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Abstract. The isolation intervals of the real roots of the symbolic monic
cubic polynomial x3 + ax2 + bx + c are determined, in terms of the co-
efficients of the polynomial, by solving the Siebeck–Marden–Northshield
triangle—the equilateral triangle that projects onto the three real roots of
the cubic polynomial and whose inscribed circle projects onto an interval
with endpoints equal to stationary points of the polynomial.
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1. Introduction

The elegant theorem of Siebeck and Marden (often referred to as Marden’s
theorem) [1–5] relates geometrically the complex non-collinear roots z1, z2,
and z3 of a cubic polynomial with complex coefficients to a triangle in the
complex plane whose vertices are z1, z2, and z3, on one hand, and, on the
other, the critical points of the polynomial to the foci of the inellipse of this
triangle. This ellipse is unique and is called Steiner inellipse [6]. It is inscribed
in the triangle in such way that it is tangent to the sides of the triangle at
their midpoints.

The real version of the Siebeck–Marden Theorem, as given by Northshield
[7], states that the three real roots (not all of which are equal) of a cubic poly-
nomial are projections of the vertices of some equilateral triangle in the plane.
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However, it is the inscribed circle of the equilateral triangle that projects onto
an interval the endpoints of which are the stationary points of the polynomial.

The goal of this work is to consider a cubic equation with real coefficients
and, using the Siebeck–Marden–Northshield theorem [7], solve the equilateral
triangle and find the isolation intervals of the real roots of the symbolic monic
cubic polynomial x3 + ax2 + bx + c.

2. Analysis

Construction Any three real numbers, not all equal, are the projections of
the vertices of some equilateral triangle in the plane. For the monic cubic
polynomial p(x) = x3 + ax2 + bx + c with three real roots x1, x2, and x3,
not all equal, the vertices of the equilateral triangle—points P , Q, and R on
Fig. 1—with coordinates (x1, (x2−x3)/

√
3), (x2, (x3−x1)/

√
3), and (x3, (x1−

x2)/
√

3), respectively, project on the roots [7]. This is the Siebeck–Marden–
Northshield triangle. The inscribed circle of this triangle projects to an interval
with endpoints equal to the critical points μ1,2 = −a/3± (1/3)

√
a2 − 3b of the

cubic polynomial—the roots of the derivative p′(x) = 3x2+2ax+b of p(x) [7].
The centroid of the triangle is at φ = −a/3 on the abscissa—the first coordinate
projection of the inflection point of p(x) — the root of the second derivative
p′′(x) = 6x + 2a. Each side of the triangle is equal to α = (

√
12/3)

√
a2 − 3b.

The radius of the inscribed circle is r = (1/3)
√

a2 − 3b. The radius of the
circumscribed circle is 2r = (2/3)

√
a2 − 3b.

Lemma 1. The monic cubic polynomial p(x) = x3 +ax2 + bx+ c with b > a2/3
has only one real root.

Proof. The discriminant of the monic cubic polynomial x3 + ax2 + bx + c is

Δ3 = −27c2 + (18ab − 4a3)c + a2b2 − 4b3. (1)

It is quadratic in c and the discriminant of this quadratic is

Δ2 = 16(a2 − 3b)3 (2)

As b > a2/3, one has Δ2 < 0 for all a and thus Δ3 < 0 for all a and c. Hence,
the cubic polynomial p(x) = x3 + ax2 + bx+ c with b > a2/3 has only one real
root (and a pair of complex conjugate roots). �

This can be seen in an easier way: the discriminant of the derivative
p′(x) = 3x2 + 2ax + b is 4(a2 − 3b), hence no critical points of p(x) exist when
b > a2/3 and thus p(x) has only one real root.

Note that existence of critical points of p(x), warranted by b ≤ a2/3, does
not warrant three real roots. The following Lemma addresses this.
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Figure 1. Siebeck–Marden–Northshield Triangle: When the
cubic polynomial p(x) = x3 + ax2 + bx + c has three real
roots x1,2,3 which are not all equal, they can be obtained as
projections of the vertices of an equilateral triangle (PQR)
with coordinates (x1, (x2 − x3)/

√
3), (x2, (x3 − x1)/

√
3), and

(x3, (x1 − x2)/
√

3), respectively [7]

