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Abstract. We give conditions for a conformal vector field to be tangent
to a null hypersurface. We particularize to two important cases: a Killing
vector field and a closed and conformal vector field. In the first case, we
obtain a result ensuring that a null hypersurface is a Killing horizon. In
the second one, the vector field gives rise to a foliation of the manifold
by totally umbilical hypersurfaces with constant mean curvature which
can be spacelike, timelike or null. We prove several results which ensure
that a null hypersurface with constant null mean curvature is a leaf of
this foliation.
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1. Introduction

Generalized Robertson–Walker spaces (I × F,−dt2 + f(t)2g0), where I ⊂ R,
(F, g0) is a Riemannian manifold and f ∈ C∞(I) is a positive function, are
of great importance since they include the classical cosmological models and
they have been widely studied from different points of view. For example, in
[1,2,16,17] the authors gave sufficient conditions for a constant mean curvature
spacelike hypersurface to be a slice {t}×F . Observe that these slices are totally
umbilical hypersurfaces and they are the orthogonal leaves of the foliation
induced by the timelike, closed and conformal vector field K = f∂t. In fact, a
generalized Robertson–Walker space is locally characterized by the existence of
a vector field with these properties. This is why in [5] the authors considered
directly a Lorentzian manifold furnished with such a vector field, which is
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locally a generalized Robertson–Walker space but not necessarily a global one,
and they obtained sufficient conditions for a constant mean curvature spacelike
hypersurface to be an orthogonal leaf.

The causal character of a closed and conformal vector field can change
pointwise (see Example 1), so we can not ensure the decomposition as a gen-
eralized Robertson–Walker space even locally. This kind of vector field in the
semi-Riemannian setting were studied in [14]. Since we let K to be null at some
point, then the induced foliation can have leaves which are totally umbilical
null hypersurfaces and through them K is tangent and orthogonal to the leaf
at the same time.

Null hypersurfaces are more difficult to handle than the spacelike or time-
like ones, since they do not inherit a useful structure. Totally umbilical null
hypersurfaces in generalized Robertson–Walker spaces were studied and clas-
sified in [9], but not much is known if we consider a more general ambient as a
Lorentzian manifold furnished with a closed and conformal vector field which
changes its causal character.

In this paper, we first consider a conformal vector field and we obtain
conditions to ensure that it is tangent to a null hypersurfaces. An interesting
particular case is when the vector field is Killing, since in this situation the
above result says that the null hypersurface is a Killing horizon.

After that, we give sufficient conditions for a constant mean curvature null
hypersurface to be an orthogonal leaf of the foliation induced by a closed and
conformal vector field. The obtained results involve more conditions than the
usual ones for spacelike hypersurfaces, as is predictable due to the difficulty
presented by null hypersurfaces. The main tool to obtain the results is the
rigging technique introduced in [13], which allows us to apply systematically
the classical maximum principle in a null hypersurface.

2. Null Hypersurfaces

Suppose that L is a hypersurface of a n-dimensional Lorentzian manifold
(M, g) and that the inherit metric tensor is degenerate for each point in L,
i.e., Rad(TpL) = TpL ∩ (TpL)⊥ is not zero for all p ∈ L. In this case we say
that L is a null hypersurface and it holds that Rad(TpL) = (TpL)⊥ ⊂ TpL
and dim Rad(TpL) = 1 for all p ∈ L. Moreover, Rad(TpL) is spanned by a
null vector and all other directions in TpL are spacelike and orthogonal to
Rad(TpL).

The study of this kind of hypersurfaces presents obvious difficulties. A
starting point to handle them is to make an arbitrary choice which allows us
to induce all the geometric objects that we need.

Definition 1. [13] We say that a vector field ζ defined in a open neighbourhood
of a null hypersurface L is a rigging if ζp /∈ TpL for all p ∈ L. If ζ is defined
only over L then we call it a restricted rigging.
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A rigging may not exist (globally) for an arbitrary null hypersurface, but
locally its existence is guaranteed. A rigging gives rise in a natural way to a null
vector field ξ ∈ X(L) with Rad(TpL) = span(ξp) and g(ζ, ξ) = 1 called rigged
vector field, a spacelike distribution S on L called the screen distribution and
a null vector field transverse to L given by

N = ζ − 1
2
g(ζ, ζ)ξ. (1)

Moreover, we have g(N, ξ) = 1, N ⊥ S and

TpM = TpL ⊕ span(Np), (2)

TpL = Sp ⊕orth span(ξp). (3)

So, for each p ∈ L we can consider PTL : TpM → TpL and PS : TpM → Sp

the projections induced by the above decompositions.
The tensors

B(U, V ) = −g(∇Uξ, V ),

C(U,X) = −g(∇UN,X),

τ(U) = g(∇Uζ, ξ), (4)

where U, V ∈ X(L) and X ∈ Γ (S), are called second fundamental form, screen
second fundamental form and rotation one-form respectively.

According to decompositions (2) and (3) we have

∇UV = ∇L
UV + B(U, V )N,

∇UN = τ(U)N − A(U),

∇Uξ = −τ(U)ξ − A∗(U), (5)

∇L
UX = ∇∗

UX + C(U,X)ξ, (6)

where ∇L
UV ∈ X(L) and A(U), A∗(U),∇∗

UX ∈ Γ (S). B is a symmetric tensor
which holds

B(U, V ) = g(A∗(U), V ), (7)

B(U, ξ) = 0 (8)

(therefore ξ is a pre-geodesic vector field) and C holds

C(U,X) = g(A(U),X), (9)

ω([X,Y ]) = C(X,Y ) − C(Y,X) (10)

for all X,Y ∈ Γ (S), where ω is the rigged one-form given by ω(U) = g(ζ, U)
for all U ∈ X(L). The null mean curvature of the null hypersurface is the trace
of A∗, namely

Hp =
n∑

i=1

B(ei, ei),

where {e1, . . . , en−2} is an orthonormal basis in Sp.
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Recall that although the tensor B depends on the chosen rigging (more
concretely, on the rigged vector field), some conditions about the null hyper-
surface as being totally umbilical (B = H

n−2g), being totally geodesic (B = 0)
or having zero null mean curvature are independent on any choice. From equa-
tion (8) it follows that B is always degenerate, but it also implies that having
a null second fundamental form with the property B(v, v) 	= 0 for all v ∈ S
with v 	= 0, is also independent on the chosen rigging. We call this a screen
non-degenerate second fundamental form.

