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Abstract. We derive new convergent expansions of the symmetric stan-
dard elliptic integral RD(x, y, z), for x, y, z ∈ C\(−∞, 0], in terms of
elementary functions. The expansions hold uniformly for large and small
values of one of the three variables x, y or z (with the other two fixed).
We proceed by considering a more general parametric integral from which
RD(x, y, z) is a particular case. It turns out that this parametric inte-
gral is an integral representation of the Appell function F1(a; b, c; a +
1; x, y). Therefore, as a byproduct, we deduce convergent expansions of
F1(a; b, c; a + 1; x, y). We also compute error bounds at any order of the
approximation. Some numerical examples show the accuracy of the ex-
pansions and their uniform features.
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1. Introduction

In a recent paper [5] we derived new representations of the first symmetric stan-
dard elliptic integral RF (x, y, z) in the form of convergent expansions whose
terms are elementary functions. These expansions are uniformly valid in large
(and unbounded) regions of the complex plane of a selected variable x, y or z.
In this work we continue this line of research and investigate uniformly conver-
gent expansions of the second symmetric standard elliptic integral RD(x, y, z),
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that is defined as follows [7, Sec. 19.16, eq. 19.16.5],

RD(x, y, z) :=
3
2

∫ ∞

0

ds√
s + x

√
s + y

√
(s + z)3

, (1)

where, for simplicity in the exposition, we assume at this moment that either,
x, y ∈ C\(−∞, 0] and z > 0 or y, z ∈ C\(−∞, 0] and x > 01. In Sect. 5 we
extend the results derived in this paper for positive z or x to complex values
of these variables. The square roots in the denominator of (1) are assumed
to be positive for positive argument. It is also reasonable to assume that the
three variables are different, because otherwise this integral is an elementary
function; for example RD(x, x, x) = 1/

√
x3. The integral is normalized in the

form RD(1, 1, 1) = 1, and it is a homogeneous function of degree −3/2 in its
three variables [7, Sec. 19.20, eq. 19.20.18]. This means that, for z > 0,

G1(x, y) :=
√

z3RD(z(1 + x), z(1 + y), z)

=
3

2

∫ ∞

0

ds√
s + x + 1

√
s + y + 1

√
(s + 1)3

, x, y ∈ C\(−∞, −1],

(2)

is indeed a function of only two variables x and y. For x > 0,

G2(y, z) :=
√

x3RD(x, x(1 + y), x(1 + z))

=
3

2

∫ ∞

0

ds√
s + 1

√
s + y + 1

√
(s + z + 1)3

, y, z ∈ C\(−∞, −1],

(3)

is also a function of only two variables y and z.
For convenience in the analysis, in the remaining of the paper we consider

the functions G1(x, y) and G2(y, z) instead of RD(x, y, z). All the results that
we are going to derive in this paper for G1(x, y) and G2(y, z) can be translated
to RD(x, y, z) by means of the connection formulas

RD(x, y, z) =
1√
z3

G1

(x − z

z
,
y − z

z

)
, x, y ∈ C\(−∞, 0]; z > 0, (4)

RD(x, y, z) =
1√
x3

G2

(y − x

x
,
z − x

x

)
, y, z ∈ C\(−∞, 0]; x > 0. (5)

The standard elliptic integrals [7] are special functions that have sev-
eral applications in a large number of mathematical and physical problems.
With respect to mathematical applications, we highlight their connection to
the famous Theta functions and Weierstrass’ elliptic function [29, Sec. 12.3].
They also play an important role in certain problems of geometry and sta-
tistics [18,28]. In reference to physical applications, the first elliptic integral
appears in the computation of the period of a simple pendulum in a constant

1Because of the symmetry in the variables x and y, the case y > 0 does not need to be
considered.
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gravitational field [29, Sec. 12.1.1]; the classification of limit cycles of several
hamiltonian systems is directly related to the zeros of these integrals [32]; sev-
eral problems of electromagnetic waves are solved in terms of elliptic integrals
[34]. For certain geometries, the electric capacity of a conductor is written in
terms of the inverse of RF (x, y, z) [27]. For other mathematical and physical
applications of the standard elliptic integrals the reader is referred to [20].

A large set of properties and formulas for the standard elliptic integrals
may be found in [6,7] and [29, Chap. 12]. In particular, connections between
the standard elliptic integrals and the symmetric standard elliptic integrals,
that are very important, as Carlson showed that the symmetric standard el-
liptic integrals are more appropriate for numerical purposes than the standard
elliptic integrals [8–12].