Lemma 2. The monic cubic polynomial p(x) = x3 +ax2 + bx+ c with b ≤ a2/3
has three real roots, provided that c ∈ [c2, c1], where c1,2 are the roots of the
quadratic equation

x2 +
(

4
27

a3 − 2
3

ab

)
x − 1

27
a2b2 +

4
27

b3 = 0, (3)

namely:

c1,2(a, b) = c0 ± 2
27

√
(a2 − 3b)3, (4)

where

c0(a, b) = − 2
27

a3 +
1
3

ab. (5)

Proof. The discriminant Δ3 = −27c2 +(18ab−4a3)c+a2b2 −4b3 of the monic
cubic polynomial x3+ax2+bx+c is positive between the roots of the equation
Δ3 = 0, which is quadratic in c. This is exactly equation (3) and its roots are
the ones given in (4) and (5). �
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Figure 2. Presented here are four cubics and their Siebeck–
Marden–Northshield triangles: the “balanced” cubic with c =
c0 (second from top) whose roots are ν1,3, equidistant from
φ = −a/3, and ν2 = φ and whose triangle P0Q0R0 has the side
P0R0 parallel to the abscissa; the two “extreme” cubics—with
c = c1,2 (top and bottom) having double real roots μ1,2 and a
simple root ξ1,2 and whose triangles P1,2Q1,2R1,2 have a side
perpendicular to the abscissa and a vertex on the abscissa;
and the general cubic (second from bottom) x3 +ax2 + bx+ c
with distinct real roots x3 < x2 < x1 and triangle PQR.
Increasing c rotates the Siebeck–Marden–Northshield triangle
counterclockwise about its centroid. Decreasing c results in its
clockwise rotation. The isolation intervals of the roots of the
latter can be immediately determined from the graph

Lemma 3. The maximum distance between the three real roots of the monic
cubic polynomial p(x) = x3 + ax2 + bx + c is

√
12r = (

√
12/3)

√
a2 − 3b. In

this case, one side of the Siebeck–Marden–Northshield triangle is parallel to the
abscissa. This is achieved in the case of the “balanced” cubic—the one with
c = c0 = −2a3/27+ ab/3. For any other c such that c2 ≤ c ≤ c1, the three real
roots of the cubic lie within a shorter interval.
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Proof. Given that the root x2 = ν2 = φ = −a/3 of the “balanced” cubic
equation x3 + ax2 + bx + c0 = 0, where c0 = −2a3/27 + ab/3, is the midpoint
between its other two roots x1,3 = ν1,3 = −a/3 ± √

a2/3 − b, one has x1 − x2

(
√

3 times the second coordinate of point R) being equal to x2 −x3 (
√

3 times
the second coordinate of point P ) — see Fig. 2. Hence P and R are both
above the abscissa and are equidistant from it. Thus PR is parallel to the
abscissa. Hence, the distance between x3 and x1 is exactly equal to the length
α = (

√
12/3)

√
a2 − 3b of the side PR. In any other case of three real roots

(c ∈ [c2, c1] and c �= c0), the side PR will not be parallel to the abscissa and
hence the projection of PR onto the abscissa will be shorter than the length of
PR, that is, the three real roots of the cubic polynomial will lie in an interval
of length smaller than α = (

√
12/3)

√
a2 − 3b. �

Note that the Siebeck–Marden–Northshield triangle rotates counter-
clockwise when increasing the free term c and clockwise otherwise. The trian-
gle cannot be rotated counter-clockwise or clockwise further than the triangles
of the two “extreme” cubics (with c = c1,2) as three real roots exist and, hence,
the Siebeck–Marden–Northshield triangle exists itself, only for c ∈ [c2, c1].

Also observe a completely geometric in nature proof that the projection
of the incircle of the Siebeck–Marden–Northshield triangle coincides exactly
with the interval given by the two critical points of the cubic: the incircle is
invariant when varying the free term c from c2 to c1 and this variation moves
the graph up from the position of a local maximum tangent to the abscissa—
the “extreme” cubic with c = c2 (the lowermost curve on Fig. 2) to a local
minimum tangent to the abscissa — the “extreme” cubic with c = c1 (the
uppermost curve on Fig. 2), whose triangles are P2,1Q2,1R2,1, respectively.