Some equations linking the above tensors are

−2C(U,X) = dω(U,X) + (Lζg) (U,X) + g(ζ, ζ)B(U,X) (11)

and the Gauss–Codazzi equation

g(RUV W, ξ) = g(
(∇L

UA∗) (V ),W ) − g(
(∇L

V A∗) (U),W )

+ τ(U)g(A∗(V ),W ) − τ(V )g(A∗(U),W ). (12)

Recall also the important Raychaudhuri equation :

Ric(ξ, ξ) = ξ(H) + τ(ξ)H − trace(A∗2). (13)

From this we can deduce that if ξ is geodesic, H is constant and Ric(ξ, ξ) ≥ 0
then L is totally geodesic. Another basic curvature relation is

Ric(v, ξ) =
n−2∑

i=1

g(Reivξ, ei) + g(Rξvξ,N), (14)

where {e1, . . . , en−2} is an orthonormal basis of Sp and v ∈ TpM .
The rigged metric is a Riemannian metric on the null hypersurface L

defined by

g̃ = g + ω ⊗ ω.

This metric declares ξ g̃-unitary and g̃-orthogonal to S, therefore ∇̃ξξ ∈ Γ (S).
It can be used as an auxiliary tool and its usefulness have been shown in
several papers, [3,10,11,18]. An important relation between the Levi-Civita
connection ∇̃ of g̃ and the Levi-Civita connection ∇ of g is

g(∇̃UV,W ) = g(∇UV,W )

+
1
2
(
ω(W )(Lξ g̃)(U, V ) + ω(U)dω(V,W ) + ω(V )dω(U,W )

)

(15)

for all U, V,W ∈ X(L). In particular, for all X,Y,Z ∈ Γ (S) it holds

g̃(∇̃XY,Z) = g(∇XY,Z), (16)

(Lξ g̃) (X,Y ) = −2B(X,Y ). (17)
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In the case of being ω closed, dω = 0, we have that the screen distribution
is integrable and we can give an easier relation between ∇ and ∇̃ given by

g̃(∇̃UV,W ) = g(∇UV,W ) + ω(W )U(ω(V ))

for all U, V,W ∈ X(L), [13, Proposition 3.15].
We say that a rigging is distinguished if the induced rotation one-form τ

vanishes. On the other hand, we say that it is screen conformal if there is a
function ϕ ∈ C∞(L) such that C = ϕB. In this case, C is symmetric and thus
from Eq. (10) we have that S is integrable. Moreover, we have the following.

Lemma 1. [10,18] Let L be a null hypersurface and ζ a rigging for it.

1. C(ξ,X) + τ(X) = −g(∇̃ξξ,X) for all X ∈ Γ (S).
2. If ζ is distinguished and screen conformal then the rigged one-form is

closed, dω = 0.
3. If dω = 0, then C(ξ,X) = −τ(X) for all X ∈ Γ (S).

Proof. Observe that ω is the g̃-metrically equivalent one-form to ξ, so it holds

dω(U, V ) = g̃(∇̃Uξ, V ) − g̃(U, ∇̃V ξ) (18)

for all U, V ∈ X(L). In particular, dω = 0 if and only if S is integrable and ξ
is g̃-geodesic. Now, from Eqs. (11) and (18) we have

−2C(ξ,X) = dω(ξ,X) + (Lζg) (ξ,X) = g̃(∇̃ξξ,X) + g(∇ξζ,X) + g(ξ,∇Xζ)

= g̃(∇̃ξξ,X) − C(ξ,X) + τ(X)

and we get the first point. The second and third points follow immediately
from the first one. �

In the following lemma we relate the laplacian of a function defined in M
and the laplacian with respect to g̃ of its restriction to L, obtaining an analo-
gous formula to [7, Formula 4]. In the case of a closed rigging, we also relate
the laplacian with respect to g̃ of a function defined in L and the laplacian
of its restriction to a leaf of the screen computed with respect to the induced
metric from the ambient.

Lemma 2. Let (M, g) be a Lorentzian manifold and f ∈ C∞(M). Suppose that
L is a null hypersurface with a rigging ζ and i : L → M is the canonical
inclusion.

1. If we call f̃ = f ◦ i and take X,Y ∈ Γ (S), then

H̃essf̃ (X,Y ) = Hessf (X,Y ) + g(∇f,N)B(X,Y ) + g(∇f, ξ)C(X,Y )

+ g(∇f, ξ)g̃(∇̃Xξ, Y ),

H̃essf̃ (X, ξ) = Hessf (X, ξ) − g(∇f, ξ)τ(X) +
1
2
dω(PS(∇f),X),

H̃essf̃ (ξ, ξ) = Hessf (ξ, ξ) − g(∇f, ξ)τ(ξ) − g(∇f, ∇̃ξξ).
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2. If we call 
Sf =
∑n−2

i=1 g(∇ei
∇f, ei), where {e1, . . . , en−2} is an or-

thonormal basis of Sp, then


f = 
Sf + 2Hessf (ξ,N),


̃f̃ = 
Sf + g(ξ,∇f) traceS(A) + g(N − ξ,∇f)H − g(∇f, ∇̃ξξ)

− τ(ξ)g(ξ,∇f) + Hessf (ξ, ξ).

3. If dω = 0, φ ∈ C∞(L), S is a leaf of the screen distribution S and
j : S → L is the canonical inclusion, then


̃φ = 
S (φ ◦ j) − ξ(φ)H + ξ(ξ(φ)),

where 
S is the laplacian computed in the induced metric on the leaf S.

Proof. If we decompose ∇f = PS(∇f) + g(∇f,N)ξ + g(∇f, ξ)N according to
decompositions (2) and (3), then it is straightforward to check that

∇̃f̃ = PS(∇f) + g(∇f, ξ)ξ.

Thus, using Eq. (16), we have

H̃essf̃ (X,Y ) = g(∇XPS(∇f), Y ) + g(∇f, ξ)g̃(∇̃Xξ, Y )

= Hessf (X,Y ) + g(∇f,N)B(X,Y ) + g(∇f, ξ)C(X,Y )

+ g(∇f, ξ)g̃(∇̃Xξ, Y ).

