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Abstract. The method of blowing up points of indeterminacy of certain
systems of two ordinary differential equations is applied to obtain informa-
tion about the singularity structure of the solutions of the corresponding
non-linear differential equations. We first deal with the so-called Painlevé
example, which passes the Painlevé test, but the solutions have more com-
plicated singularities. Resolving base points in the equivalent system of
equations we can explain the complicated structure of singularities of the
original equation. The Smith example has a solution with non-isolated sin-
gularity, which is an accumulation point of algebraic singularities. Smith’s
equation can be written as a system in two ways. We show that the se-
quence of blow-ups for both systems can be infinite. Another example
that we consider is the Painlevé-Ince equation. When the usual Painlevé
analysis is applied, it possesses both positive and negative resonances.
We show that for three equivalent systems there is an infinite sequence
of blow-ups and another one that terminates, which further gives a Lau-
rent expansion of the solution around a movable pole. Moreover, for one
system it is even possible to obtain the general solution after a sequence
of blow-ups.

Mathematics Subject Classification. Primary 34M35, Secondary 14E05,
14E15.

1. Introduction

Since the work of Sophia Kowalevskaya on the rotation of a rigid body around
a fixed point [14] it has been realised that the singularity structure of the so-
lutions of a differential equations in the complex plane is an important tool to
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examine the integrability of an equation. The solutions of a given non-linear
second-order ODE in general have infinitely many singularities in the complex
plane, the location of which, apart from a finite number of fixed singularities
of the equation, depends on the initial data of the equation. These singulari-
ties are therefore called movable. The behaviour of the solutions at the fixed
singularities of an equation can be completely understood, whereas the nature
of the movable singularities is less obvious. For second-order equations, essen-
tial singularities, branch points (logarithmic or algebraic) and transcendental
singularities can in general occur. For higher-order equations, non-isolated sin-
gularities can occur, for example the movable barriers in the third-order Chazy
equation. In recent years, certain classes of ordinary differential equations
(ODEs) in the complex plane were studied which exhibit movable algebraic
singularities, that is, locally the solutions can be expressed in terms of conver-
gent Puiseux series expansions. This is a generalisation of the Painlevé prop-
erty which demands that all movable singularities of the equation be poles. The
Painlevé equations are six non-linear second-order ODEs and were discovered
by Painlevé and others at the start of the 20th century in the classification of
all second-order rational ODEs with this property. They have been extensively
studied since by both applied and pure mathematicians, and their solutions,
the Painlevé transcendents, have found their entry in the list of special func-
tions. Okamoto has studied all six Painlevé equations in their Hamiltonian
form from a geometric point of view in [15], where he introduced the notion
of the space of initial conditions, obtained by blowing up the phase space at a
finite sequence of points. A blow-up is a construction originating in algebraic
geometry to regularise an algebraic curve. It can be adapted to the setting
of differential equations where it serves to regularise a system of equations
at points of indeterminacy of the equations. The blow-ups where performed
somewhat more explicitly by Duistermaat and Joshi [4] for the first Painlevé
equation and by Howes and Joshi [11] for the second Painlevé equation.

In this article, we will apply the method of blowing up the phase space
to some non-linear second-order differential equations with a more general
singularity structure than imposed by the Painlevé property. Although the
geometric picture is not as nice as in the Painlevé case, where the solutions of
the equations uniformly foliate the space of initial conditions, a great deal of
insight can be gained about the singularity structure of the solutions of these
equations. Here it is of general interest what types of singularities a solution
of an equation can develop when analytically continued in the complex plane.
We will consider several examples. The first example is an equation proposed
by Painlevé, for which the general solution has, apart from simple poles, also
logarithmic branch points as singularities. This behaviour, however, cannot be
picked up by Painlevé analysis which only detects the poles of the solutions (the
Painlevé example thus passes the Painlevé test). By the method used below,
however, we will be able to detect both types of singularities. We resolve two
base points in a finite number of steps in the equivalent system of equations
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and this leads to the explanation of the complicated structure of singularities
of the original equation. Another example is an equation proposed by Smith
[19]. The equation is interesting since although all movable singularities of any
solution that can be reached by analytic continuation along a finite length
curve are algebraic branch points, however, Smith has given solutions with
a singularity that is an accumulation point of algebraic branch points (non-
isolated singularity). Such a singularity itself is not algebraic and can only be
obtained by analytic continuation along an infinite length curve. As we will
see, such complicated behaviour is most likely reflected in the fact that the
sequence of blow-ups for this equation does not terminate. Smith’s equation
can be written as a system in two ways. We show that the sequence of blow-ups
for both systems can be infinite. Although we have no proof that the sequence
of blow-ups does not terminate, there is a pattern emerging that leads us to
believe that this may in fact be the case. Moreover, we show how the algebraic
expansions arise from one of the systems. Another example that we consider is
the Painlevé-Ince equation. When the usual Painlevé analysis is applied to it,
it is easy to verify that it possesses both positive and negative resonances. We
show that for three equivalent systems there is an infinite sequence of blow-ups
and another one that terminates, which further gives a Laurent expansion of
the solution around a movable pole. Moreover, for one system it is even possible
to obtain the general meromorphic solution after a sequence of blow-ups. We
conclude the paper with a discussion and some more examples that we plan
to discuss in more detail in the future. In addition, we will review formally
the general method given in [13] for obtaining the singularities of a second-
order differential equation, or, more generally, of a system of two first-order
equations, using the method of blowing up the space of dependent variables.
This can be seen as an algorithm to detect all different types of singularities in
the complex plane that can arise for a given equation, if the sequence of blow-
ups terminates. In the cases where it does not terminate, this should be seen
as an indicator that the equation may possess a very complicated singularity
structure as in the example of Smith’s equation, and a more detailed analysis is
needed. In the discussion section we also mention the Hayman equation, which
has entire solutions and where we observe infinite sequences of blow-ups.