Theorem 1. The monic cubic polynomial p(x) = x3 + ax2 + bx + c, for which
b < a2/3 and c ∈ [c2, c1], has three real roots x3 ≤ x2 ≤ x1, at least two of which
are different and any two of which are not farther apart than (

√
12/3)

√
a2 − 3b,

with the following isolation intervals:
(I) For c2 ≤ c ≤ c0: x3 ∈ [ν3, μ2], x2 ∈ [μ2, φ], and x1 ∈ [ν1, ξ2].

(II) For c0 ≤ c ≤ c1: x3 ∈ [ξ1, ν3], x2 ∈ [φ, μ1], and x1 ∈ [μ1, ν1],
where:

(i) μ1,2 is the double root and ξ1,2 is the simple root of p1,2(x) = x3 + ax2 +
bx+ c1,2, that is, μ1,2 are the roots of p′(x) = 3x2 +2ax+ b = 0, namely:
μ1,2 = −a/3 ± r = −a/3 ± (1/3)

√
a2 − 3b and ξ1,2 = −a − 2μ1,2 =

−a/3 ∓ 2r = −a/3 ∓ (2/3)
√

a2 − 3b.
(ii) ν1,2,3 are the roots of the “balanced” cubic equation p0(x) = x3 + ax2 +

bx + c0, namely: ν1,3 = −a/3 ± α/2 = −a/3 ± (
√

3/3)
√

a2 − 3b and
ν2 = φ = −a/3.

Proof. Due to Lemma 2, the discriminant Δ3 = −27c2+(18ab−4a3)c+a2b2−
4b3 of the monic cubic polynomial x3 + ax2 + bx + c is non-negative for all a
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and b ≤ a2/3, if c is between the roots c1,2 = c0 ± (2/27)
√

(a2 − 3b)3 (with
c0 = −2a3/27 + ab/3) of the quadratic equation x2 + (4a3/27 − 2ab/3)x −
a2b2/27 + 4b3/27 = 0. Then x3 + ax2 + bx + c will have three real roots. The
two “extreme” cases, the cubics x3 + ax2 + bx + c1 and x3 + ax2 + bx + c2,
will each have a double root (as Δ3 vanishes for c = c1,2) and a simple root.
Otherwise, for c2 < c < c1, the cubic polynomial will have three distinct roots.

If μ1,2 is the double root of the “extreme” cubic x3 + ax2 + bx + c1,2
and ξ1,2—the corresponding simple root, then, when c = c1,2, one has (due to
Viète formulæ): 2μi + ξi = −a, μ2

i + 2μiξi = b, and μ2
i ξi = −c (for i = 1, 2).

Expressing from the first ξi = −a − 2μi and substituting into the second
yields −3μ2

i − 2aμi − b = 0, that is, the double roots μ1,2 of each of the
“extreme” cubics x3 + ax2 + bx + c1,2 are the roots of the quadratic equation
3x2 + 2ax + b = 0, that is μ1,2 = −a/3 ± r = −a/3 ± (1/3)

√
a2 − 3b. Hence

one finds: ξ1,2 = −a − 2μ1,2 = −a/3 ∓ 2r = −a/3 ∓ (2/3)
√

a2 − 3b.
Due to Lemma 3, the biggest distance between the roots of the cubic will

be α = (
√

12/3)
√

a2 − 3b.
The roots of the “balanced” cubic equation x3+ax2+bx−2a3/27+ab/3 =

0 (see the proof of Lemma 3) are symmetric with respect to the centre of
the inscribed circle: ν3 = −a/3 − √

a2/3 − b, ν2 = φ = −a/3, and ν1 =
−a/3 +

√
a2/3 − b. The “balanced” equation has triangle P0Q0R0 and the

side P0R0 is parallel to the abscissa (Fig. 2).
When c = c1 > c0, the Siebeck–Marden–Northshield triangle is P1Q1R1

and its side P1Q1 is perpendicular to the abscissa. Hence the roots x2 and
x1 coalesce into the double root μ1. The vertex R1 is on the abscissa at the
smallest root ξ1 (Fig. 2).

When c = c2 < c0, the Siebeck–Marden–Northshield triangle is P2Q2R2

and its side R2Q2 is perpendicular to the abscissa. The roots x3 and x2 coalesce
into the double root μ2, while the biggest root x1 is equal to ξ2, as the vertex
P2 is on the abscissa at ξ2 (Fig. 2).