As we have mentioned above, in this paper we are interested in the ap-
proximation of the integral RD(x, y, z) by a convergent series of elementary
functions that is uniformly valid for large and small values of a certain se-
lected variable. In the literature we can find several attempts to represent
the symmetric standard elliptic integrals in the form of a series of elementary
functions. Regarding asymptotic approximations, the first results were derived
by Carlson, Gustafson [13] and Wong [35, Chap. 6, Sec. 7]. On the one hand,
Gustafson obtained the first term of the asymptotic expansion of RD when one
of its variables tends to zero or infinity [19]. This approximation was later im-
proved by Carlson and Gustafson in [14]. On the other hand, new convergent
expansions of RD(x, y, z) have been obtained in [17,21] and [22].

The expansions mentioned in the above paragraph are valid for real posi-
tive values of the three variables x, y, z; and the expansions are accurate when
one of the variables is large compared to the other two. They are not accu-
rate when two variables are of the same order. Therefore, they cannot be used
when we need an approximation simultaneously valid for large and small val-
ues of one of the variables (and fixed values of the other two). An expansion
of RD(x, y, z) uniformly convergent in one of the variables when the other
two are restricted to a certain bounded domain may be found in [33]. The
result is valid for positive values of the variables; error bounds are not given.
In this paper we extend and generalize the result derived in [33] for the inte-
gral RD(x, y, z). We derive our expansions as an application of the theory of
uniformly convergent expansions of integral transforms developed in [25].

As an illustration of the type of approximations that we are going to
obtain in this paper (see Corollaries 4.1 and 4.2 below), we show, for example,
the following approximation that is valid for 0 ≤ x < 1, �y > 0:

G1(x, y) = −3
(
175x3 + 240x2y + 384xy2 + 1024y3

)
2048y4√y

ArcSh
√

y

− (240y3 − 280y2 + 350y − 525)x3 − (384y3 − 480y2 + 720y)x2

2048y4
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×
√

1 + y − (768y − 1152)x − 3072y

2048y2

×
√

1 + y + θ1(x), (6)

with |θ1(x)| ≤ 0.0497x4 ≤ 0.0497 . And the following approximation valid for
0 ≤ y < 1, �z > 0:

G2(y, z) =
3
(
6y2z2 − 15y2z − 45y2 − 16yz2 − 48yz − 64z2

)
64z3

√
z + 1

+
3
(
45y2 + 48yz + 64z2

)
64z2

√
z3

ArcSh
√

z + θ2(y), (7)

with |θ2(y)| ≤ 0.0694y3 ≤ 0.0694.
The paper is organized as follows. In Sect. 2 we show some preliminary

results that will be required in the later analysis. Section 3 is devoted to the
main results of the paper: uniformly convergent expansions of a certain integral
from which G1(x, y) and G2(y, z) are particular cases. It turns out that this
integral is an integral representation of the Appell function F1(a; b, c; a+1;x, y)
[1, Sec. 16.13]. Then, the results derived in Sect. 3 are applied in Sect. 4 to
G1(x, y), G2(y, z) and F1(a; b, c; a + 1;x, y), deriving convergent expansions
of these functions that are uniformly valid for one of their variables on large
subsets of the complex plane. In Sect. 5 we eliminate the restriction z > 0 (or
x > 0) for RD(x, y, z) and let z ∈ C\(−∞, 0] (or x ∈ C\(−∞, 0]) by reducing,
on the other hand, the domain for the variables x and y (or z and y) to smaller
sectors inside C\(−∞, 0]. We complete this paper by checking the accuracy of
these expansions with some numerical examples. Throughout the paper, for
any complex variable w, arg w ∈ (−π, π] denotes its main argument and square
roots are assumed to take their principal value.

2. Preliminaries

With the exception of the expansion [33], the expansions mentioned above
are derived from the integral definition (1) of the second symmetric standard
elliptic integral RD(x, y, z). They follow by applying the standard techniques
of the theory of asymptotic expansions of integrals to the integral (1), [23], [31,
Chap 16], [35, Chaps. 3 and 6]. Then, whenever they are convergent or only
asymptotic, those expansions are accurate when one of the variables is large
compared to the other two. Therefore, they are not uniformly valid in large
regions of the complex plane that include large and small values of any selected
variable. This restriction may be avoided by using a new analytic technique
for deriving uniform expansions of integral transforms, introduced in [25]. In
fact, this idea has been previously used in [5] to derive uniform expansions of
RF (x, y, z) in terms of elementary functions, and in [3,4,15,16,24] to deduce
uniform expansions of several other special functions.
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In this section we summarize the uniform technique introduced in [25],
and that we are going to apply to RD(x, y, z) and F1(a; b, c; a + 1;x, y) below.
Consider the integral transform of a function g(t) with kernel h(t, y) of the
form:

G(y) :=
∫ 1

0

h(t, y)g(t)dt, y ∈ D ⊂ C, (8)

where D is a certain unbounded region of the complex plane that contains the
point y = 0, and with the following assumptions for the functions h and g:
|h(t, y)| ≤ H(t) for y ∈ D with H integrable on [0, 1], g(t) is analytic in a
region Ω ⊂ C that contains the open set (0, 1) ⊂ Ω, and the moments of h,
M [h(·, y); k] :=

∫ 1

0
h(t, y)tkdt, are elementary functions of y.