2. Regularising Bi-rational Transformations

The Painlevé equations were discovered in the search for differential equa-
tion where the only movable singularities are poles. Painlevé himself classi-
fied all equations in the class of second-order rational differential equations
y′′ = R(z, y, y′) with this property. He did so by first exploiting necessary
criteria for an equation to have this property to eliminate certain types of
equations. One such necessary criterion is to pass what is now known as the
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Painlevé test. Inserting a formal Laurent series into the equation, after deter-
mining the leading order of a possible solution, one can recursively compute
the coefficients of the series. If there is no obstruction in computing the coef-
ficients and a sufficient number of such formal Laurent series solutions exists,
the equation is said to pass the test. The result of this classification is that,
apart from equations which can be solved in terms of formerly known func-
tions, there are only 6 different types of equations the solutions of which define
new transcendental functions, known as the Painlevé transcendents. To prove
that these 6 equations in fact possess the Painlevé property requires somewhat
more work. In certain proofs for the Painlevé property of the Painlevé equa-
tions (e.g. [10,16]) a main part is played by a system of equations in certain
transformed coordinates where the system becomes regular at points where
the original variables tend to infinity. For example, for the second Painlevé
equation,

y′′ = 2y3 + zy + α, α ∈ C, (1)

the changes of variables

y = u−1, y′ = ∓ (
u−2 + z/2 + (α ± 1/2)u − u2v

)
(2)

lead to the following regular systems of equations at points where y → ∞, i.e.
u → 0:

u′ = ± (
1 + zu2/2 + (α ± 1/2)u3 − u4v

)

v′ = ± (
z/2 + (α ± 1/2)u − u2v

)
(α ± 1/2 − 2uv) .

(3)

Note that there are two different transformations according to the two different
types of poles that the solutions of (1) can have (simple poles with residues 1
or −1). The changes of variables (2) are what we will call regularising trans-
formations for the equation at points where the dependent variable becomes
infinite. In this case, the transformations are known since Painlevé and can be
found by the method of truncation. For the other Painlevé equations similar
changes of variables are known.

Moving on to equations with a more complicated singularity structure,
Filipuk and Halburd [5] considered a class of equations

y′′(z) =
N∑

k=1

ak(z)y(z)k, (4)

with in general movable algebraic singularities and which includes the Painlevé
equations PI and P II . Special cases of equations in this class had been studied
earlier by Shimomura [17,18]. For equations in this class regularising transfor-
mations are found by means of an auxiliary function W that remains bounded
as a movable singularity is approached and which serves as an approximate
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first integral. The form of W in [5] is prescribed as

W (z) = y′(z)2 +
N−1∑

k=1

bk(z)
y(z)k

y′(z) − 2
N+1∑

k=1

ak−1(z)
k

y(z)k,

where the coefficient functions bk(z), k = 1, . . . , N − 1, are determined in
terms of the functions ak(z) in the differential equation (4). Employing this
auxiliary function Filipuk and Halburd wrote down a system of equations
in certain variables (u, v) which remains finite at the movable singularities
of a solution and which becomes a regular initial value problem when the
independent variable z is interchanged with one of the dependent variables.

This class of equations (along with other classes which can be written in a
Hamiltonian form), for which the only movable singularities of their solutions
in the complex plane are algebraic branch points, was also revisited in [13]
where the method of blowing up points of indeterminacy is applied. After the
final blow-up of an equation, a system of equations which forms a regular
initial value problem at the singular points where the solution in the original
variables tends to ∞ was obtained (after interchanging the variables). Keeping
track of the changes of variables introduced by the blow-ups one can find a
bi-rational regularising transformation for the equations under consideration,
from which the behaviour at the singularities of the solutions of the original
equation follows.

Further classes of equations with movable algebraic singularities were
treated by Filipuk and Halburd [6,7], who studied equations of Liénard type,

y′′ = F (z, y)y′ + G(z, y), (5)

where F and G are polynomials in y with analytic coefficients, where degy G ≤
n + 1 if degy F = n. Similar to the case of equation (4), the proof that all
movable singularities of solutions of equations in the class (5), obtained by
analytic continuation of a local analytic solutions along a finite length curve,
are algebraic branch points, makes use of an approximate first integral which
in this case has the form

W (z) = y′(z) −
n∑

k=0

fk(z)
j + 1

y(z)j+1 +
n∑

l=0

al(z)y(z)−l+1, (6)

where the functions al(z) need to be determined in terms of the coefficient
functions fk(z), k = 0, . . . , n, and gk(z), k = 0, . . . , n + 1.