The isolation intervals of the roots of the cubic polynomial are then easily
read geometrically—see Fig. 2. �

The lengths of the isolation intervals of the roots are as follows:
(I) c2 ≤ c ≤ c0

For the smallest root x3, the length is μ2−ν3 = [(
√

3−1)/3]
√

a2 − 3b;
for the middle root x2 one has φ−μ2 = (1/3)

√
a2 − 3b; and for the largest

root x1 it is ξ2 − μ1 = [(2 − √
3)/3]

√
a2 − 3b.

(II) c0 ≤ c ≤ c1

For the smallest root x3, the length is μ3−ξ1 = [(2−√
3)/3]

√
a2 − 3b; for

the middle root x2 one has φ − μ2 = (1/3)
√

a2 − 3b; and for the largest
root x1 it is ξ2 − μ1 = [(

√
3 − 1)/3]

√
a2 − 3b.

Theorem 2. The monic cubic polynomial p(x) = x3 + ax2 + bx + c, for which
b < a2/3 and:
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(I) c < c2, has only one real root: x1 > ξ2 = −a − 2μ2 = −a/3 + 2r =
−a/3 + (2/3)

√
a2 − 3b (it can be bounded from above by a polynomial

root bound);
(II) c > c1, has only one real root: x1 < ξ1 = −a − 2μ1 = −a/3 − 2r =

−a/3−(2/3)
√

a2 − 3b (it can be bounded from below by a polynomial root
bound).

Proof. Given on Fig. 3 are the two “extreme” cubics—with c = c1 (second from
top) and with c = c2 (second from bottom). Their corresponding triangles are
P1Q1R1 and P2Q2R2, respectively. Each of these cubics has a double root
μ1,2 and a simple root ξ1,2, respectively. Cubics with c such that c2 < c < c1
are between those two and they are the only ones with three distinct real
roots. When c > c1 (uppermost cubic), there is a pair of complex conjugate
roots and a single real root x1 < ξ1 = −a/3 − (2/3)

√
a2 − 3b. When c < c2

(lowermost cubic), there is a pair of complex conjugate roots and a single real
root x1 > ξ2 = −a/3+(2/3)

√
a2 − 3b. The isolation intervals of the single real

root for either of the two latter cubics can be found by the determination of
the lower (respectively, upper) root bound of the cubic. �

As polynomial upper root bound, one can take one of the many existing
root bounds. For example, it could be the bigger of 1 and the sum of the
absolute values of all negative coefficients [8]. Or one can consider the bound
[9]: 1 + k

√
H, where k = 1 if a < 0, k = 2 if a > 0 and b < 0, and k = 3

if a > 0 and b > 0, and c < 0 (if a, b, and c are all positive, the upper root
bound is zero). H is the biggest absolute value of all negative coefficients in
x3 + ax2 + bx + c.

The lower root bound is the negative of the upper root bound of −x3 +
ax2 − bx + c.

Theorem 3. The monic cubic polynomial p(x) = x3 + ax2 + bx + c, for which
b = a2/3 and:
(I) c < (1/27)a3, has only one real root: x1 = −a/3 + 3

√
a3/27 − c > −a/3;

(II) c = (1/27)a3, has a triple real root: x1 = x2 = x3 = −a/3;
(III) c > (1/27)a3, has only one real root: x1 = −a/3 + 3

√
a3/27 − c < −a/3.

Proof. Shown on Fig. 4 is the special case of b = a2/3. One immediately gets
that c1 = c2 = a3/27 in this case. The only cubic with three real roots is the
one with c = a3/27. This is the cubic x3 + ax2 +(a2/3)x+ a3/27 = (x+ a/3)3

(middle curve). Clearly, this cubic has a triple real root x1 = x2 = x3 = −a/3.
If one increases c above a3/27 (top cubic), there is a pair of complex conjugate
roots and a single root x1 < −a/3. If one increases c above a3/27 (bottom
cubic), there is a pair of complex conjugate roots and a single root x1 > −a/3.
The single real root for either of the two latter cubics can be immediately
found completing the cube: x3 + ax2 + (a2/3)x + c = (x + a/3)3 − a3/27 + c.
Hence, x1 = −a/3 + 3

√
a3/27 − c. �
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Figure 3. Theorem 2 When b < a2/3 and: (I) c < c2, the
cubic has only one real root: x1 > ξ2 = −a − 2μ2 = −a/3 +
2r = −a/3 + (2/3)

√
a2 − 3b; (II) c > c1, the cubic has only

one real root: x1 < ξ1 = −a − 2μ1 = −a/3 − 2r = −a/3 −
(2/3)

√
a2 − 3b

Theorem 4. The only real root x1 of the monic cubic polynomial p(x) = x3 +
ax2 + bx + c with b > a2/3 (due to Lemma 1) has the following isolation
interval:

(I) If a ≥ 0 and c ≤ 0 : 0 ≤ x1 ≤ −c/b.
(II) If a ≥ 0 and c > 0 : min{−a,−c/b} ≤ x1 ≤ max{−a,−c/b}.