It has been shown in [25] that, when we replace g(t) in (8) by its Taylor
expansion at an appropriate point w ∈ Ω,

g(t) =

n−1∑
k=0

ck(t − w)k + rn(t), t ∈ Dw(r) ⊂ Ω, (0, 1) ⊂ Dw(r),

where rn(t) is the Taylor remainder, and interchange sum and integral in (8),
we obtain an expansion of G(y),

G(y) =
n−1∑
k=0

ckΦk(y) + Rn(y), Φk(y) :=
∫ 1

0

h(t, y)(t − w)kdt,

Rn(y) :=
∫ 1

0

h(t, y)rn(t)dt,

with the following three properties: the expansion is uniform for y ∈ D: for any
order n of the approximation, the absolute error satisfies the bound |Rn(y)| ≤
Cn for any y ∈ D with Cn independent of y, the expansion is convergent in D,
and the terms of the expansion Φk(y) are elementary functions of y.

The uniform technique described above requires the integration interval
in (8) to be bounded. Consequently, in order to apply the above technique to
G1(x, y) and G2(y, z), instead of (2) and (3), we need an integral representation
of these functions defined on a bounded interval. With this aim, we introduce
in (2) and (3) the change of variable s → t defined in the form 1 + s = 1/t to
obtain

G1(x, y) =
3
2

∫ 1

0

√
t dt√

1 + x t
√

1 + y t
,

G2(y, z) =
3
2

∫ 1

0

√
t dt√

1 + y t
√

(1 + z t)3
. (9)
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For the sake of generality and convenience, we investigate in the next section
uniformly convergent expansions of the more generalized integral

F (a, b, c;x, y) :=
∫ 1

0

tc dt

(1 + x t)a(1 + y t)b
,

x, y ∈ C\(−∞,−1], a, b, c ∈ C, �a,�b ≥ 0, �c > −1,

(10)

that is indeed an integral representation of the Appell function F1(a; b, c; a +
1;x, y), as F (a, b, c;x, y) = 1

c+1F1(c+1; b, a; c+2;−x,−y). It only takes a little
more effort, and the results that we derive for this integral may be applied, not
only to the symmetric integral RD(x, y, z), but also to the first Appell function
and other special functions, like for example the first symmetric elliptic inte-
gral RF (x, y, z). Therefore, from the uniformly convergent expansions of the
integral (10) that we are going to derive in the next section, we will obtain as
corollaries in Sect. 4, new uniformly convergent expansions of RD(x, y, z) and
F1(a; b, c; a+1;x, y).2 The main results of the paper are given in Theorems 3.1
and 3.2 in the next section. But firstly we will give two preliminary lemmas
that we need in the later analysis. These lemmas are similar to [5, Lemmas 1
and 2] (see also [16] for a Proof of Lemma 2.1). For that reason their proofs
are omitted here.

Lemma 2.1. Let f(t, y) := (1 + y t)−b, with t ∈ [0, 1], y ∈ C\(−∞,−1] and
�b ≥ 0. Then, for any fixed angle θ ∈ [π/2, π), we define the extended sector
(see Fig. 1):

S(θ) := {y ∈ C; | arg(y)| ≤ θ}
⋃

(
{y ∈ C; | arg(y)| > θ}

⋂
{y ∈ C; |y + 1| ≥ sin θ}

⋂
{y ∈ C; |y + 1/2| ≤ 1/2}

)
. (11)

Then, for any y ∈ S(θ) and t ∈ [0, 1], f(t, y) is uniformly bounded in the form

|f(t, y)| ≤ eπ |�b|| sin θ|−�b.

Lemma 2.2. For any x ∈ C\(−∞,−1], define the map

w(x) :=
1
2

⎧⎨
⎩

1 if | arg(x + 1)| < π/2,

1 + i�(x+1)−|x+1|
�(x+1) if 0 < | arg(x + 1)| < π,

0 if |x| < 1.

(12)

We have that

|xw(x)| < |1 + xw(x)|, |x(1 − w(x))| < |1 + xw(x)|. (13)

For arg(x + 1) = π, the two inequalities |xw| < |1 + xw| and |x(1 − w)| <
|1 + xw| cannot be simultaneously satisfied for any value of w.