A class of Hamiltonian systems with movable algebraic singularities,

q′ =
∂H

∂p
, p′ = −∂H

∂q
,

was studied in [12]. The proofs in all these papers that the solutions of the
equations in the respective classes have only movable algebraic singularities all
rely on an approximate first integral W specified for each class separately.
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In the following we will consider a system of equations of the general
form

p′ =
P1(z, p, q)
Q1(z, p, q)

, q′ =
P2(z, p, q)
Q2(z, p, q)

, (7)

where Pi and Qi, i = 1, 2, are polynomials in p and q with coefficients rational
in z, such that the fractions on the right hand side are in reduces terms, i.e. Pi

and Qi have no common factors in C(z)[p, q]. Originally, the notion of a blow-
up, a fundamental type of bi-rational transformation, comes from algebraic
geometry. It can be performed to resolve the singularities of an algebraic curve
in projective space. By a deep and general theorem by Hironaka, the singular
points of an algebraic curve can be completely resolved by a finite sequence of
blow-ups. The space considered in the context of complex differential equations
is the space of dependent variables (p, q) ∈ C

2 of our system of equations
(7). The equations Pi(z, p, q) ≡ 0 and Qi(z, p, q) ≡ 0 define curves in the
two-dimensional affine space over the field C(z). The points of intersection
Pi(z, p, q) = Qi(z, p, q) ≡ 0 for i = 1 or i = 2, where the right hand side of (7)
becomes indeterminate, are called the base points of the system. The aim is to
remove these indeterminacies by some suitable bi-rational transformation in p
and q which will be obtained by a series of blow-ups described in the following.
Geometrically, the blow-up procedure separates out the lines through base
points according to their slopes and, hence, adds a projective line to the space,
which is called an exceptional divisor. The blow-up at a point (p, q) = (a, b),
where a = a(z) and b = b(z) can in general be rational functions in z, is
defined by the following construction. One introduces new coordinate charts,
p = a + u = a + UV and q = b + uv = b + V and re-writes the system in new
coordinates (u, v) and (U, V ). The exceptional line then corresponds to u = 0
or V = 0. As a simple example let us consider the blow-up of the system of
equations

y′
1 =

y2(y2 − a)
y1

, y′
2 = y1y2,

where a �= 0. Here y1 = p, y2 = q. We see from the first equation that the
base points are (y1, y2) = (0, 0) and (y1, y2) = (0, a). Blowing up the point
(y1, y2) = (0, a), we get two new systems

u′ = Av + uv2, v′ =
au + u2v − av2 − uv3

u

and

U ′ =
a + V − aU3V − U3V 2

UV
, V ′ = UV (a + V ).

We see from the first system that there is another base point (u, v) = (0, 0).
On the contrary, each right-hand side of the (U, V ) system is either regular or
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of the form
λ + f(z, U, V )

g(z, U, V )
, (8)

where λ �= 0 and f, g are polynomials in U and V with rational functions in z as
coefficients. On the exceptional curve, parametrised by (U, V ) = (c, 0), c ∈ C,
we find that f(z, c, 0) = g(z, c, 0) ≡ 0, so although there is no indeterminacy,
still the right-hand side becomes infinite on the exceptional curve introduced
by the blow-up. However, starting from initial conditions (U(z0), V (z0)), with
V (z0) �= 0, the solution can never pass through a point (U, V ) = (c, 0) as the
vector field (U ′, V ′) becomes infinite and tangent to the exceptional curve. The
only point on the exceptional curve a solution can pass through is the point
(u, v) = (0, 0) in the first chart after the blow-up, which is also the only point
of indeterminacy of the system (u, v) and which requires blowing up further.
We will continue to perform blow-ups of all base points until the right hand
sides of the emerging systems are either of the form with the right-hand sides
(8) or they are regular on the exceptional curve (in case we can resolve all
singularities after a finite number of blow-ups). In the latter case, the system
forms a regular initial value problem for initial data on the exceptional curve
and hence has a local analytic solution in a neighbourhood of such point, as
is the case for the Painlevé equations. For most of the equations considered in
this article, the sequence of blow-ups does not terminate and we argue that this
is an indicator of a more complicated structure of singularities. The question
arises how, for a given system of equations of the form (7), whether or not the
sequence of blowing up points of indeterminacy terminates.

3. An Algorithm for the Singularity Structure of an Equation

In order to study singularities of a given system of equations, we need to
consider the system over P

2 or P
1 × P

1. In this paper we choose the compact-
ification P

1 × P
1. This is needed if we want to study what happens when one

or two of the dependent variables of the system become infinite. The aim is to
obtain the space of initial conditions for the system after a sequence of blow-
ups, when it terminates, which then allows us to read off the different types
of movable singularities that can occur in a solution. We will now formalise
this process to be used as an algorithm. In the example of Smith’s equation
that follows we shall see that the algorithm does not necessarily terminate and
at present we have no criterion to decide, for a given equation or a system,
whether or not it will terminate. However, in case the algorithms finishes after
a finite number of blow-ups for each of a finite number of base points, it allows
us to obtain a complete list of different types of movable singularities that can
occur in the solutions of an equation.