(III) If a < 0 and c < 0 : min{−a,−c/b} ≤ x1 ≤ max{−a,−c/b}.
(IV) If a < 0 and c ≥ 0 : −c/b ≤ x1 ≤ 0.

Proof. Re-write the cubic equation x3+ax2+bx+c = 0 as x3+ax2 = −bx−c.
Such “split” of polynomial equations of different degrees has been proposed
and studied in [10–12]

The rest of the proof is graphic—see the captions of Figs. 5, 6, 7 and 8
for the four cases (I)–(IV) respectively. �
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Figure 4. Theorem 3 When b = a2/3 and: (I) c < (1/27)a3,
the cubic has only one real root: x1 = −a/3 + 3

√
a3/27 − c >

−a/3; (II) c = (1/27)a3, the cubic has a triple real root: x1 =
x2 = x3 = −a/3; (III) c > (1/27)a3, the cubic has only one
real root: x1 = −a/3 + 3

√
a3/27 − c < −a/3

Figure 5. Proof of Theorem 4(I) When a ≥ 0 and c ≤ 0, the
isolation interval of the single root x1 is: 0 ≤ x1 ≤ −c/b



126 Page 10 of 16 E. M. Prodanov Results Math

Figure 6. Proof of Theorem 4(II) When a ≥ 0 and c > 0,
the isolation interval of the single root x1 is: min{−a,−c/b} ≤
x1 ≤ max{−a,−c/b}

Figure 7. Proof of Theorem 4(III) When a < 0 and c < 0,
the isolation interval of the single root x1 is: min{−a,−c/b} ≤
x1 ≤ max{−a,−c/b}

3. Roles of the Coefficients and Root Isolation Intervals:
Summary and Application of the Analysis

(a) The coefficient a of the quadratic term of x3 + ax2 + bx + c selects the
centre φ = −a/3 of the inscribed circle of the equilateral triangle that
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Figure 8. Proof of Theorem 4(IV) When a < 0 and c ≥ 0,
the isolation interval of the single root x1 is: 0 ≤ x1 ≤ −c/b

projects onto the roots of x3+ax2+bx+c, in the case of three real roots.
The centre of this circle is also the projection of the inflection point of the
graph of x3 +ax2 + bx+ c onto the abscissa. The inscribed circle projects
to an interval on the abscissa with endpoints equal to the projections of
the stationary points of x3 + ax2 + bx + c (Fig. 1).

(b) For any given a, the coefficients b of the linear term of x3+ax2+bx+c de-
termines the radius r = (1/3)

√
a2 − 3b of the inscribed circle. The circum-

scribed circle of the equilateral triangle has radius 2r = (2/3)
√

a2 − 3b.
If a cubic polynomial has two stationary points, the distance between
them is always 2r = (2/3)

√
a2 − 3b.

The inflection point of the graph of x3 + ax2 + bx + c is always the mid-
point (−a/3) between the stationary points of the cubic polynomial.
Hence, the analysis of the cubic polynomial x3 +ax2 + bx+ c should start
with what the value of b, relative to a2/3, is.
(I) If b < a2/3 and if:

(i) c2 ≤ c ≤ c0, then the polynomial x3 + ax2 + bx + c has
three real roots with the following isolation intervals: x3 ∈
[ν3, μ2], x2 ∈ [μ2, φ], and x1 ∈ [ν1, ξ2] (Fig. 2).

