x0. Since X \ E ⊂ X \ V , the set X \ E is lower
superporous at x0.

Now, let x0 ∈ {x ∈ X : X \ E is lower superporous at x}. Denote V =
intT‖ ‖ E ∪ {x0}. Obviously, X \ V is lower superporous at each point x ∈
V \ {x0}. Moreover, for each set A ⊂ X we obtain p((X \ V ) ∪ A, x0) =
p((X \E)∪A, x0), because every open ball disjoint with X \E is contained in
V . Since X \ E is lower superporous at x0, the set X \ V is lower superporous
at x0, too. Therefore V ∈ p(X, ‖ ‖). Finally x0 ∈ intp(X,‖ ‖) E, because V ⊂ E.

The proof of the second statement is very similar and we omit it. �

Lemma 3.4. Let A be a closed subset of a normed space (X, ‖ ‖) and x0 ∈ A.
Then there exists E ⊂ X \ A such that

• clT‖ ‖ E ⊂ E ∪ {x0};
• E is discrete;
• for each B ⊂ X, if E ⊂ B then p(B, x0) = p(B ∪ (X \ A), x0).

Proof. Let Un = B(x0,
1
n ) \ B(x0,

1
n+1 ) for n ≥ 1. By the Zorn Lemma,

for every n we can choose a discrete set En ⊂ Un \ A such that Un \ A ⊂
⋃

x∈En
B

(
x, 1

(n+1)2

)
and ‖x1 − x2‖ ≥ 1

(n+1)2 for x1, x2 ∈ En, x1 
= x2. Let

E =
∞⋃

n=1

En.

Then E is discrete, E ∩ A = ∅ and clT‖ ‖ E ⊂ E ∪ {x0}. Take any B ⊂ X

such that E ⊂ B. The inequality p(B, x0) ≥ p(B ∪ (X \ A), x0) is obvious.
If p(B, x0) = 0 then certainly p(B ∪ (X \ A), x0) = 0. Let p(B, x0) = α > 0.
Choose β, β1 such that 0 < β < β1 < α. We can find n0 > 1 such that
1

n0
< min

{
β1−β

4 , ε
8 , β1

8

}
. Since p(B, x0) = α > β1, we can find R0 ∈ (0, 1

4n0
)

such that 2γ(x0,R,B)
R > β1 for R ∈ (0, R0). Choose any R ∈ (0, R0). There

exists B(y, η) such that 2η
η+‖x0−y‖ ≥ 2η

R > β1 and B(y, η) ∩ B = ∅.
Suppose that B(y, η) 
⊂ A and take any z ∈ B(y, η) \ A. There exists n1

such that 1
n1+1 < ‖z − x0‖ ≤ 1

n1
, i.e. z ∈ Un. Since

‖z − x0‖ ≤ ‖z − y‖ + ‖y − x0‖ < η + ‖y − x0‖ < 2‖y − x0‖ <
1

2n0
,
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we obtain 1
n1+1 < 1

2n0
and n1 > n0. By construction of E, there exists v ∈ En1

such that ‖z − v‖ ≤ 1
(n1+1)2 . Observe that v ∈ E ⊂ B and B ∩ B(y, η) = ∅.

Therefore v 
∈ B(y, η), i.e. ‖v − y‖ ≥ η. Thus

‖z − y| ≥ ‖y − v‖ − ‖v − z‖ ≥ η − 1
(n1 + 1)2

.

This means that B
(
y, η− 1

(n1+1)2

)
∩(B∪(X\A)) = ∅. By inequality 2η

η+‖x0−y‖ >

β1, we obtain 2η > β1‖x0 − y‖. Hence

η >
β1‖x0 − y‖

2
>

1
2β1‖x0 − z‖

2
>

β1

4(n1 + 1)
>

8
n0

1
4(n1 + 1)

>
1
n2
1

and η − 1
(n1+1)2 > 0. Moreover,

2
(
η − 1

(n1+1)2

)

η − 1
(n1+1)2 + ‖x0 − y‖

>
2η − 2

(n1+1)2

η + ‖x0 − y‖

=
2η

η + ‖x0 − y‖ − 2
(n1 + 1)2 (η + ‖x0 − y‖)

> β1 − 2
(n1 + 1)2‖x0 − z‖

> β1 − 2
(n1 + 1)2 1

n1+1

= β1 − 2
n1 + 1

> β1 − 4
n0

> β1 − (β1 − β) = β.