Given a system of two first-order differential equations,

y′
1 = R1(z, y1, y2), y′

2 = R2(z, y1, y2),
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we now formalise the process of finding the singularity structure of the solu-
tions.

• Consider a rational compactification P of the space of dependent vari-
ables, (y1(z), y2(z)) ∈ C

2, covered by a finite number of charts φi : P →
C

2. Consider the equations obtained by re-writing the system of equations
in each chart, together with the original one.

• In this compact space the system of equations may possess a finite number
of base points. If not we are already finished and the solutions can in fact
be meromorphically continued in the whole complex plane without the
fixed singularities. Otherwise we perform, for each base point, a sequence
of blow-ups in some chart that contains the point. After every blow-up,
one of the following situations will occur.
(a) The exceptional curve introduced by the blow-up, contains a finite

number of new base points. By this we mean base points that are not
the transform of some base point present in any of the other charts.
Some of the new base points (u, v) = (0, c) or (U, V ) = (1/c, 0),
where c �= 0, are seen in both charts after the blow-up, but some
((u, v) = (0, 0) or (U, V ) = (0, 0)) are seen only in one of the new
coordinate charts.

(b) The system of equations in both charts after the blow-up is of the
form

u′
1 =

λ + f1(z, u1, u2)
g1(z, u1, u2)

, u′
2 =

μ + f2(z, u1, u2)
g2(z, u1, u2)

, (λ, μ) �= (0, 0). (9)

The right hand side of at least one of the equations becomes infinite
on the exceptional curve. Then an analytic continuation of any so-
lution cannot pass through the exceptional curve. The sequence of
blow-ups for the base point finishes. Following [13], we might further
study the question of the presence of movable algebraic singularities,
if the system can be regularized after interchanging the dependent
and independent variables.

(c) The system of equations is regular on the exceptional curve. Also
here, the sequence of blow-ups finishes and the solution can cross
the exceptional curve. At such a point the solution is analytic in the
chart after the last blow-up. The solution can thus be transformed
by a sequence of bi-rational transformations back to the original
variables (y1, y2) which then either has a pole or is analytic.

4. An Example by Painlevé

In the previous sections we discussed the difference between an equation pass-
ing the Painlevé test and having the Painlevé property. To make this fact
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explicit, Painlevé constructed the example

y′′ =
2y − 1
y2 + 1

(y′)2, (10)

for which one can obtain, about every point z0 ∈ C, a one-parameter family
of Laurent series expansions

y(z) =
∞∑

k=−1

ck(z − z0)k. (11)

Indeed, substituting the series (11) into (10) one can find that c−1 is arbitrary,
c0 = −1/2, c1 = −5/(12c−1), c2 = −5/(24c−1) and so on. Equation (10) is
also invariant under y → −1/y. However, as one can check easily, the general
solution of the equation is given by

y(z) = tan(log(az + b)), (12)

having simple poles at the points where the argument of the tan becomes an
odd multiple of π

2 according to the Laurent series (11). The logarithmic sin-
gularity at the point z0 = − b

a is not discovered through the Painlevé analysis.
We will show in the remainder of this section how the singularity structure

of equation (10) can be understood when we apply the procedure of blow-ups.
Therefore we first re-write the equation as an equivalent system in two variables
which is more convenient for our analysis,

y′
1 = (y3

1 + y1)y2,

y′
2 = −(y2

1 + y1 + 1)y2
2 .

(13)

The reader may check that y = y1 indeed satisfies the equation (10). We will
now re-write this system in the other coodinate charts in P

1 × P
1. We shall

take Y1 = 1/y1 and Y2 = 1/y2. In the (Y1, y2) chart the system (13) becomes

Y ′
1 = −y2(1 + Y 2

1 )
Y1

,

y′
2 = −y2

2(1 + Y1 + Y 2
1 )

Y 2
1

.

(14)

We see that we have the first base point p1 = (Y1 = 0, y2 = 0). Re-writing the
system in the (y1, Y2) coordinate chart, we get

y′
1 =

y1 + y3
1

Y2
,

Y ′
2 = 1 + y1 + y2

1 .

(15)

This further gives the following base points: p2 = (y1 = 0, Y2 = 0), p3 =
(y1 = −i, Y2 = 0) and p4 = (y1 = i, Y2 = 0), where i2 = −1. Actually, if
we compactify differently our system and consider the coordinate charts over
P

2, then the points p3 and p4 are not present. The final system in (Y1, Y2)
coordinates does not give any new base points. In the following we shall deal
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with only p1 and p2 points, which can be resolved after one blow-up, as the
cascades of p3 and p4 seem to be infinite. Actually, the points p3 and p4 are
singular values of y in (10), so we will not consider them in the following.
However, we shall fully understand the singularity structure from blowing up
the first two base points.