On the other hand,

H̃essf̃ (ξ,X) = g(∇̃ξPS(∇f),X) + g(∇f, ξ)g(∇̃ξξ,X),

so using Eq. (15) and Lemma 1 we have

H̃essf̃ (ξ,X) = g(∇ξPS(∇f),X) +
1
2
dω(PS(∇f),X)

− g(∇f, ξ)(C(ξ,X) + τ(X))

= Hessf (ξ,X) +
1
2
dω(PS(∇f),X) − g(∇f, ξ)τ(X).

For the third formula of item (1) just note that

H̃essf̃ (ξ, ξ) = g̃(∇̃ξPS(∇f), ξ) + ξg(∇f, ξ)

= −g(∇f, ∇̃ξξ) + Hessf (ξ, ξ) − τ(ξ)g(∇f, ξ).

Now, fix {e1, . . . , en−2} an orthonormal basis of Sx. First formula of item (2)
easily follows from the fact that {e1, . . . , en−2,

1√
2

(N + ξ) , 1√
2

(N − ξ)} is an

orthonormal basis of TxM . The formula for 
̃f̃ follows from the Eq. (17) and
the formulas for H̃essf̃ .
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Finally, we have ∇̃φ = ∇S (φ ◦ j) + ξ(φ)ξ, where ∇S is the gradient in
the induced metric on S. Now, using again Eqs. (16) and (17) we have


̃φ =
n−2∑

i=1

g̃(∇̃ei
∇̃φ, ei) + g̃(∇̃ξ∇̃φ, ξ)

= 
S (φ ◦ j) − ξ(φ)H + ξ(ξ(φ)) − g(∇̃φ, ∇̃ξξ).

Since dω = 0, from Lemma 1 we get ∇̃ξξ = 0 and we obtain the desired
formula. �

The fundamental tensors of a null hypersurface (B, C and τ) depend on
the chosen rigging. However, if we change the rigging, then we can express the
new tensors in terms of the old ones. For our purpose, we only consider a very
special rigging change.

Lemma 3. [18] If ζ is a rigging for a null hypersurface L and Φ ∈ C∞(L) is a
never vanishing function, then ζ ′ = Φζ is also a rigging for L and

ξ′ =
1
Φ

ξ, N ′ = Φζ,

A∗′ =
1
Φ

A∗, A′ = ΦA,

H ′ =
1
Φ

H, τ ′ = τ +
dΦ

Φ
.

3. Conformal Vector Fields

A vector field K ∈ X(M) is conformal if LKg = 2ρg for certain ρ ∈ C∞(M).
If ρ = 0, then it is called a Killing vector field.

If we call η the metrically equivalent one-form to K, then (LKg) (U, V )+
dη(U, V ) = 2g(∇UK,V ), so K is conformal if and only if

∇UK = ρU + ϕ(U) (19)

for all U ∈ X(M), where ϕ is characterized by dη(U, V ) = 2g(ϕ(U), V ). If
ϕ = 0, then η is closed and K is called closed and conformal. If ρ = 0 and
ϕ = 0, then K is called a parallel vector field.

It is immediate that ϕ is skew-symmetric and so ∇Uϕ is also. Moreover,

dη(ϕ(U), V ) = −dη(U,ϕ(V ))

and since dη is closed, it also holds

g
(
(∇Uϕ)(V ),W

)
+ g

(
(∇V ϕ)(W ), U

)
+ g

(
(∇W ϕ)(U), V

)
= 0

for all U, V,W ∈ X(M).
In the following lemma we give some basic facts about conformal vector

fields. From now on, we call λ = g(K,K).

Lemma 4. Suppose that K ∈ X(M) is a conformal vector field.
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1. ∇λ = 2ρK − 2ϕ(K).
2. 
λ = 2K(ρ) + 2nρ2 + 2g(divϕ,K) − 2 trace(ϕ2).
3. If X ∈ X(M) with X ⊥ K, then

λX(ρ) = −g((∇Kϕ)(K),X) = −1
2

(
∇Kdη

)
(K,X).

4. Given U, V ∈ X(M), it holds

RUV K = U(ρ)V − V (ρ)U + (∇Uϕ)(V ) − (∇V ϕ)(U),

Ric(U,K) = −(n − 1)U(ρ) − g(divϕ,U).

Proof. We get the first point taking derivative in λ = g(K,K) and using Eq.
(19). For the second one, taking divergence


λ = 2K(ρ) + 2nρ2 − 2divϕ(K)

= 2K(ρ) + 2nρ2 + 2g(divϕ,K) − 2 trace(ϕ2).

For the third point

K(λ) = g(∇λ,K) = 2ρλ (20)

and if X ⊥ K, then

X(λ) = g(X,∇λ) = −2g(X,ϕ(K)).

Now,

X(K(λ)) = Xg(∇λ,K) = g(∇X∇λ,K) + g(∇λ,∇XK)

= g(∇K∇λ,X) + ρg(∇λ,X) + g(∇λ, ϕ(X))

= 2ρg(ϕ(K),X) − 2g(∇Kϕ(K),X) − 2ρg(ϕ(K),X)

+ 2ρg(K,ϕ(X)) − 2g(ϕ(K), ϕ(X))

= −2g((∇Kϕ)(K),X) − 2g(ϕ(∇KK),X) + 2ρg(K,ϕ(X))

− 2g(ϕ(K), ϕ(X))

= −2g((∇Kϕ)(K),X) + 4ρg(K,ϕ(X))

If we take derivative in Eq. (20), then

2X(ρ)λ + 2ρX(λ) = X(K(λ)) = −2g((∇Kϕ)(K),X) + 4ρg(K,ϕ(X))

and thus λX(ρ) = −g((∇Kϕ)(K),X).
The last point is straightforward. �

Under some suitable conditions, a conformal vector field is parallel, as
the following lemma shows.

Lemma 5. Let K ∈ X(M) be a conformal vector field.
1. If K is never null and it has constant length, then it is Killing.
2. If K is closed and it has constant length, then it is parallel.
3. If K is closed and causal, Ric(K,K) ≤ 0 and there is a point p with Kp

null, then K is a null parallel vector field.
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Proof. The first point follows from Eq. (20). For the second point, observe that

0 = Ug(K,K) = 2ρg(U,K)

for all U ∈ X(M), which implies that ρ = 0.
In the third case, the function λ = g(K,K) has a maximum at p. Using

Lemma 4 we have


λ = − 2
n − 1

Ric(K,K) + 2nρ2 ≥ 0

so by the maximum principle we have that λ = 0. Therefore, K is parallel
because it has constant length. �

If we drop the condition Ric(K,K) ≤ 0 in the third point of the above
lemma, then we can not conclude that K is parallel. In fact, the causality of
a closed and conformal vector field can be arbitrary, as the following example
shows.