(ii) c0 ≤ c ≤ c1, then the polynomial x3 + ax2 + bx + c has
three real roots with the following isolation intervals: x3 ∈
[ξ1, ν3], x2 ∈ [φ, μ1], and x1 ∈ [μ1, ν1] (Fig. 2).
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In the above, c1,2 = c0 ± (2/27)
√

(a2 − 3b)3, with c0 = −2a3/27 +
ab/3, are the values of c for which, for any a and b < a2/3, the dis-
criminant Δ3 of the cubic polynomial x3+ax2+bx+c is zero (Δ3 pos-
itive for c between c2 and c1). Namely, these are the roots of the qua-
dratic equation (3): x2 +(4a3/27−2ab/3)x−a2b2/27+4b3/27 = 0.
Also in the above, ν3 = −a/3 − √

a2/3 − b, ν2 = φ = −a/3, and
ν1 = −a/3+

√
a2/3 − b are three real roots of the “balanced” cubic

polynomial x3 + ax2 + bx + c0 (Fig. 2).
The roots of the “extreme” cubic x3 + ax2 + bx + c1 are the dou-
ble root μ1 = −a/3 + (

√
3/3)

√
a2/3 − b and the simple root ξ1 =

−a − 2μ1 = −a/3 − 2r = −a/3 − (2/3)
√

a2 − 3b. Likewise, the
roots of the “extreme” cubic x3 + ax2 + bx + c1 are the double root
μ2 = −a/3−(

√
3/3)

√
a2/3 − b and the simple root ξ2 = −a−2μ2 =

−a/3 + 2r = −a/3 + (2/3)
√

a2 − 3b (Figs. 2, 3).
The biggest distance between any two of the three real roots of the
cubic equation x3+ax2+bx+c = 0 is α =

√
12r = (

√
12/3)

√
a2 − 3b—

achieved for the roots of the “balanced” cubic equation x3 + ax2 +
bx + c0 (Fig. 2).
For any other cubic equation with c2 ≤ c ≤ c1, the three real roots
are within an interval of length 3r =

√
a2 − 3b < α (Fig. 2).

(iii) c < c2, then the polynomial x3+ax2+bx+c has only one real
root: x1 > ξ2 = −a−2μ2 = −a/3+2r = −a/3+(2/3)

√
a2 − 3b

(Fig. 3). The root x1 can be bounded from above by a polyno-
mial root bound.

(iv) c > c1, then the polynomial x3+ax2+bx+c has only one real
root: x1 < ξ1 = −a−2μ1 = −a/3−2r = −a/3−(2/3)

√
a2 − 3b

(Fig. 3). The root x1 can be bounded from below by a polyno-
mial root bound.

(II) If b = a2/3 and if:
(i) c < (1/27)a3, then the polynomial x3 +ax2 + bx+ c has only

one real root: x1 = −a/3 + 3
√

a3/27 − c > −a/3 (Fig. 4).
(ii) c = (1/27)a3, then the polynomial x3 + ax2 + bx + c has a

triple real root: x1 = x2 = x3 = −a/3 (Fig. 4).
(iii) c > (1/27)a3, then the polynomial x3 +ax2 + bx+ c has only

one real root: x1 = −a/3 + 3
√

a3/27 − c < −a/3 (Fig. 4).
(III) If b > a2/3, the discriminant of the cubic polynomial is negative

and thus x3+ax2+bx+c has one real root x1 and a pair of complex
conjugate roots. The isolation interval of x1 depends on the signs of
a and c and is as follows:

(i) If a ≥ 0 and c ≤ 0 : 0 ≤ x1 ≤ −c/b (Fig. 5).
(ii) If a ≥ 0 and c > 0 : min{−a,−c/b} ≤ x1 ≤ max{−a,−c/b}

(Fig. 6).
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(iii) If a < 0 and c < 0 : min{−a,−c/b} ≤ x1 ≤ max{−a,−c/b}
(Fig. 7).

(iv) If a < 0 and c ≥ 0 : −c/b ≤ x1 ≤ 0 (Fig. 8).
(c) The coefficient c of x3 + ax2 + bx + c rotates the equilateral triangle

(which exists if b < a2/3) that projects onto the roots x3 ≤ x2 ≤ x1 (at
least two of which are different) of the cubic polynomial. The vertices
P , Q, and R of the triangle are points of coordinates (x1, (x2 − x3)/