2The already known uniform expansion of RF (x, y, z) given in [5] may also be derived as a
particular case.
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Figure 1. The region S(θ) given by (11) is marked in green

Observation 2.1. Observe that, despite the overlapping in the regions defining
w(x), the inequalities (13) hold whenever w(x) is given by any of the three
lines in the right hand side of (12).

3. A Uniformly Convergent Expansion of F (a, b, c;x, y)

We now apply the theory of uniform expansions of integral transforms intro-
duced in [25] and condensed in Sect. 2 to the integral (10). We select y as the
uniform variable, corresponding to the exponent b in (10).

Theorem 3.1. For any fixed angle θ ∈ [π/2, π) consider the region S(θ) ⊂
C\(−∞,−1] given in (11). Then, for any a, b, c ∈ C with �a,�b ≥ 0, �c > −1;
x ∈ C\(−∞,−1], y ∈ S(θ), and n = 1, 2, 3, ..., the integral (10) admits the
following representation

F (a, b, c;x, y) =
1

(1 + xw(x))a

n−1∑
k=0

(a)k

k!

( −x

1 + xw(x)

)k

Ak (b, c; y, w(x))

+Rn(a, b, c;x, y), (14)

with

Ak(b, c; y, w) :=
k∑

j=0

(
k
j

)
(−w)k−j

c + j + 1 2F1

⎛
⎝ b, j + c + 1

j + c + 2

∣∣∣∣∣∣ − y

⎞
⎠ , (15)

where (a)k denotes the Pochhamer’s symbol [2] and 2F1 is the Gauss hyperge-
ometric function [26]. Furthermore, w(x) is given in the first or second line of
(12) and the remainder term is bounded in the form

|Rn(a, b, c;x, y)| ≤ eπ |�b| | sin θ|−�b

|Γ(a)| (�c + 1)
Γ (�a + n) |xw(x)|n
n! |(xw(x) + 1)n+a|
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2F1

⎛
⎝ 1, n + �a

n + 1

∣∣∣∣∣∣
|xw(x)|

|xw(x) + 1|

⎞
⎠ . (16)

The right hand side of (14) is a uniform convergent expansion of F (a, b, c;x, y)
with an exponential order of convergence: as n → ∞,

Rn(a, b, c;x, y) = O
((

xw(x)
xw(x) + 1

)n

na−1

)
. (17)

(Recall that, from Lemma 2.2, |xw(x)| < |xw(x) + 1|.)
Proof. We apply the uniform theory summarized in Sect. 2 for the integral (8)
to the integral (10), with the identification

h(t, y) =
tc

(1 + y t)b
and g(t) =

1
(1 + x t)a

.

It is clear that g(t) is analytic in Ω = {t ∈ C; 1+x t /∈ (−∞, 0]}. The moments
of h are

M [h(·, y);n] :=
∫ 1

0

h(t, y)tndt =
1

c + n + 1 2F1

⎛
⎝ b, n + c + 1

n + c + 2

∣∣∣∣∣∣ − y

⎞
⎠ .

(18)

Also, from Lemma 2.1,

|h(t, y)| ≤ |tc||(1 + y t)−b| ≤ H(t) := eπ |�b|| sin θ|−�bt�c,

for y ∈ S(θ) with H integrable on [0, 1]. For any w ∈ Ω and n = 1, 2, 3, ..., we
have that

g(t) =
1

(1 + w x)a

n−1∑
k=0

(a)k(−x)k

k!

(t − w)k

(1 + x w)k
+ rn(t; x, w, a), t ∈ (0, 1),

(19)

We choose3 w = w(x) given by the first or second line of (12). Then,
∣∣∣x(w(x)−t)
1+x w(x)

∣∣∣
< 1 and

rn(t;x, w, a) :=
1

(1 + x w(x))a

∞∑
k=n

(a)k(−x)k

k!

(t − w(x))k

(1 + x w(x))k

=
(a)n(−x)n

(1 + x w(x))an!

(
t − w(x)

1 + x w(x)

)n

2F1

⎛
⎝ 1, n + a

n + 1

∣∣∣∣∣∣
x(w(x) − t)

1 + x w(x)

⎞
⎠ .(20)

3There are other possible choices of w, but the value w = w(x) not only assures the con-

vergence of expansion (14), it also minimizes the value of the factor
∣∣∣ x(w−t)
1+w x

∣∣∣n (see [5,

Observation 3.1]) and then w = w(x) is the optimal election. For those values of x for which
the domains in the definition of w(x) in (12) overlap, it is explained in [5, Observation 3.1]
which of the three lines in (12) is the most convenient choice from a numerical point of view.
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After replacing g(t) in the integral (10) by the right hand side of (19)
and exchanging summation and integration, we derive the right hand side of
(14) with

Rn(a, b, c;x, y) :=
∫ 1

0

tc

(1 + y t)b
rn(t;x,w, a)dt.