Example 1. Take I ⊂ R, f ∈ C∞(I), (F, gF ) a Riemannian or Lorentzian
manifold and ε = ±1. The vector field K = f∂t in the warped product

(
I × F, εdt2 + f(t)2gF

)

is closed and conformal. If ε = 1, then K is spacelike at every point and if
ε = −1, then K is timelike at every point.

On the other hand, the position vector field K =
∑n

i=1 xi∂xi in the
Minkowski space is closed, conformal and its causal character changes point-
wise.

From [6], we can also construct an example of a causal, closed and confor-
mal vector field which is null at some point. Take E(v) an arbitrary function
and consider the Lorentzian surface (M, g) = (R2, E(v)du2 + 2dudv). The
vector field K = ∂u − E(v)∂v holds ∇UK = −Ev

2 U for all U ∈ X(M) and
therefore it is closed and conformal. Since g(K,K) = −E(v), for a suitable
choice of E(v) we get the desired example.

Suppose now that L is a null hypersurface with a rigging ζ and write

K = K0 + νξ + μN,

where K0 = PS(K) ∈ Γ (S), ν = g(K,N) and μ = g(K, ξ) according to
decompositions (2) and (3). We need to compute the laplacian of μ and ν with
respect to g̃, but since they are functions defined only on L we can not use
Lemma 2. We begin computing the gradient with respect to g̃.

Lemma 6. Let K ∈ X(M) be a conformal vector field and L a null hypersurface
with rigging ζ. Then for all v ∈ TpL

g̃(∇̃ν, v) = ρω(v) + ντ(v) − C(v,K0) − g(ϕ(N), v),

g̃(∇̃μ, v) = −μτ(v) − B(K0, v) − g(ϕ(ξ), v),

∇∗
vK0 = ρPS(v) + PS(ϕ(v)) + νA∗(v) + μA(v). (21)
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Proof. Using Eqs. (5), (6) and (19) we have

ρv + ϕ(v) = ∇v(K0 + νξ + μN) = ∇∗
vK0 − νA∗(v) − μA(v)

+ (C(v,K0) + v(ν) − ντ(v)) ξ + (B(v,K0) + v(μ) + μτ(v)) N

If we multiply by N and ξ and take into account (1), (7) and (9) we get the
first and second equation. Using the projection PS we obtain the third one.

�

Observe that being ϕ skew-symmetric, we have that ϕ(ξ) ∈ X(L). Next,
we compute the divergence with respect to g̃ of PS(ϕ(ξ)) and A∗(PS(K))

Proposition 1. If K ∈ X(M) is a conformal vector field and L a null hyper-
surface with rigging ζ, then

d̃ivPS(ϕ(ξ)) = −g(divϕ, ξ) − ξg(ϕ(ξ),N) + g(ϕ(ξ),N)H,

d̃ivA∗(PS(K)) = (n − 2)ξ(ρ) + PTL(K)(H) + μRic(ξ,N) − μK(span(ξ,N))

+ ρH + μ trace(A∗ ◦ A) + C
(
ξ,A∗(PS(K)) + PS(ϕ(ξ))

)

+ τ(A∗(PS(K))) + g(divϕ, ξ) + ξg(ϕ(ξ),N).

Proof. If {e1, . . . , en−2} is an orthonormal basis of S at a point p, then using
Eq. (16) we have

d̃ivPS(ϕ(ξ)) =
n−2∑

i=1

g̃(∇̃ei
PS(ϕ(ξ)), ei) + g̃(∇̃ξPS(ϕ(ξ)), ξ)

=
n−2∑

i=1

g(∇ei
PS(ϕ(ξ)), ei) − g(ϕ(ξ), ∇̃ξξ)

=
n−2∑

i=1

g(∇ei
ϕ(ξ), ei) + g(ϕ(ξ), N)H − g(ϕ(ξ), ∇̃ξξ)

=
n−2∑

i=1

(
g((∇ei

ϕ) (ξ), ei) − g(ϕ(A∗(ei)), ei) − τ(ei)g(ϕ(ξ), ei)
)

+ g(ϕ(ξ), N)H − g(ϕ(ξ), ∇̃ξξ).

We can suppose that ei are eigenvectors of A∗, so
∑n−2

i=1 g(ϕ(A∗(ei)), ei) = 0
because ϕ is skew-symmetric. Moreover, since

∑n−2
i=1 τ(ei)g(ϕ(ξ), ei) = τ(PS

(ϕ(ξ))), from Lemma 1 we get

d̃ivPS(ϕ(ξ)) =
n−2∑

i=1

g((∇ei
ϕ) (ξ), ei) + g(ϕ(ξ), N)H + C(ξ,PS(ϕ(ξ))). (22)
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On the other hand, since {e1, . . . , en−2,
ξ+N√

2
, ξ−N√

2
} is an orthonormal

basis, then

g(divϕ, ξ) =
n−2∑

i=1

g((∇ei
ϕ) (ei), ξ) − g((∇ξϕ) (ξ), N),

but

g((∇ξϕ) (ξ), N) = g(∇ξϕ(ξ), N) − g(ϕ(∇ξξ), N)

= ξg(ϕ(ξ), N) − g(ϕ(ξ),∇ξN) + τ(ξ)g(ϕ(ξ), N)

= ξg(ϕ(ξ), N) + C(ξ,PS(ϕ(ξ)))

and therefore
n−2∑

i=1

g((∇ei
ϕ) (ξ), ei) = −g(divϕ, ξ) − ξg(ϕ(ξ),N) − C(ξ,PS(ϕ(ξ))). (23)

If we replace (23) in the expression (22), then we obtain the first formula.
For the second one, using again Eq. (16), the Gauss–Codazzi Eq. (12)

and the formula (21) of Lemma 6 we have

d̃ivA∗(K0) =
n−2∑

i=1

g̃(∇̃ei
A∗(K0), ei) + g̃(∇̃ξA

∗(K0), ξ)

=
n−2∑

i=1

g(∇L
ei

A∗(K0), ei) − g(A∗(K0), ∇̃ξξ)

=
n−2∑

i=1

g(
(∇L

ei
A∗) (K0), ei) + g(A∗(∇L

ei
K0), ei) − g(A∗(K0), ∇̃ξξ)

=
n−2∑

i=1

g(Rξei
K0, ei) +

n−2∑

i=1

g(
(∇L

K0
A∗) (ei), ei)

+ ρH + ν trace(A∗2) + μ trace(A∗ ◦ A) − g(A∗(K0), ∇̃ξξ).