Since β ∈ (0, α) was chosen arbitrary, p(B∪(X \A), x0) ≥ α, which completed
the proof. �

Lemma 3.5. Let (X, ‖ ‖) be a normed space, f : X → R, x0 ∈ X and � > 0.
If f restricted to B(x0, �) is continuous then f is p(X, ‖ ‖) and s(X, ‖ ‖)-
continuous at every x ∈ S(x0, �).

Proof. For every x ∈ S(x0, �) and ε > 0 there exists R0 such that

B
(
x + R

2
x0−x

‖x0−x‖ , R
2

)
⊂ B(x0, �) ∩ B(x,R) ∩ {t ∈ X : |f(x) − f(x0)| < ε}

for every R < R0, which completed the proof. �

It is easily seen that result of addition and multiplication of functions
from discussed classes of functions, in general, need not belong to these classes.
Therefore we studied the following notion.

Definition 3.6 [3]. Let F be a family of real functions defined on (X, ‖ ‖). A
set Ma(F) = {g : X → R : ∀f∈F (f + g ∈ F)} is called the maximal additive
class for F .

Remark 3.7. Let f : X → R, f(x) = 0 for x ∈ X be a constant function.
Clearly, if f ∈ F then Ma(F) ⊂ F .

Let CT denote the class of continuous functions f : (X, T ) → R.

Theorem 3.8. Ma(S0) = Cp(X,‖ ‖). Moreover, Ma(P0) ⊂ Cp(X,‖ ‖).
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Proof. Let f ∈ Cp(X,‖ ‖). Take g ∈ S0, x0 ∈ X, ε > 0.
Denote Eε =

{
x ∈ X : |g(x) − g(x0)| < ε

2

}
. Then p(X \Eε, x0) > 0. Since

f ∈ Cp(X,‖ ‖), there exists a set U such that x0 ∈ U , U ∈ p(X, ‖ ‖) and
U ⊂

{
x ∈ X : |f(x) − f(x0)| < ε

2

}
. By the definition of topology p(X, ‖ ‖) the

set (X\U)∪(X\Eε) is lower porous. Moreover, (X\U)∪(X\Eε) = X\(U∩Eε).
Thus p(X \ (U ∩ Eε), x0) > 0 and |f(x) + g(x) − f(x0) − g(x0)| < ε for each
x ∈ U ∩ Eε. Therefore f + g is S0-continuous at x0. Hence f ∈ Ma(S0).

Suppose that f 
∈ Cp(X,‖ ‖). Then there exist x0 ∈ X and ε > 0 such that
x0 
∈ intp(X,‖ ‖) Eε, where Eε = {x ∈ X : |f(x) − f(x0)| < ε}. The set Eε does
not contain any p-neighbourhood of point x0. By Lemma 3.3, the set X \ Eε

is not lower superporous at x0. Therefore there exists a set F ⊂ X such that
p(F, x0) > 0 and p((X \ Eε) ∪ F, x0) = 0. There exists a sequence of closed
balls

(
B(xn, δn)

)
n≥1

such that
⋃∞

n=1 B(xn, δn) ⊂ X \F , x0 
∈
⋃∞

n=1 B(xn, δn),
limn→∞ xn = x0 and p(F, x0) = p

(
X \

⋃∞
n=1 B(xn, δn), x0

)
> 0. Let A =

{x0} ∪
⋃∞

n=1 B(xn, δn). By Lemma 3.4, we can find E ⊂ X \ A such that for
every B ⊂ X if E ⊂ B then p(B, x0) = p(B ∪ (X \ A), x0). Define g̃ : (A \
{x0}) ∪ E → R by g̃(x) = 0 for x ∈ A \ {x0} and g̃(x) = −f(x) + f(x0) + ε for
x ∈ E. Since (A \ {x0}) ∪ E is a closed subset of X \ {x0} and g̃ is continuous,
by the Tietze Theorem, there exists a continuous extension ĝ : X \{x0} → R of
g̃. Finally, let g : X → R be defined by g(x) = ĝ(x) for x 
= x0 and g(x0) = 0.