When we replace rn(t;x, a) by the right hand side of (20) into the above
integral, we derive the bound (16) after using the standard series representation
of the Gauss hypergeometric function, Lemma 2.2 and the bound |t−w| ≤ |w|
for t ∈ [0, 1].

Using the asymptotic behavior of the quotient of two gamma functions [2,
eq. 5.11.12] and the asymptotic behavior of the Gauss hypergeometric function
[30, eq. (15)], we find (17), which proves the convergence of (14).

Finally, the uniform character of expansion (14) follows from the fact
that the right hand side of (16) does not depend on y. �

Observation 3.1. In general, the approximants Ak(b, c; y, w) given in Theorem
3.1 are not elementary functions, because they involve a Gauss hypergeometric
function. But, for certain values of the parameters b and c, the Gauss hypergeo-
metric function in (15) is an elementary function. For example, when b = c+k,
k ∈ N; or when b = k + 1/2, k ∈ N. We can deduce that 2F1(a, c + k, c; z) is
an elementary function by using the relations between contiguous functions
[26, Sec. 15.5(ii)] together with 2F1(a, c, c; z) = (1 − z)−a. We can see that
2F1(a, k +1/2, c; z) is an elementary function by using again the relations [26,
Sec. 15.5(ii)] and [26, Sec. 15.4(i)]. The hypergeometric functions that appear
in the expansions of the functions G1(x, y) and G2(y, z) in Corollaries 4.1 and
4.2 below are of this form, and therefore those expansions are given in terms
of elementary functions.

In the following theorem, instead of considering the base point w = w(x)
given in Lemma 2.2, we consider the base point w = 0. This alternative imposes
a more demanding restriction on x (|x| < 1), but it gives the simplest possible
expansion for the integral (10).

Theorem 3.2. For any fixed angle θ ∈ [π/2, π) consider the region S(θ) ⊂
C\(−∞,−1] given in (11). Then, for a, b, c ∈ C with �a,�b ≥ 0, �c > −1;
|x| < 1, y ∈ S(θ) and n = 1, 2, 3, ..., the integral (10) can be written in the
form

F (a, b, c;x, y) =
n−1∑
k=0

(a)k

k!
(−x)k

c + k + 1 2F1

⎛
⎝ b, k + c + 1

k + c + 2

∣∣∣∣∣∣ − y

⎞
⎠

+Rn(a, b, c;x, y). (21)
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The remainder term is bounded in the form 4

|Rn(a, b, c;x, y)| ≤ eπ |�b|

| sin θ|�b

Γ (�a + n) |x|n
|Γ(a)| (n + �c + 1)n!

3F2

⎛
⎝ 1, n + �a, n + �c + 1

n + 1, n + �c + 2

∣∣∣∣∣∣ |x|
⎞
⎠ . (22)

The right hand side of (21) is a uniform convergent expansion of F (a, b, c;x, y)
with an exponential order of convergence: as n → ∞,

Rn(a, b, c;x, y) = O (
xnn�a−2

)
. (23)

We also have the following particular bounds:

1. For x ≥ 0 and 0 < a < 1:

|Rn(a, b, c;x; y)| ≤ eπ |�b|(a)n xn

| sin θ|�b(n + �c + 1)n!
. (24)

2. For 0 < �a < 1:

|Rn(a, b, c;x, y)| ≤ eπ |�b| Γ (�a + n − 1) |x|n
| sin θ|�b |Γ(a)| (n − 1)!(1 − �a)

. (25)

Proof. The Proof of (21) is identical to the Proof of Theorem 3.1 setting w = 0
instead of w = w(x). In order to prove (22) we use the relation given in [1, Sec.
16.5, eq. 16.5.2] between 2F1 and 3F2. Bound (24) follows after an application
of the Leibniz criteria to

rn(t;x, a) :=
∞∑

k=n

(a)k(−x t)k

k!
.

For 0 < �a < 1 the hypergeometric 3F2 in (22) can be bounded by the same
hypergeometric function but evaluated at |x| = 1. Then, bound (25) follows
from the bound [4, pag. 1776]

3F2

⎛
⎝ 1, n + α + 1 − β, n + α

n + 1, n + α + 1

∣∣∣∣∣∣ 1

⎞
⎠ ≤ n(n + α)

(β − α)(n + α − β)
,

valid for α, β > 0 and n > β − α. Finally, using the asymptotic behavior of
the quotient of two gamma functions and the asymptotic behavior of the 3F2

hypergeometric function, we find (23), which proves the convergence of (21).
The uniformity feature follows from the fact that the right hand side of (22)
does not depend on y. �

4See [1] for more details about the hypergeometric function 3F2.