Now, we compute the term
∑n−2

i=1 g(
(∇L

K0
A∗) (ei), ei). For this, we can sup-

pose that {e1, . . . , en−2} is a basis of eigenvectors of A∗. Extend them to an
orthonormal basis {E1, . . . , En−2} locally defined in a neighbourhood of p such
that Ei ∈ Γ (S) and Ei(p) = ei. Then

n−2∑

i=1

g(
(∇L

K0
A∗) (ei), ei) =

n−2∑

i=1

g(∇L
K0

A∗(Ei), Ei) − g(A∗(∇L
K0

Ei), ei)

= K0(H) − 2
∑

i

g(A∗(ei),∇L
K0

Ei)

= K0(H) − 2
∑

λig(ei,∇L
K0

Ei) = K0(H).
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On the other hand, using Eq. (14) and Lemma 4,
n−2∑

i=1

g(Rξei
K0, ei) =

n−2∑

i=1

g(Rξei
K, ei) − νg(Rξei

ξ, ei) − μg(Rξei
N, ei)

= (n − 2)ξ(ρ) −
n−2∑

i=1

g((∇ei
ϕ) (ξ), ei) + νRic(ξ, ξ)

+ μRic(ξ,N) − μK(span(ξ,N)).

Taking into account equations (13) and (23) we get the second formula. �
Now, we can give a result ensuring that a conformal vector field is tangent

to a null hypersurface.

Theorem 1. Let K ∈ X(M) be a conformal vector field with constant conformal
factor ρ. Suppose that L is a null hypersurface with zero null mean curvature
and ζ is a rigging for L such that

1. dτ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. 0 ≤ trace(A∗ ◦ A).
4. K(span(ξ,N)) ≤ Ric(N, ξ).

If g(K, ξ) is signed and there is a point p ∈ L with Kp ∈ TpL, then Kx ∈ TxL
for all x ∈ L.

Proof. We can suppose that there is a positive function f defined in a neigh-
bourhood θ ⊂ L of p such that τ = d ln f . From Lemma 3 we have that for
the restricted rigging ζ ′ = 1

f ζ the associated rotation one-form vanishes and
all the hypotheses in the theorem remain true. Moreover, we can suppose that
μ = g(K, ξ) is non-positive changing the sign of the rigging if necessary. Now,
Lemma 6 gives us that

∇̃μ = −A∗(K0) − PS(ϕ(ξ))

and applying Proposition 1 we have


̃μ = μ (K(span(ξ,N) − Ric(ξ,N) − trace(A∗ ◦ A)) ≥ 0.

Since μ has a local maximum at p, then μ vanishes in θ. By connectedness, μ
vanishes on L and so K is tangent to L. �

A null hypersurface L is called a Killing horizon if there is a Killing
vector field K ∈ X(M) such that Kx = ν(x)ξx for all x ∈ L, where ν ∈ C∞(L)
is a never vanishing function. In this case, L is necessarily totally geodesic,
since B(U, V ) = −g(∇Uξ, V ) would be symmetric and skew-symmetric. The
following corollaries gives us conditions for a null hypersurface to be a Killing
horizon.

Corollary 1. Let K ∈ X(M) be a Killing vector field. Suppose that L is a null
hypersurface with zero null mean curvature and ζ is a rigging for L such that
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1. dτ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. 0 ≤ trace(A∗ ◦ A).
4. K(span(ξ,N)) ≤ Ric(N, ξ).

If Kx is causal for all x ∈ L and there is a point p ∈ L with Kp ∈ TpL (and
therefore Kp is null), then L is totally geodesic and Kx = ν(x)ξx for all x ∈ L
and certain ν ∈ C∞(L).

Example 2. We give an example where the hypotheses of the above corollary
are fulfilled. Let � be a positive constant and Q = {(u, v) ∈ R

2 : − 2�
e < uv}.

Take the functions F (r) = 8�2

r e1− r
2� , f(r) = (r − 2�)e

r
2� −1 for 0 ≤ r and

r(u, v) = f−1(uv) for (u, v) ∈ Q. The Kruskal space is the product Q × S
2

endowed with the metric

2F (r)dudv + r2g0,

where g0 is the standard metric in S
2, [20]. The totally geodesic null hyper-

surface

L = {(0, v, x) ∈ M : v > 0, x ∈ S
2}

is a Killing horizon for the Killing vector field K = v∂v − u∂u. If we take the
rigging ζ = ∂u, then the rigged vector field is ξ = 1

F ∂v and the null transverse
vector field is N = ζ. Through L it holds r = 2�, so a direct computation
shows that τ = 0, C = − v

2� g and in particular C(ξ,X) = 0 for all X ∈ Γ (S).
Clearly, it also holds K(span(ξ,N)) ≤ Ric(N, ξ) since both vanish.

Corollary 2. Let K ∈ X(M) be a conformal vector field with constant confor-
mal factor ρ. Suppose that L is a totally geodesic null hypersurface and ζ is a
rigging for L such that

1. dτ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. K(span(ξ,N)) ≤ Ric(N, ξ).

If Kx is causal for all x ∈ L and there is a point p ∈ L with Kp ∈ TpL (and
therefore Kp is null), then K is a Killing vector field and Kx = ν(x)ξx for all
x ∈ L and certain ν ∈ C∞(L).

Proof. Applying Theorem 1 we have Kx = ν(x)ξx for all x ∈ L, but since L is
totally geodesic, then necessarily ρ = 0. �

Remark 1. Suppose that L is a Killing horizon for a Killing vector field K ∈
X(M). If we fix a rigging, then Kx = ν(x)ξx for all x ∈ L, so through L we
have ∇ξK = fK where f = ξ(ν)−ντ(ξ). If f(x) 	= 0 for some x ∈ L, then the
causal character of K changes from spacelike to timelike in a neighborhood of
x. Indeed, for a transverse vector v ∈ TpM we have

v(λ) = −2g(∇KK, v) = −2ν(x)2f(x)g(ξx, v) 	= 0.
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The existence of a timelike gradient vector field is incompatible with the
existence of compact null hypersurfaces, [13]. We can also give an obstruction
in the case of a conformal timelike vector field.