√
3),

(x2, (x3−x1)/
√

3), and (x3, (x1−x2)/
√

3), respectively. Point Q is always
below the abscissa and points P and R—always above it.
When c = c0 = −2a3/27 + ab/3, the side PR is parallel to the abscissa.
This corresponds to the “balanced” cubic equation x3+ax2+bx−2a3/27+
ab/3 = 0, the roots of which are symmetric with respect to the centre
of the inscribed circle: ν3 = −a/3 − √

a2/3 − b, ν2 = φ = −a/3, and
ν1 = −a/3 +

√
a2/3 − b. The “balanced” equation has triangle P0Q0R0

(Fig. 2).
When c increases from c0 towards c1 > c0, the equilateral triangle PQR
rotates counterclockwise around its centre from the position of triangle
P0Q0R0 of the “balanced” equation. When c = c1, the roots x2 and x1

coalesce into the double root μ1, while the smallest root x3 becomes equal
to ξ1 = −a − 2μ1 = −a/3 − 2r = −a/3 − (2/3)

√
a2 − 3b. The triangle in

this case is P1Q1R1 and its side P1Q1 is perpendicular to the abscissa.
The vertex R1 is on the abscissa. The triangle cannot be rotated further
counterclockwise as, when c > c1, the polynomial x3 + ax2 + bx + c has
only one real root (Fig. 2).

When c decreases from c0 towards c2 < c0, the equilateral triangle
PQR rotates clockwise around its centre from the position of triangle
P0Q0R0 of the “balanced” equation. When c = c2, the roots x3 and x2

coalesce into the double root μ2, while the biggest root x1 becomes equal
to ξ2 = −a − 2μ2 = −a/3 + 2r = −a/3 + (2/3)

√
a2 − 3b. The triangle in

this case is P2Q2R2 and its side R2Q2 is perpendicular to the abscissa.
The vertex P2 is on the abscissa. The triangle cannot be rotated further
clockwise as, when c < c2, the polynomial x3 + ax2 + bx + c has only one
real root (Fig. 2).

4. Examples

Each possible case—for each Theorem (1 to 4, with the relevant subsection
of the Theorem given in brackets in Roman numerals)—is illustrated with an
example. The roots of the cubics in these examples are found numerically with
Maple 2021.

1. Theorem 1(I), b < a2/3, c2 ≤ c ≤ c0: x3 + 3x2 + 2x − 1
4 = 0.

One has: c0 = 0, c1 = 0.385, c2 = −0.385. Also: μ1 = −0.423, μ2 =
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−1.577, ν1 = 0, ν2 = φ = −1, ν3 = −2, ξ1 = −2.155, and ξ2 = 0.155.
The root isolation intervals are: ν1 ≤ x1 ≤ ξ2, μ2 ≤ x2 ≤ φ, and ν3 ≤
x3 ≤ μ2, that is: 0 ≤ x1 ≤ 0.155, −1.577 ≤ x2 ≤ −1, and −2 ≤ x3 ≤
−1.577.
The roots are: x1 = 0.107, x2 = −1.270, and x3 = −1.840.

2. Theorem 1(II), b < a2/3, c0 ≤ c ≤ c1: x3 − 4x2 + 2x + 3 = 0.
One has: c0 = 2.074, c1 = 4.416, c2 = −0.268. Also: μ1 = 2.387, μ2 =
0.279, ν1 = 3.158, ν2 = φ = 1.333, ν3 = −0.492, ξ1 = −0.775, and
ξ2 = 3.441.
The root isolation intervals are: μ1 ≤ x1 ≤ ν1, φ ≤ x2 ≤ μ1, and ξ1 ≤
x3 ≤ ν3, that is: 2.387 ≤ x1 ≤ 3.158, 1.333 ≤ x2 ≤ 2.387, and −0.775 ≤
x3 ≤ −0.492.
The roots are: x1 = 3, x2 = 1.620, and x3 = −0.618.

3. Theorem 2(I), b < a2/3, c < c2: x3 − 4x2 + 3x − 1 = 0.
One has: c0 = 0.741, c1 = 2.113, c2 = −0.631. Also: μ1 = 2.215, μ2 =
0.451, ν1 = 2.861, ν2 = φ = 1.333, ν3 = −0.195, ξ1 = −0.431, and
ξ2 = 3.097.
There is only one real root: x1 > ξ2, that is x1 > 3.097. This can be
bounded from above by using a polynomial root bound. Both bounds
given earlier yield that x1 < 5.
The roots are: x1 = 3.150 and x2,3 = 0.426 ± 0.369i.