Vol. 77 (2022) An Analytic Representation of the Second Symmetric Page 11 of 24 171

4. Applications: Particular Cases of the Integral F (a, b, c;x, y)

In this section we consider some specific applications of the main results of the
last section, Theorems 3.1 and 3.2. The first one is the derivation of two uniform
expansions of the second symmetric standard elliptic integral RD(x, y, z). For
this purpose we apply theorems 3.1 and 3.2 to the integrals G1(x, y) and
G2(y, z) in the form given in (9), and related to RD(x, y, z) by (4) and (5).
The second application is the derivation of a uniform expansion of the Appell
function F1(a; b, c; a + 1;x, y). Finally, we comment the possibility of deriving
uniform expansions of the functions RF (x, y, z) and RG(x, y, z).

4.1. Two Uniformly Convergent Expansions of RD (x, y, z)
Corollary 4.1. For any fixed angle θ ∈ [π/2, π) consider the region S(θ) ⊂
C\(−∞,−1] given in (11). Then, for y ∈ S(θ) and n = 1, 2, 3, ..., the function
G1(x, y) given in (9) can be written in either of the two following forms:

• For any x ∈ C\(−∞,−1],

G1(x, y) =
3

2
√

1 + xw(x)

n−1∑
k=0

(1/2)k

k!

(
− x

1 + xw(x)

)k

Ak

(
1
2
,
1
2
; y;w(x)

)

+Rn(x, y), (26)

with w(x) given in the first two lines of Lemma 2.2 and Ak (1/2, 1/2; y;w)
in Theorem 3.1. The remainder term is bounded in the form

|Rn(x, y)| ≤ 1√| sin θ|
(1/2)n

n!

|x w(x)|n
|x w(x) + 1|n+1/2 2F1

⎛
⎝ 1, n + 1/2

n + 1

∣∣∣∣∣∣
|x w(x)|

|x w(x) + 1|

⎞
⎠ .

• For |x| < 1,

G1(x, y) =
3
2

n−1∑
k=0

(1/2)k (−x)k

k! (k + 3/2) 2F1

⎛
⎝ 1/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − y

⎞
⎠ + Rn(x, y),

(27)

The remainder term is bounded in the form

|Rn(x, y)| ≤ 3√| sin θ|
(1/2)n |x|n
(2n + 3)n! 3F2

⎛
⎝ 1, n + 1/2, n + 3/2

n + 1, n + 5/2

∣∣∣∣∣∣ |x|
⎞
⎠ .

The approximants in (26) and (27) are elementary functions:

An(1/2, 1/2; y, w) :=
n∑

k=0

(
n
k

)
(−w)n−k

k + 3/2 2F1

⎛
⎝ 1/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − y

⎞
⎠ ,

(28)
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with

2F1

⎛
⎝ 1/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − y

⎞
⎠ =

(3/2)k (k + 3/2)
(k + 1)! (−y)k+1

⎛
⎝ ArcSh

√
y√

y
−

√
1 + y

k∑
j=0

j! (−y)j

(3/2)j

⎞
⎠ .

(29)

Either, the right hand side of (26) or of (27) is a uniform convergent expansion
of G1(x, y) with an exponential order of convergence.

Proof. From (9) and (10) it is clear that

G1(x, y) =
3
2
F

(
1
2
,
1
2
,
1
2
;x, y

)
.

Then, all the theses of this corollary are particular cases of Theorems 3.1 and
3.2. We note that the coefficients An(1/2, 1/2; y, w) given in (28) are elemen-
tary functions as shown in (29), which can be proved by repeatedly integrating
by parts on the integral representation of the Gauss hypergeometric function
[26, Sec. 15.6, eq. 15.6.1] on the left hand side of (29). �

Observation 4.1. For positive values of x and y, expansion (27) (without error
bounds) can be derived from (2) and formulas [7, Sec. 19.25, eq. 19.25.25], [7,
Sec. 19.5, eq. 19.5.5 1] and [7, Sec. 19.5, eq. 19.5.5 2] after some straightforward
computations.

Corollary 4.2. For any fixed angle θ ∈ [π/2, π) consider the region S(θ) ⊂
C\(−∞,−1] given in (11). Then, for z ∈ S(θ) and n = 1, 2, 3, ..., the function
G2(y, z) given in (9) can be written in either of the two following forms:

• For any y ∈ C\(−∞,−1],

G2(y, z) =
3

2
√

1 + y w(y)

n−1∑
k=0

(1/2)k

k!