Theorem 2. Let K ∈ X(M) be a timelike conformal vector field with constant
conformal factor ρ. Suppose that L is a totally geodesic null hypersurface and
ζ is a rigging for L such that

1. τ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. K(span(ξx, Nx)) 	= Ric(Nx, ξx) for all x ∈ L.

Then L can not be compact.

Proof. As before, Lemma 1 and Proposition 1 give us


̃μ = μ (K(span(ξ,N) − Ric(ξ,N)) ,

which is signed. If L is compact, then μ is a nonzero constant and integrating
with respect to g̃ we get

∫

L

(K(ξ,N) − Ric(ξ,N))dg̃ = 0,

which is a contradiction. �

Example 3. We give an example of a compact totally geodesic null hyper-
surface where the hypotheses of the above theorem are fulfilled except the
condition about the curvature. In the Lorentzian flat torus

(Tn, g) =
(
S
1 × · · · × S

1, dx1dx2 + dx2
3 + · · · + dx2

n

)

the null hypersurface L = {x ∈ T
n : x2 = p} for a fixed p ∈ S

1 is totally
geodesic and ζ = ∂x2 is a null rigging for it. Since ζ is parallel, we have that
τ = 0 and C = 0. On the other hand, K = ∂x1 − ∂x2 is a timelike parallel
vector field.

4. Closed and Conformal Vector Fields and Null Hypersurfaces

The orthogonal distribution to a closed vector field is integrable, so it gives
rise to a foliation on the manifold. In this case, if Kp 	= 0, we call Fp the
orthogonal leaf through p ∈ M . The following lemmas show some properties
about the leaves.

Lemma 7. If K ∈ X(M) is a closed and conformal vector field, then X(λ) = 0
and X(ρ) = 0 for all X ∈ X(M) with X ⊥ K. In particular, λ and ρ are
constant through the leaves Fp.
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Proof. From Lemma 4 we have X(λ) = 0 and X(ρ)λ = 0. Therefore, if λ(p) 	=
0 for some point p ∈ M , then Xp(ρ) = 0. If λ(p) = 0 but there is a sequence
pn converging to p with λ(pn) 	= 0, then by continuity Xp(ρ) = 0. If λ vanishes
in a neighbourhood of p, using point 2 of Lemma 5, we also get that ρ = 0 in
this neighbourhood and so Xp(ρ) = 0. �

Lemma 8. Let K ∈ X(M) be closed and conformal vector field and fix p ∈ M .

– If Kp is timelike/spacelike then Fp is a spacelike/timelike totally umbilical
hypersurface with mean curvature vector H = − ρ

|g(K,K)|K. Moreover,
there is a neighbourhood of p where (M, g) decomposes as

(
(−δ, δ) × Θ, εdt2 + f(t)2g0

)
,

where ε = g(Kp,Kp)
|g(Kp,Kp)| , f ∈ C∞(−δ, δ) is a positive function, Θ is a open

subset of Fp, g0 is the induced metric and f∂t is identified with K.
– If Kp is null, then the orthogonal leaf Fp is a totally umbilical null hy-

persurface, Rad(TxL) = span(Kx) for all x ∈ Fp and the null mean
curvature of Fp with respect to K is the constant H = −ρ.

Proof. From Lemma 7, λ is constant through the orthogonal leaves, so if Kp is
timelike, spacelike or null, then Fp is a spacelike, timelike or null hypersurface
respectively.

If Kp is timelike or spacelike, then it will be timelike or spacelike in a
neighborhood of p. The one-dimensional foliation given by K is totally geodesic
and the orthogonal foliation is spherical, so [21] ensures the local decomposi-
tion. �

If Kp is timelike for all p ∈ M , then under some suitable hypotheses
we can also ensure the global decomposition of the manifold as a generalized
Robertson–Walker space, [12].

Now we can give an analogous result as Theorem 1 but for a closed and
conformal vector field.

Theorem 3. Let K ∈ X(M) be a closed and conformal vector field. Suppose
that L is a null hypersurface with zero null mean curvature and ζ is a rigging
for L such that

1. dτ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. 0 ≤ trace(A∗ ◦ A).
4. K(span(ξ,N)) ≤ Ric(N, ξ).

If g(ξ,K)Ric(ξ,K) ≤ 0, g(K, ξ) is signed and there is a point p ∈ L with
Kp ∈ TpL, then Kx ∈ TxL for all x ∈ L.

Proof. As in Theorem 1, we can suppose that μ = g(K, ξ) is non-positive and
τ = 0. From Lemma 6 and Proposition 1 we have
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̃μ = −(n − 2)ξ(ρ) + μ
(
K(span(ξ,N)) − Ric(ξ,N)) − trace(A∗ ◦ A)

)

≥ −(n − 2)ξ(ρ).

But Lemma 4 ensures that


̃μ ≥ n − 2
n − 1

Ric(ξ,K) ≥ 0,

Since μ has a local maximum at p, then μ vanishes and therefore K is tangent
to L. �

Observe that the above theorem does not say that L is an orthogonal leaf
of K. Indeed, consider L a degenerate plane passing through the origin in the
Minkowski space and K the position vector field. The null cone with vertex
at the origin is an orthogonal leaf of K which is tangent to L along a null
geodesic. All the hypotheses in the Theorem 3 hold in this case and truely K
is tangent to L at every point, but L is not an orthogonal leaf of K.

With a restriction on the causality of K we can get more information
about the null leaves.

Lemma 9. Let K ∈ X(M) be a causal closed and conformal vector field. If Kp

is null for some p ∈ M , then ρ(p) = 0 and the leaf Fp is a totally geodesic null
hypersuface. In particular, if ρ(p) 	= 0 for all p ∈ M , then K is timelike.

Proof. If Kp is null, then we know that Fp is a totally umbilical null hyper-
surface with constant null mean curvature −ρ(p). Suppose that ρ(p) 	= 0 and
take α a transverse curve to Fp with α(0) ∈ Fp. Then λ(α(0)) = 0 and

d

dt
λ(α(t))|t=0 = 2ρ(p)g(α′(0),Kα(0)) 	= 0,

so K becomes spacelike at some point near α(0), which is a contradiction.
Therefore, ρ(p) = 0 and Fp is totally geodesic. �

Now we give conditions to ensure that a null hypersurface is an orthogonal
leaf of a closed and conformal vector field.