First consider the system for (Y1, y2). Performing the blow-up of the
point p1 introduces two new coordinate charts which we denote by (u1, v1)
and (U1, V1). In these coordinates, the system of equation becomes

u′
1 = −v1 − u2

1v1, v′
1 = −v2

1 , (16)

U ′
1 = 1, V ′

1 = −1 + U1V1 + U1V
2
1

U2
1

. (17)

We note that in both systems, one of the equations contains only one variable,
so it can be solved explicitly. Let us take system (16). The second equation
can be solved explicitly and we get v1 = 1/(z − a), where a is an arbitrary
constant. The first equation is then a Riccati equation in u1 given by

u′
1 = −u2

1 + 1
z − a

.

This equation can be easily solved and we get solution involving tan and log in
the form u1 = tan(k − log(a − z)), where k is arbitrary, which, after returning
to original variables y1 = 1/u1, is similar to (12). On the other hand, we know
that the Riccati equation can be linearized. Indeed, by taking u1 = (z−a)w′/w,
where w is a new function of z, we get

w′′ +
w′

z − a
+

w

(z − a)2
= 0. (18)

This equation is Fuchsian at any point z = a. By performing the usual analysis
of the Fuchsian equation, by substituting w(z) = (z − a)r, we see that the
indicial equation is r2 = −1 which gives indices r = ±i, i2 = −1. Further, by
taking w(z) = (z − a)i(b0 + b1(z − a)i+s), we find that the resonances satisfy
−s = ±3i. Indeed, linear equation (18) has a general solution

w(z) = k1(z − a)i + k2(z − a)−i, i2 = −1, (19)

where k1 and k2 are arbitrary constants, which gives solution (12) written in
a slightly different but equivalent way. Thus, after the first blowup we im-
mediately get the general solution. System (17) is analogous. From the first
equation we can get that U1 = t + a and a Riccati equation for the function
V1 which leads to a similar linear equation (18).

Now let us explain how expansion (11) arises from system (16). We can
search for expansions of system (16) in the form u1 =

∑∞
j=0 aj(z − z0)j , v1 =

∑∞
j=0 bj(z−z0)j which gives b1 = −b2

0, a1 = −b0−a2
0b0, b2 = b3

0, a2 = (1+2a0+
a2
0 + 2a3

0)b
2
0/2 and so on. Returning to original variables, we get an expansion

y1(z) = 1/a0 + (b0 + a2
0b0)(z − z0)/a2

0 + O((z − z0)2), which is holomorphic
at z = z0. However, if we search for expansion of system (16) in the form
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u1 =
∑∞

j=1 aj(z − z0)j , v1 =
∑∞

j=0 bj(z − z0)j , which crosses the exceptional
curve parametrized by b0, we get b1 = −b2

0, a1 = −b0, a2 = b2
0/2, b2 = b3

0,
a3 = −2b3

0/3, b3 = −b4
0, a4 = 3b4

0/4 and, returning to original variables, we get
y1 = −1/(b0(z − z0)) − 1/2 + 5b0(z − z0)/12 − 5b2

0(z − z0)2/24 + O((z − z0)3),
which is essentially, expansion (11).

Blowing up the point p2 is very similar. Indeed, we get two new systems
in the coordinate charts (u2, v2) and (U2, V2)

u′
2 =

u2
2 + 1
v2

, v′
2 = 1 (20)

and

U ′
2 = −U2

2 , V ′
2 = 1 + U2V2 + U2

2 V 2
2 , (21)

which can be analysed similarly. They can, in fact, be integrated by elementary
methods as above. We observe that there are no further indeterminacies on
the right hand sides of these systems. Thus, the resolution of points p1 and
p2 leads to a complete explanation of the movable singularities of the original
equation.

5. Smith’s Example

For the Painlevé equations the process of repeatedly blowing up base points
leads to a space of initial conditions for the dependent variables after a finite
number of steps which allows us to read off the possible behaviour of a solu-
tion at its movable singularities. For certain type of equations with algebraic
singularities considered in [13], the process of blowing up base points is also
finite, but in order to obtain the behaviour at movable singularities, one needs
to interchange the dependent and independent variables after a final blow-
up. The question arises, whether this process always terminates, say, for any
second-order differential equation. That the answer to this question is negative
can be seen from the following example, proposed by Smith [19],

y′′ + 4y3y′ + y = 0. (22)

In general, Smith studied equations of the form

y′′ + f(y)y′ + g(y) = P (z), (23)

where y = y(z) and f and g are polynomials of degrees n and m respectively
with n > m. He showed that any movable singularity of a solution of the
equation, which can be obtained by analytic continuation along a finite length
curve, is an algebraic branch point of the form

y(z) =
∞∑

k=−1

ck(z − z0)k/n, c−1 �= 0. (24)
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For this, he re-wrote equation (23) in the form of the system by introducing
new functions y1 = y, y2 = y′

1 + F (y), where F (y) =
∫ y

0
f(η)dη. Clearly, from

equation (23), y′
2 = P (z) − g(y1). Further, by introducing u = 1/y1, Smith

obtained a system of equations for y2(u) and z(u) which is regular for u = 0
with z(0) = z0 and y2(0) also finite. Thus, y2 and z can be expanded in Taylor
series in u around u = 0 and inverting the series one obtains expansion (24).