( −y

1 + y w(y)

)k

Ak

(
3
2
,
1
2
; z;w(y)

)

+Rn(y, z), (30)

with w(y) given in the first two lines of Lemma 2.2 and Ak (3/2, 1/2; z;w)
in Theorem 3.1. The remainder term is bounded in the form

|Rn(y, z)| ≤ 1√| sin θ|3
(1/2)n

n!
|y w(y)|n

|y w(y) + 1|n+1/2

2F1

⎛
⎝ 1, n + 1/2

n + 1

∣∣∣∣∣∣
|y w(y)|

|y w(y) + 1|

⎞
⎠ . (31)
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• For |y| < 1,

G2(y, z) =
3

2

n−1∑
k=0

(1/2)k (−y)k

k! (k + 3/2)
2F1

⎛
⎝ 3/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − z

⎞
⎠ + Rn(y, z), (32)

The remainder term is bounded in the form

|Rn(y, z)| ≤ 3√| sin θ|3
(1/2)n |y|n
(2n + 3)n!

3F2

⎛
⎝ 1, n + 1/2, n + 3/2

n + 1, n + 5/2

∣∣∣∣∣∣ |y|
⎞
⎠ . (33)

The approximants in (30) and (32) are elementary functions:

An(3/2, 1/2; z, w) :=
n∑

k=0

(
n
k

)
(−w)n−k

k + 3/2
2F1

⎛
⎝ 3/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − z

⎞
⎠ , (34)

with

2F1

⎛
⎝ 3/2, k + 3/2

k + 5/2

∣∣∣∣∣∣ − z

⎞
⎠

=
(3/2)k (k + 3/2)

k! (−z)k

⎡
⎣2 ArcSh

√
z√

z3
+

1

z
√
1 + z

⎛
⎝−2 +

k∑
j=1

(j − 1)! (−z)j

(3/2)j

⎞
⎠

⎤
⎦ . (35)

Either, the right hand side of (30) or of (32) is a uniform convergent expansion
of G2(y, z) with an exponential order of convergence.

Proof. From (9) and (10) it is clear that
G2(y, z) =

3
2
F

(
1
2
,
3
2
,
1
2
; y, z

)
.

Then, all the theses of this corollary are particular cases of Theorems 3.1 and
3.2. We note that the coefficients An(3/2, 1/2; z, w) given in (34) are elemen-
tary functions as shown in (35), which can be proved by repeatedly integrating
by parts on the integral representation of the Gauss hypergeometric function
[26, eq. 15.6.1] on the left hand side of (35). �

Formula (6) is the particular case n = 4 of formula (27); formula (7) is
the particular case n = 2 of formula (32).

4.2. A Uniformly Convergent Expansion of the Appell Function

Recall the integral representation of Appell function (see [1, Sec 16.15, eq
16.15.1])

F1(α;β, β′, γ;x, y) :=
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1 − t)γ−α−1

(1 − ty)β(1 − tx)β′ dt,

�α > 0, �(γ − α) > 0. (36)

We have the following corollary.

Corollary 4.3. For any fixed angle θ ∈ [π/2, π) consider the region S(θ) ⊂
C\(−∞,−1] given in (11). Then, for any α, β, β′ ∈ C with �β,�β′ ≥ 0 and
�α > 0, −y ∈ S(θ) and n = 1, 2, . . ., the Appell function F1(α;β, β′, α+1;x, y)
can be written in either of the two followingforms
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• For any x ∈ C\[1,∞),

F1(α;β, β′;α + 1;x, y) =
α

(1 − x w(−x))β′

n−1∑
k=0

(β′)k
k!

(
x

1 − x w(−x)

)k

×Ak (β, α − 1;−y;w(−x)) + Rn(β
′, β, α;x, y), (37)

with w(x) given in the first two lines of Lemma 2.2 and Ak (β, α − 1;−y;
w(−x)) in Theorem 3.1. The remainder term is bounded in the form

|Rn(β′, β, α;x, y)| ≤ eπ|�β|

| sin θ|�β

Γ(n + �β′)
|Γ(β′)|n!�α

|α| |xw(−x)|n
|(1 − xw(−x))n+β′ |

2F1

⎛
⎝ 1, n + �β′

n + 1

∣∣∣∣∣∣
|xw(−x)|

|1 − xw(−x)|

⎞
⎠ .

• If |x| < 1 then

F1(α;β, β′;α + 1;x, y) = α

n−1∑
k=0

(β′)k xk

k! (k + α) 2
F1

⎛
⎝ β, k + α

k + α + 1

∣∣∣∣∣∣ y

⎞
⎠

+Rn(β′, β, α;x, y), (38)

The remainder term is bounded in the form

|Rn(β′, β, α;x, y)| ≤ eπ|�β|

| sin θ|�β

|α| Γ(n + �β′)|x|n
|Γ(β′)|n! (n + �α)

3F2

⎛
⎝ 1, n + �β′, n + �α

n + 1, n + �α + 1

∣∣∣∣∣∣ |x|
⎞
⎠ .