Corollary 3. Let K ∈ X(M) be a causal, closed and conformal vector field.
Suppose that L is a null hypersurface with zero null mean curvature and ζ is
a rigging for L such that

1. dτ = 0.
2. C(ξ,X) = 0 for all X ∈ Γ (S).
3. 0 ≤ trace(A∗ ◦ A).
4. K(span(ξ,N)) ≤ Ric(N, ξ).

If g(ξ,K)Ric(ξ,K) ≤ 0 and there is a point p ∈ L with Kp ∈ TpL (and
therefore Kp is null), then Kx = ν(x)ξx for all x ∈ L and L is a totally
geodesic orthogonal leaf of K.
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Observe that in Example 1 we showed a causal, closed and conformal
vector field which is null at some points.

On the other hand, under the conditions of the above corollary, we have
a totally geodesic null hypersurface Fp and a null hypesurface L with zero null
mean curvature which are tangent at p, but we can not apply the maximum
principle for null hypersurfaces [8, Theorem II.1] because, a priori, we can not
ensure that one null hypersurface lies to the future side of the other one.

Remark 2. If we suppose that τ = 0 instead of dτ = 0 in the above corollary,
then we can conclude that ν is constant. In fact, by Lemma 8 we have that
ρ = 0 along L and thus ∇UK = 0 for all U ∈ X(L). If we take derivative in
K = νξ along U ∈ X(L), then

0 = g(∇UK,N) = U(ν) + νg(∇Uξ,N) = U(ν) − ντ(U) = U(ν)

and thus ν is constant.

In a similar way as above we can also prove the following theorem which
ensure that a null hypersurface is an orthogonal leaf of a parallel null vector
field.

Theorem 4. Let K ∈ X(M) be a null parallel vector field and L a null hyper-
surface with rigging ζ such that

– H is constant.
– τ = 0.
– C(ξ,X) = 0 for all X ∈ Γ (S).
– 0 ≤ trace(A∗ ◦ A).
– K(span(ξ,N)) ≤ Ric(ξ,N).

If there is p ∈ L such that Kp ∈ TpL, then Kx = νξx for all x ∈ L and a
nonzero constant ν ∈ R and L is a totally geodesic orthogonal leaf of K.

Proof. We can suppose that μ = g(ξ,K) is non-positive and so using Propo-
sition 1 we have 
̃μ ≥ 0. Therefore, since K is causal, we have K = νξ for
certain μ ∈ C∞(L) and L is a totally geodesic orthogonal leaf. We can show
as in Remark 2 that ν is necessarily a constant. �

Observe that in the above theorem we can not suppose dτ = 0 as in
Theorems 1 and 3. In these theorems we can scale the rigging to get τ = 0 and
all the hypotheses still hold. In the case of Theorem 4 if we scale the rigging,
then we lost the condition H constant.

In the following corollary, observe that if the null mean curvature of a
compact null hypersurface is constant, then it is necessarily zero since it holds∫

L
H dg̃ = 0, [13].

Corollary 4. Let f ∈ C∞(M) be a function such that K = ∇f is a null parallel
vector field. Suppose that L is a null compact hypersurface with rigging ζ such
that
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– H is constant.
– τ = 0.
– C(ξ,X) = 0 for all X ∈ Γ (S).
– 0 ≤ trace(A∗ ◦ A).
– K(span(ξ,N)) ≤ Ric(ξ,N).

Then Kx = νξx for all x ∈ L and a nonzero constant ν ∈ R and L is a totally
geodesic orthogonal leaf of K.

Proof. If Kp /∈ TpL for all p ∈ L, then K is a rigging for L, but this is not
possible because it is a gradient and L is compact, [13,18]. Thus Kp ∈ TpL for
some p ∈ L an we can apply the above theorem. �

We say that a rigging ζ induces a preferred rigged connection if the Levi-
Civita connection induced from the rigged metric g̃ coincides with the induced
connection ∇L. In some sense, a null hypersurface admitting a preferred rigging
connection can be handle formally as a nondegenerate one, [18]. The necessary
and sufficient conditions for a rigging to induce a preferred rigging connection
are τ = 0 and B = C, [4,18,19].

Corollary 5. Let K be a parallel null vector field, L a null hypersurface and
ζ a rigging for it. If H is constant, ζ induces a preferred rigged connection,
K(span(ξ,N)) ≤ Ric(ξ,N) and there is a point p ∈ L with Kp ∈ TpL, then
Kx = νξx for all x ∈ L and a nonzero constant ν ∈ R and L is a totally
geodesic orthogonal leaf of K.

Example 4. Take (M0, g0) a Riemannian manifold and consider the plane fronted
wave (M, g) =

(
M0 × R

2, g0 + 2dudv + φ(x, u)du2
)
. We have that K = ∂v is a

parallel null vector field and the orthogonal leaf through a point p = (x0, u0, v0)
is given by Fp = {(x, u0, v) : x ∈ M0, v ∈ R}. This is a totally geodesic null
hypersurface and ζ = ∇v = ∂u − Φ∂v is a rigging for Fp with rigged ξ = ∂v.
From Eq. (4) we have that τ = 0 and using that g(∇Xζ, Y ) = 0 for all
X,Y ∈ X(M0) and Eq. (11) we also have C = 0. Therefore, ζ induced a
preferred rigged connection on Fp. Moreover, since ξ = ∂v is parallel, then
K(span(ξ,N)) = Ric(ξ,N) = 0.

Using the above corollary, the orthogonal leaves of K are the unique null
hypersurfaces in (M, g) with these properties.

As we said before Theorem 2, the existence of a timelike gradient pre-
vents the existence of compact null hypersurfaces. More general, if the first De
Rham cohomology group is trivial, then the existence of a closed rigging is an
obtructition for the compactness of the null hypersurface. We give an obstruc-
tion for the compactness in the case of a closed (non necessarily a gradient)
conformal vector field.

Theorem 5. Let K ∈ X(M) be a closed and conformal vector field and L a
null hypersurface. Suppose that K is a rigging for L and one of the following
holds.
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– ρ(x) 	= 0 for all x ∈ L.
– Ric(Kx, ξx) 	= 0 for all x ∈ L.

Then L is not compact. Moreover, if ξ is a complete vector field, then L is
diffeomorphic to R × S.