Since g is continuous at every point except x0, g(x) = g(x0) for x ∈ A
and p(X \ A, x0) = p(F, x0) > 0, we have g ∈ P0. On the other hand, E ⊂
{x ∈ X : |(f + g)(x) − (f + g)(x0)| ≥ ε} and

p(X \ {x ∈ X : |(f + g)(x) − (f + g)(x0)| < ε}, x0)

= p((X \ A) ∪ (X \ {x ∈ X : |(f + g)(x) − (f + g)(x0)| < ε}), x0)

= p(X \ {x ∈ A : |(f + g)(x) − (f + g)(x0)| < ε}, x0)

= p(X \ (Eε ∩ A), x0) = p((X \ Eε) ∪ (X\A), x0) ≤ p((X\Eε) ∪ F, x0) = 0.

Therefore X \{x ∈ X : |(f +g)(x)− (f +g)(x0)| < ε} is not lower superporous
at x0 and f + g /∈ S0. It implies Ma(S0) ⊂ Cp(X,‖ ‖) and Ma(P0) ⊂ Cp(X,‖ ‖).
The proof is completed. �

Theorem 3.9. Ma(M1) = Cs(X,‖ ‖).

Proof. The proof of inclusion Cs(X,‖ ‖) ⊂ Ma(M1) is very similar to the proof
of inclusion Cp(X,‖ ‖) ⊂ Ma(S0) in the proof of Theorem 3.8 and we omit it.

Take any f 
∈ Cs(X,‖ ‖). Then there exist x0 ∈ X and ε > 0 such that
x0 
∈ ints(X,‖ ‖) Eε, where Eε = {x ∈ X : |f(x) − f(x0)| < ε}. By Lemma 3.3,
the set X \ Eε is not lower strongly superporous at x0. Similarly as in the
proof of Theorem 3.8, we can find F ⊂ X and A = {x0}∪

⋃∞
n=1 B(xn, δn) such

that p(F, x0) = 1, p((X \ Eε) ∪ F, x0) < 1, A ⊂ X \ F , x0 
∈
⋃∞

n=1 B(xn, δn),
limn→∞ xn = x0 and p(F, x0) = p (X \ A, x0) > 0. By Lemma 3.4, we can
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find E ⊂ X \ A such that for every B ⊂ X if E ⊂ B then p(B, x0) =
p(B ∪ (X \ A), x0). Define g̃ : (A \ {x0}) ∪ E → R by g̃(x) = 0 for x ∈ A \ {x0}
and g̃(x) = −f(x) + f(x0) + ε for x ∈ E. Again, similarly as in the proof of
Theorem 3.8, we can define g : X → R such that g is continuous at every point
except x0, g(x) = 0 for x ∈ A and g(x) = f(x0) − f(x) + ε for x ∈ E. Since
g is continuous at every point except x0 and p(X \ A, x0) = p(F, x0) = 1, we
have g ∈ M1. On the other hand, E ⊂ {x ∈ X : |(f +g)(x)− (f +g)(x0)| ≥ ε}
and

p(X \ {x ∈ X : |(f + g)(x) − (f + g)(x0)| < ε}, x0)

= p((X \ A) ∪ (X \ {x ∈ X : |(f + g)(x) − (f + g)(x0)| < ε}), x0)

= p(X \ {x ∈ A : |(f + g)(x) − (f + g)(x0)| < ε}, x0)

= p(X\(Eε ∩ A), x0) = p((X\Eε) ∪ (X\A), x0) ≤ p((X\Eε) ∪ F, x0) < 1.

Therefore, X \ {x ∈ X : |(f + g)(x) − (f + g)(x0)| < ε} is not lower strongly
superporous at x0 and f + g /∈ M1. It implies Ma(M1) ⊂ Cs(X,‖ ‖). The proof
is completed. �

Remark 3.10. In a similar way, applying p(X, ‖ ‖) and s(X, ‖ ‖), we can de-
scribe maximal multiplicative classes for S0 and M1. But in this case we need
a notion of topology extended by a set, see [8,9].
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