However, within the class of equations (23), there exist equations with so-
lutions having non-isolated singularities. Such singularities are necessarily ac-
cumulations points of movable algebraic poles. An explicit example is equation
(22). Smith described a solution to this equation with an explicit parametri-
sation in terms of Bessel functions for which there is a singularity obtained
by an analytic continuation along a curve of infinite length. In particular,
he re-wrote equation (22) as a system of equations dz/dy2 = −1/y1 and
dy1/dy2 = (y4

1 − y2)/y1 and noting that the second equation only involves
the dependent variable y1, he reduced it to the Bessel equation after a change
of variables. He studied the behaviour of solutions as z → z0 and y2(z) → ∞
and showed that such a point cannot be an algebraic singularity. Further, he
showed that this point is an accumulation point of movable algebraic singular-
ities described previously and thus is itself of non-algebraic form. In fact, the
behaviour of the solution in the vicinity of this point is very complicated as it
would have to be described by extending the solution over a Riemann surface
with an infinite number of sheets.

We will now see how the method of blowing up the base points for the
equivalent system of equations, after compactifying the space of dependent
variables, leads to a sequence of blow-ups that does not terminate. This might
be an indicator of the presence of non-isolated singularities. Moreover, we
conjecture that a similar behaviour will also be present in non-autonomous
equations of Liénard type. Following Smith [19], let us study the system

y′
1 = y2 − y4

1 , y′
2 = −y1. (25)

First, let us show how to obtain expansion around an algebraic singularity. By
introducing Y1 = 1/y1, we get a system of equations

Y ′
1 =

1 − y2Y
4
1

Y 2
1

, y′
2 = − 1

Y1
.

By interchanging the dependent and independent variables, we obtain the
system for z = z(Y1) and y2(Y1) given by

dz

dY1
=

Y 2
1

1 − y2Y 4
1

,
dy2

dY1
= − Y1

1 − y2Y 4
1

.
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Searching for expansions of the form z(Y1) = z0 +
∑∞

j=1 ajY
j
1 , p(Y1) = p0 +

∑∞
j=1 bjY

j
1 , we can find the unknown coefficients aj and bj and finally obtain

z(Y1) = z0 +
Y 3

1

3
+

p0Y
7
1

7
− Y 9

1

18
+ o(Y 9

1 ),

y2(Y1) = p0 − Y 2
1

2
− p0Y

6
1

6
+

Y 8
1

16
+ o(Y 8

1 ).

Inverting the series, we obtain expansion of the form (24), in particular,

y(z) = y1(z) =
c−1

(z − z0)1/3

−c−1

2
(z − z0)5/3 + c3(z − z0) + o(z − z0), c3

−1 = 1/3, (26)

where c3 is arbitrary (this corresponds to the resonance). Also, in this case

y2(z) =
7c3

3
− 3c−1

2
(z − z0)2/3 + o((z − z0)2/3).

Performing blow-ups of the system (25) after compactifying it to P
1 ×P

1

with Y1 = 1/y1 and Y2 = 1/y2, we obtain the first base point p1 = (Y1 =
0, Y2 = 0). Then we get two more points p2 = (u1 = 0, v1 = 0) and p3 = (U1 =
0, V1 = 0). The point p2 gives an infinite cascade (which is actually periodic as
we obtain sequences of length 6 with 5 points having coordinates uj = 0, vj = 0
and then u6 = 0, v6 = k with |k| decreasing in each sequence). The point p3

is resolved after one more blow-up. For instance, in the coordinates (U3, V3),
given by Y1 = U3V

2
3 and Y2 = V3, system (25) becomes

U ′
3 =

1 − 2U2
3 V 5

3 − U4
3 V 7

3

U2
3 V 6

3

, V ′
3 =

1
U3

. (27)

According to our algorithm the system has no more base points. A similar
system is obtained in the coordinates (u3, v3). Both equations are then of the
form (9). At z = z0, if we assume expansion of the form (26), U3 ∼ (z−z0)−7/3

and V3 ∼ (z−z0)4/3, so U3 → ∞ as z → z0. Thus, a transformation U3 = y2
2/y1,

V3 = 1/y2 can be regarded as a regularising transformation (as there are no
further base points), but we have no regular initial value problem with the
required properties. The point Y1 = 0, Y2 = 0 corresponds to the point y1 = ∞,
y2 = ∞ in original variables, so this is an indicator that there is a singularity
z = z0 of non-algebraic type (as otherwise y2 is finite).