Proof. If we call ζ = K and λ̃ = λ ◦ i, then ∇λ = 2ρζ and ∇̃λ̃ = 2ρξ. On the
other hand, we have X(ρ) = 0 for all X ⊥ K, so if Kx is not null for some
x ∈ L, then ∇ρx = ξ(ρ)Kx. If Kx is null, then Kx = Nx and since the screen
distribution and Kx is orthogonal to Kx itself we get ∇ρx = ξ(ρ)Nx = ξ(ρ)Kx.
Thus, in any case ∇ρ = ξ(ρ)K and thus ∇̃ρ̃ = ξ(ρ)ξ = − 1

n−1Ric(K, ξ)ξ, where
as before ρ̃ = ρ ◦ i. If L is compact, then λ̃ and ρ̃ have a critical point, which
contradicts the hypotheses.

For the last part, since K is closed we have that ξ is g̃-unitary and closed
and we can check as in [12, Proposition 2.1] that the flow Φ of ξ gives us a
covering map Φ : R × S → L, being S a leaf of the screen. We have that both
λ and ρ are constant through the leaves of the screen and by hypotheses, fixed
x ∈ S, we have that λ (Φs(x)) or ρ (Φs(x)) are strictly monotone functions.
Therefore, Φ : R × S → L is injective and so a diffeomorphism. �

Observe that from [15, Theorem 18], in the above situation we can scale
the rigging to obtain a geodesic rigged vector field, i.e., τ(ξ) = 0. On the other
hand, since g̃(ξ, ∇̃ρ) = Ric(K, ξ), to ensure that L is not compact under the
assumption Ric(K, ξ) 	= 0 we do need to suppose that Kx 	∈ TxL for all x ∈ L.

We focus now on the case where the closed and conformal vector field
is tangent to the null hypersurface and we give sufficient conditions to ensure
that the null hypersurface is an orthogonal leaf in this situation.

Proposition 2. Let K ∈ X(M) be a closed and conformal vector field and L a
null hypersurface such that Kx ∈ TxL for all x ∈ L. If L has a screen non-
degenerate second fundamental form, then Kx = ν(x)ξx for all x ∈ L and L is
an orthogonal leaf of K.

In particular, if L is totally umbilical with never vanishing null mean
curvature, then L is an orthogonal leaf of K.

Proof. Since g(K, ξ) = 0, Lemma 6 gives us A∗(PS(K)) = 0, but being the
null second fundamental form of L non-degenerate, we have PS(K) = 0 and
K = νξ. Therefore L is an orthogonal leaf of K. �

Theorem 6. Let K ∈ X(M) be a closed and conformal vector field and L a null
hypersurface with zero null mean curvature such that Kx ∈ TxL for all x ∈ L.
Suppose that ζ is a rigging for L such that.

– dτ = 0.
– C(ξ,X) = 0 for all X ∈ Γ (S).

If (n − 1)(n − 2)ρ2 ≤ Ric(K,K) and Kp is null for some point p ∈ L, then
Kx = ν(x)ξx for all x ∈ L and L is a totally geodesic orthogonal leaf of K.
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Proof. As in Theorem 1 we can take a restricted rigging in a neighbourhood
of p ∈ θ ⊂ L such that τ = 0 and C(ξ,X) = 0 for all X ∈ Γ (S). Since K is
tangent to L, then g(K, ξ) = 0. Moreover, from Lemma 4 we know that the
function λ = g(K,K) holds ∇λ = 2ρK and so g(∇λ, ξ) = 0.

Using the Lemmas 1 and 2 we get that the laplacian of λ̃ = λ ◦ i with
respect to g̃ is 
̃λ̃ = 
λ−2Hessλ(ξ,N)+Hessλ(ξ, ξ). Since ξ is orthogonal to
K, Lemma 7 ensures ξ(ρ) = 0 and so Hessλ(ξ, ξ) = 0 and Hessλ(ξ,N) = 2ρ2.
Using this jointly with the expression for 
λ given in Lemma 4 gives us


̃λ̃ = − 2
n − 1

Ric(K,K) + (2n − 4)ρ2 ≤ 0.

Since λ has a minimum at p, then λ vanishes in θ and by connectedness
in the whole L. Therefore, K = νξ for certain ν ∈ C∞(L) and since H = 0 and
the orthogonal leaves of K are totally umbilical, then L is a totally geodesic
orthogonal leaf of K. �

As in Remark 2, if we suppose in the above theorem that τ = 0 then we
can conclude that ν is a constant.

Finally, the following result gives us conditions for a closed and conformal
vector field in a null hypersurface to be tangent to the screen distribution.

Theorem 7. Let K ∈ X(M) be a closed and conformal vector field and L a null
hypersurface such that Kx ∈ TxL for all x ∈ L. If there is a preferred rigging
ζ for L, Kp ∈ Sp for some p ∈ L, g(K,N) is signed and 0 ≤ g(K,N)ρH, then
Kx ∈ Sx for all x ∈ L.

Proof. Since μ = g(K, ξ) = 0, from Lemma 6 we have that the gradient with
respect to g̃ of ν = g(K,N) is ∇̃ν = ρξ. Therefore, 
̃ν = ξ(ρ)+ρd̃ivξ, but from
Eq. (17) we get d̃ivξ = −H and from Lemma 7 we have ξ(ρ) = 0. Applying
the maximum principle to ν we get the result. �
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de Andalućıa-FEDER research Project UMA18-FEDERJA-183.

Data Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code Availability Not applicable.



Vol. 77 (2022) Conformal Vector Fields and Null Hypersurfaces Page 21 of 22 129

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References
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[4] Atindogbé, C., Ezin, J.P., Tossa, T.: Pseudo-inversion of degenerate metrics. Int.
J. Math. Math. Sci. 55, 3479–3501 (2003)

[5] Caballero, M., Romero, A., Rubio, R.M.: Constant mean curvature spacelike
hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector
field. Class. Quantum Grav. 28, 145009 (2011)

[6] Catalano, D.A.: Closed conformal vector fields on pseudo-Riemannian manifolds.
Int. J. Math. Math. Sci., Art. 36545 (2006)

[7] Eschenburg, J.H.: Maximum principle for hypersurfaces. Manuscr. Math. 64,
55–75 (1989)

[8] Galloway, G.J.: Maximum principles for null hypersurfaces and null splitting
theorems. Ann. Henri Poincaré 1, 543–567 (2000)
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