Either, the right hand side of (37) or of (38) is a uniform convergent expansion
of F1(α;β, β′;α + 1;x, y) with an exponential order of convergence.

Proof. Comparing (36) to (10) we have that

F1(α;β, β′;α + 1;x, y) = α F (β′, β, α − 1;−x,−y).

Then, the results follow from Theorems 3.1 and 3.2. �

Note 4.1. Uniform expansions of the first symmetric standard elliptic integral
RF (x, y, z) in terms of elementary functions are given in [5], and we refer
the reader to this reference for details. Alternatively, those expansions can be
derived from Theorems 3.1 and 3.2 by using the relation

RF (x, y, z) =
1

2z1/2
F

(
1
2
,
1
2
,−1

2
;
x − z

z
,
y − z

z

)
.

The function RG(x, y, z), [7, Sec 19.21, eq 19.21.11], may be written in the
form

RG(x, y, z) =
1
6

∑
x(y + z)RD(y, z, x),
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where the summation extends over the three cyclic permutations of x, y, z.
Therefore, uniform representations of the function RG(x, y, z) in terms of el-
ementary functions can be directly derived from Corollaries 4.1 and 4.2.

5. Final Remarks and Numerical Experiments

5.1. A Larger Domain of Applicability of Corollaries 4.1 and 4.2

An analytic representation of the first symmetric elliptic integral RF (x, y, z)
is given in [5]. That expansion is first derived for z > 0, and later extended
to complex values of z in [5, Sec. 4] by using analytic continuation arguments.
Identical arguments may be used here to enlarge the range of applicability of
Corollaries 4.1 and 4.2 and deduce that the expansions derived for G1(x, y) in
Corollary 4.1 hold, not only for z > 0 and x, y ∈ C\(−∞, 0], but in the bigger
domain:

Λ1 := {(x, y, z) ∈ (C\(−∞, 0])3; | arg x − arg z| < π, | arg y − arg z| < π}.

Figure 2 illustrates the shape of the x−domain Λ1 for fixed z (the y−domain
for fixed z is analogous).

Figure 2. The argument of the variable x is restricted to the
sector arg x ∈ (arg z−π, arg z+π)

⋂
(−π, π]. The green region

in all the pictures shows the different shapes of the x−section
of the region Λ1 for different arguments of z
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Figure 3. Graphics of G1(x, y) = F (1/2, 1/2, 1/2;x, y)
(black, dashed) and the approximations given by Corollary
4.1 with n = 1 (blue), n = 2 (brown) and n = 3 (green)
for different values of the fixed variable x and different inter-
vals of the uniform variable y, with w(x) taken according to
Lemma 2.2. We have taken x = 0.9 and y ∈ (−1, 20) (top,
left); x = 0.1 and y ∈ (−1, 20) (top right); and x = 6.8eπi/4

and y ∈ (−5eiπ/3, 5eiπ/3) (bottom). The bottom left picture
corresponds to the real part of the functions, whereas the bot-
tom right picture represents the imaginary part. The graphics
are similar for others values of x and y. The graphics show
the uniformly convergent character of the expansions in the
variable y

Similarly, the expansions derived for G2(y, z) in Corollary 4.2 hold, not
only for x > 0 and y, z ∈ C\(−∞, 0], but in the bigger domain:

Λ2 := {(x, y, z) ∈ (C\(−∞, 0])3; | arg y − arg x| < π, | arg z3 − arg x3| < π}.

5.2. Numerical Experiments

Finally, in Tables 1 and 2 and Fig. 3, we give some numerical experiments
that illustrate the accuracy and uniform character of the expansions derived
in Theorems 3.1 and 3.2 (and therefore in Corollaries 4.1–4.3). In the numerical
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Tables 1 and 2 of this section we have computed the Relative Error (En
Rel) and

compared to the relative error bound (Bn
Rel). They are defined in the form:

En
Rel :=

|Fn(a, b, c;x, y) − F (a, b, c;x, y)|
|F (a, b, c;x, y)| , Bn

Rel :=
|Rn(a, b, c;x, y)|
|F (a, b, c;x, y)| ,

where Fn(a, b, c;x, y) represents the sum in the right hand side of (14) or (21),
and |Rn(a, b, c;x, y)| the corresponding error bound (16) or (22).

All the computations of this section have been carried out by using the
symbolic manipulation program Wolfram Mathematica 12.2. In particular, the
“exact” value of F (a, b, c;x, y) has been computed by means of numerical in-
tegration with the command “NIntegrate”.
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