Finally, we choose another equivalent system of equations. Although we
do not obtain in that case expansion (26) by cleverly re-writing the system
(since it will correspond to the base point), we still see an infinite cascade. Let
us consider the system

y′
1 = y2, y′

2 = −y1 − 4y2y
3
1 . (28)

Clearly, in this case for the algebraic singularity y1 ∼ (z − z0)−1/3, y2 ∼
(z−z0)−4/3, hence an algebraic expansion would correspond to the point Y1 = 0
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and Y2 = 0 as z → z0. However, this point is the base point which we need to
blow up after compactifying the system (28) to P

1 ×P
1. After a finite number

of blowups (9 in this case) there are no more base points and the algorithm
stops. The bi-rational transformation Y1 = UV 2 an Y2 = U4V 8(U3V 7 − 1)
leads to the system of the form (9) (and, similarly in the (u, v) coordinates,
since u = UV and v = 1/U). However, U ∼ (z − z0)7/3 and V ∼ (z − z0)−1.
There is another base point for system (28) after compactification, namely, the
point with coordinates Y1 = 0 and y2 = 0. This base point gives rise to the
infinite cascade, which is also periodic as in the case of the previous system
with the only difference that in this case |k| increases. Hence, we can conclude
that the procedure of blowing up for both systems indicates the existence of
more complicated singularities than algebraic ones.

6. The Painlevé-Ince Equation

The Painlevé-Ince equation is a member of the so-called Riccati hierarchy and
it can be written in the operator form as D(y′ + y2) = 0, where the operator
D = d/dz + y. In the usual form it is given by

y′′ + 3yy′ + y3 = 0. (29)

When the Painlevé test is applied, it can be shown that it possesses both
positive and negative resonances. We can obtain the following two Laurent
expansions. The first one is with a positive resonance and z0 is a movable
pole:

y(z) =
1

z − z0
+ c0 − c2

0(z − z0) + o(z − z0). (30)

For the second family with negative resonance one needs to search for the
expansion in the form y(z) = 2(z − z0)−1 +

∑∞
j=2 c−j(z − z0)−j . As it is shown

in [2], the general solution of (29) is given by

y(z) =
2z − z1 − z2

(z − z1)(z − z2)
. (31)

Depending on the way it is expanded (in the punctured disk or in the complex
plane without the disk) one can get both Laurent expansions above. This
explains the presence of the negative resonance. In general, there have been
many studies on the meaning of negative resonances in the Painlevé test and
on the importance of information that they contain (see, for instance, [2,8]
and the references therein).

Let us consider the system

y′
1 = y2, y′

2 = −3y1y2 − y3
1 , (32)

which is equivalent to (29). Compactifying as before, we see that there is a
base point p1 at Y1 = 0 and Y2 = 0. As we proceed with blow-ups we see the
point p2 with u1 = v1 = 0. Then the cascade of base points splits into two
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cascades. The first one, coming from the point p3 with u2 = 0, v2 = −2, is
infinite. The second one, starting with the point p4 with u2 = 0, v2 = −1, is
resolved after one further blow-up. The regular system is obtained by using
the bi-rational transformation Y1 = u4 and Y2 = u2

4(u4v4 − 1). It is given by

u′
4 =

1
1 − u4v4

, v′
4 =

u4v
3
4

u4v4 − 1
.

On the exceptional curve u4 = 0 it is regular, so we get Taylor expansions
around z = z0 with u4(z0) = 0 and v4(z0) = −2c0 arbitrary. This will corre-
spond to the Laurent expansion (30). The infinite cascade indicates that the
singularities can be more complicated.

A very similar splittng cascade (we just have positive values in v2 for
both points) is observed if one studies another equivalent system

y′
1 = y2 − 3y2

1/2, y′
2 = −y3

1 , (33)

so we omit the details. It is interesting to note that only the third system gives
more information about the general solution to the Painlevé-Ince equation.
Let us consider the system

y′
1 = y2 − y2

1 , y′
2 = −y1y2. (34)

There are two base points p1 with Y1 = 0, y2 = 0 and p2 with Y1 = 0, Y2 = 0.
The first cascade is infinite and the second one regularises after one more
blow-up. In particular, we obtain the system

u′
2 =

v2 − u2

v2
, v′

2 = 1.

Thus, v2(z) = z − z0 and u2(z) = (z2 − 2zz0 − 2c)/(2(z − z0)), where c is
arbitrary. With y1 = 1/u2 and y2 = 1/(u2v2) this means that we reproduced
the general solution above (31).

We remark that instead of the standard Painlevé-Ince equation we can
study the so called generalized Painlevé-Ince equation [1] given by y′′ +αyy′ +
βy3 = 0. The study of singularities of equivalent systems is very similar to the
Painlevé-Ince example. However, for generic values of the parameters α and
β the sequence of blow-ups does not seem to terminate unless we pose some
conditions on these parameters.

7. Discussion and Future work

For the Painlevé equations, the method of blowing up the space of dependent
variables at points of indeterminacy leads to the space of initial conditions,
which is uniformly foliated by the solutions as was shown by Okamoto. We
have applied the method of blowing up base points to equations with more
complicated singularities other than just poles as in the Painlevé case. By
means of several examples, we have seen that a great deal of information
about the singularities of the solutions of these equations can be obtained
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from the blow-up structure. We have formalised this procedure to obtain a list
of all possible types of singularities in the solutions of a given equation. This
is only possible, however, if the process described terminates, i.e. if for every
base point the sequence of blow-ups is finite. With Smith’s and Painlevé-Ince
equations we have seen examples where the sequence of blow-ups is infinite.
This then is a hint that the equation can have more complicated, non-isolated
or other, singularities.