4. Theorem 2(II), b < a2/3, c > c1: x3 + 2x2 + 1
2x − 1 = 0.

One has: c0 = −0.259, c1 = 0.034, c2 = −0.552. Also: μ1 = −0.140, μ2 =
−1.194, ν1 = 0.246, ν2 = φ = −0.667, ν3 = −1.580, ξ1 = −1.721, and
ξ2 = 0.387.
There is only one real root: x1 < ξ1, that is x1 < −1.721. This can be
bounded from bellow by using a polynomial root bound. Both bounds
given earlier again agree and yield that −3 < x1.
The roots are: x1 = −2 and x2,3 = ±0.707i.

5. Theorem 3(I), b = a2/3, c < a3/27: x3 − 2x2 + 4
3x − 2 = 0.

There is only one real root and it can be determined by completing the
cube: x3 + ax2 + (a2/3)x + c = (x + a/3)3 − a3/27 + c. Hence, x1 =
−a/3 + 3

√
a3/27 − c = 1.862.

The other two roots are x2,3 = 0.070 ± 1.030i.
6. Theorem 3(II), b = a2/3, c = a3/27: x3 + 5x2 + 25

3 x + 125
27 = 0.

There is a triple real root that can be determined exactly: x1,2,3 = −a/3 =
−5/3.

7. Theorem 3(III), b = a2/3, c > a3/27: x3 − 6x2 + 12x + 5 = 0.
There is only one real root and it can be determined by completing

the cube: x3 + ax2 + (a2/3)x + c = (x + a/3)3 − a3/27 + c. Hence, x1 =
−a/3 + 3

√
a3/27 − c = −0.351. The other two roots are x2,3 = 3.176 ±

2.036i.
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8. Theorem 4(I), b > a2/3, a ≥ 0, c ≤ 0: x3 + x2 + 2x − 3 = 0.
There is only one real root x1 and its isolation interval is 0 ≤ x1 ≤ −c/b,
that is 0 ≤ x1 ≤ 1.5.
The roots are: x1 = 0.844 and x2,3 = −0.922 ± 1.645i.

9. Theorem 4(II), b > a2/3, a ≥ 0, c > 0: x3 − x2 + 10x + 7 = 0.
There is only one real root x1 and its isolation interval is min{−a,−c/b} ≤
x1 ≤ max{−a,−c/b}, that is −0.7 ≤ x1 < 1.
The roots are: x1 = −0.634 and x2,3 = 0.817 ± 0.322i.

10. Theorem 4(III), b > a2/3, a < 0, c < 0: x3 − 2x2 + 13x − 11 = 0.
There is only one real root x1 and its isolation interval is min{−a,−c/b} ≤
x1 ≤ max{−a,−c/b}, that is 0.846 ≤ x1 ≤ 2.
The roots are: x1 = 0.916 and x2,3 = 0.542 ± 3.422i.

11. Theorem 4(IV), b > a2/3, a < 0, c ≥ 0: x3 − 3x2 + 21x + 7 = 0.
There is only one real root x1 and its isolation interval is −c/b ≤ x1 ≤ 0,
that is −0.333 ≤ x1 ≤ 0.
The roots are: x1 = −0.317 and x2,3 = 1.659 ± 4.393i.

Funding Open Access funding provided by the IReL Consortium.

Declarations
Conflict of interest The authors have not disclosed any competing interests.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

[1] Marden, M.: Geometry of Polynomials, Math. Surveys no. 3. American Mathe-
matical Society, Providence, RI (1966)

[2] Marden, M.: A note on the zeros of the sections of a partial frac-
tion. Bull. Am. Math. Soc. 51, 935–940 (1945). https://doi.org/10.1090/
S0002-9904-1945-08470-5

[3] Siebeck, J.: Ueber eine neue analytische behandlungweise der brennpunkte. J.
Reine Angew. Math. 64, 175–182 (1864)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1090/S0002-9904-1945-08470-5
https://doi.org/10.1090/S0002-9904-1945-08470-5


126 Page 16 of 16 E. M. Prodanov Results Math

[4] Kalman, D.: An elementary proof of Marden’s theorem. Am. Math. Mon. 115(4),
330–338 (2008). https://doi.org/10.1080/00029890.2008.11920532

[5] Badertscher, E.: A simple direct proof of Marden’s theorem. Am. Math. Mon.
121(6), 547–548 (2014). https://doi.org/10.4169/amer.math.monthly.121.06.547
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