The proposed method of resolution of indeterminacies should be used to
study singularities of non-linear second-order differential equations along with
other methods. It is a good indicator for the presence of both algebraic and non-
algebraic singularities. However, the method seems to depend on the choice
of system which is equivalent to a given non-linear second order differential
equation, so sometimes we can get more information by choosing a particular
system.

Finally, let us give a number of remarks about future work. The Smith
and Painlevé-Ince examples fall into the class of Liénard-type equations. We
plan to study general non-autonomous Liénard-type equations in more detail.
We conjecture that solutions of these equations will also possess non-isolated
and other type singularities.

In general, when we apply this method, we need to carefully check the
systems that are obtained at each step, whether they are divergent on the
exceptional divisor or not. If the system has parameters, then depending on
the parameters, the number of cascades may be different, and also some in-
finite cascades for generic values of the parameters might terminate for some
special choice of parameters, which makes the analysis very inconvenient. So
the analysis of systems with parameters is more complicated. This can be
demonstrated with the example of an equation by Hayman [3], given by

yy′′ − (y′)2 = αy + βy′ + γ, (35)

where α, β and γ are parameters (one can also study a similar equation when
these are functions of z but the analysis is somewhat more complicated). This
equation, studied for constant coefficients, is not integrable for generic val-
ues of parameters, but some particular solutions are meromorphic. In [3] it
is shown, by using the local series analysis combined with techniques of the
Wiman-Valiron theory, that all meromorphic solutions are either polynomials
or entire functions of order one. So for generic values of the parameters this
equation always contains a particular meromoprhic solution. Moreover, the
general solution is meromorphic if and only if α = γ = 0 or β = 0. Solutions in
these cases are given in terms of either polynomials or exponential functions
(see Lemmas 2.1 and 2.2 in [3] for explicit expressions). We have studied the
following system equivalent to equation (35):

y′
1 = y2, y′

2 =
γ + βy2 + y2

2 + αy1

y1
. (36)
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For generic values of parameters we see three infinite cascades. However, if
γ = 0, then one of the cascades is finite. In case β = 0 two cascades are finite.
Since in this case according to [3] the general solution should be entire, we
conjecture that at some step in the infinite cascade we should make a change
of variables of the form u → eu, for one of the variables in the charts (u, v)
or (U, V ), after which the system regularizes and the sequence of blow-ups
stops (perhaps already after the first blow-up). When α = γ = 0, we see two
seemingly infinite cascades and one cascade is finite (actually it is solvable in
the sense that v′

2 = 0 and u′
2 = −β + u2v2). We also conjecture that the two

infinite cascades regularize and stop after the exponential change of dependent
variable. It is not fully clear at which step in the cascade we can make this
change of variables, perhaps already after the first blow-up in both cascades.
For generic values of parameters it may not be possible to terminate all the
cascades after this change of variables, only one of them and this will likely
correspond to a particular entire solution. For instance, for generic values of
the parameters, the base point p3 corresponds to Y1 = 0, Y2 = 0 and after the
first blow-up we obtain the system

u′
3 = −u3/v3, v′

3 = −βu3v3 − αu3v
2
3 − γu2

3v
2
3 ,

so we see the next base point with u3 = v3 = 0 (in the other chart U3, V3 we
have polynomial right-hand sides of both equations, so no more base points).
However, after the exponential change of variable for u3, the system is regular,
but this might also depend on how we choose our equivalent system. It might
be interesting to find another equivalent system to the equation of Hayman
to check these conjectures. We remark that we do not always have 3 cascades
of base points, for instance when γ = β2/4, we have only two cascades and
we conjecture that in one of the cascades the exponential change of variables
after the first blow-up is needed to regularize it. When we repeat the calcula-
tions with non-constant coefficients, which are more involved in this case, the
calculations look very similar, and there might be conditions (like resonance
conditions) to be imposed on the coefficients α(z), β(z), γ(z). We conjecture
that in this case the equation always has holomorphic solutions. Whether the
general solution is holomorphic for some choice of the coefficients remains open.
We leave the analysis of the non-autonomous Hayman and Liénard cases for fu-
ture papers, where we plan to understand better how the singularities (or even
the cases with entire solutions) correspond to termination/non-termination of
the cascades for a given system of equations.

The other interesting class of equations is with algebroid solutions (see,
for instance, [9] for the simplest case of 2-valued algebroid solutions for the
second order equation with the quintic polynomial right-hand side). We have
studied both the general case in [13] where we showed how to regularize the
system after interchanging the dependent and independent variables after the
last blow-up and the simplest algebroid case (which actually reduces to the
fourth Painlevé equation after some quadratic transformation and scaling) and
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we do see the differences in the last blow-up in the resulting systems in the
algebroid case like the absence of certain (odd or even) powers of the variables.
It remains to show how the expansions for the algebroid case arise. Moreover,
more examples are needed to answer the open question how to distinguish the
cases with generic movable algebraic singularities and with algebroid solutions
(general or particular).
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Painlevé property. Ann. Mat. Pura Appl. 186, 267–80 (2007)

[18] Shimomura, S.: Nonlinear differential equations of second Painlevé type with the
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